Research article
10 Nov 2020
Research article | 10 Nov 2020
Temperature and strain controls on ice deformation mechanisms: insights from the microstructures of samples deformed to progressively higher strains at −10, −20 and −30 °C
Sheng Fan et al.
Related authors
Electron backscatter diffraction (EBSD) based determination of crystallographic preferred orientation (CPO) in warm, coarse-grained ice: a case study, Storglaciären, Sweden
Morgan E. Monz, Peter J. Hudleston, David J. Prior, Zachary Michels, Sheng Fan, Marianne Negrini, Pat J. Langhorne, and Chao Qi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-135,https://doi.org/10.5194/tc-2020-135, 2020
Revised manuscript accepted for TC
Short summary
Crystallographic preferred orientations of ice deformed in direct-shear experiments at low temperatures
Chao Qi, David J. Prior, Lisa Craw, Sheng Fan, Maria-Gema Llorens, Albert Griera, Marianne Negrini, Paul D. Bons, and David L. Goldsby
The Cryosphere, 13, 351–371, https://doi.org/10.5194/tc-13-351-2019,https://doi.org/10.5194/tc-13-351-2019, 2019
Short summary
Electron backscatter diffraction (EBSD) based determination of crystallographic preferred orientation (CPO) in warm, coarse-grained ice: a case study, Storglaciären, Sweden
Morgan E. Monz, Peter J. Hudleston, David J. Prior, Zachary Michels, Sheng Fan, Marianne Negrini, Pat J. Langhorne, and Chao Qi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-135,https://doi.org/10.5194/tc-2020-135, 2020
Revised manuscript accepted for TC
Short summary
Crystallographic preferred orientations of ice deformed in direct-shear experiments at low temperatures
Chao Qi, David J. Prior, Lisa Craw, Sheng Fan, Maria-Gema Llorens, Albert Griera, Marianne Negrini, Paul D. Bons, and David L. Goldsby
The Cryosphere, 13, 351–371, https://doi.org/10.5194/tc-13-351-2019,https://doi.org/10.5194/tc-13-351-2019, 2019
Short summary
Constraints on Alpine Fault (New Zealand) mylonitization temperatures and the geothermal gradient from Ti-in-quartz thermobarometry
Steven B. Kidder, Virginia G. Toy, David J. Prior, Timothy A. Little, Ashfaq Khan, and Colin MacRae
Solid Earth, 9, 1123–1139, https://doi.org/10.5194/se-9-1123-2018,https://doi.org/10.5194/se-9-1123-2018, 2018
Short summary
Cited articles
Ajaja, O.: Role of recovery in high temperature constant strain rate
deformation, J. Mater. Sci., 26, 6599–6605,
https://doi.org/10.1007/BF02402651, 1991.
Alley, R. B.: Flow-law hypotheses for ice-sheet modelling, J. Glaciol., 38,
245–256, https://doi.org/10.1017/s0022143000003658, 1992.
Austin, N. J. and Evans, B.: Paleowattmeters: A scaling relation for
dynamically recrystallized grain size, Geology, 35, 343–344,
https://doi.org/10.1130/G23244A.1, 2007.
Azuma, N.: A flow law for anisotropic polycrystalline ice under uniaxial
compressive deformation, Cold Reg. Sci. Technol., 23, 137–147,
https://doi.org/10.1016/0165-232x00011-l, 1995.
Bailey, J. E. and Hirsch, P. B.: The dislocation distribution, flow stress,
and stored energy in cold-worked polycrystalline silver, Philos. Mag., 5,
485–497, https://doi.org/10.1080/14786436008238300, 1960.
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P. and Cooke, R.
M.: Ice sheet contributions to future sea-level rise from structured expert
judgment, Proc. Natl. Acad. Sci. USA, 116, 11195–11200,
https://doi.org/10.1073/pnas.1817205116, 2019.
Beeré, W.: Stresses and deformation at grain boundaries, Philos. Trans.
R. Soc. A, 288, 177–196, https://doi.org/10.1098/rsta.1978.0012, 1978.
Berger, A., Herwegh, M., Schwarz, J.-O., and Putlitz, B.: Quantitative
analysis of crystal/grain sizes and their distributions in 2D and 3D, J.
Struct. Geol., 33, 1751–1763, https://doi.org/10.1016/j.jsg.2011.07.002,
2011.
Bestmann, M. and Prior, D. J.: Intragranular dynamic recrystallization in
naturally deformed calcite marble: diffusion accommodated grain boundary
sliding as a result of subgrain rotation recrystallization, J. Struct.
Geol., 25, 1597–1613, https://doi.org/10.1016/s0191-814100006-3, 2003.
Bindschadler, R. A., Nowicki, S., Abe-Ouchi, A., Aschwanden, A., Choi, H.,
Fastook, J., Granzow, G., Greve, R., Gutowski, G., Herzfeld, U., Jackson,
C., Johnson, J., Khroulev, C., Levermann, A., Lipscomb, W. H., Martin, M.
A., Morlighem, M., Parizek, B. R., Pollard, D., Price, S. F., Ren, D.,
Saito, F., Sato, T., Seddik, H., Seroussi, H., Takahashi, K., Walker, R., and
Wang, W. L.: Ice-sheet model sensitivities to environmental forcing and
their use in projecting future sea level, J. Glaciol., 59, 195–224,
https://doi.org/10.3189/2013jog12j125, 2013.
Budd, W. F. and Jacka, T. H.: A review of ice rheology for ice sheet
modelling, Cold Reg. Sci. Technol., 16, 107–144,
https://doi.org/10.1016/0165-232x90014-1, 1989.
Budd, W. F., Warner, R. C., Jacka, T. H., Li, J., and Treverrow, A.: Ice flow
relations for stress and strain-rate components from combined shear and
compression laboratory experiments, J. Glaciol., 59, 374–392,
https://doi.org/10.3189/2013jog12j106, 2013.
Campbell, L. R. and Menegon, L.: Transient High Strain Rate During Localized
Viscous Creep in the Dry Lower Continental Crust, J. Geophys. Res.-Sol.
Ea., 124, 10240–10260, https://doi.org/10.1029/2019jb018052, 2019.
Castelnau, O., Duval, P., Lebensohn, R. A., and Canova, G. R.: Viscoplastic
modeling of texture development in polycrystalline ice with a
self-consistent approach: Comparison with bound estimates, J. Geophys. Res.-Sol. Ea., 101, 13851–13868, https://doi.org/10.1029/96JB00412, 1996.
Castelnau, O., Duval, P., Montagnat, M., and Brenner, R.: Elastoviscoplastic
micromechanical modeling of the transient creep of ice, J. Geophys. Res.,
113, 749–14, https://doi.org/10.1029/2008JB005751, 2008.
Cole, D. M.: Preparation of polycrystalline ice specimens for laboratory
experiments, Cold Reg. Sci. Technol., 1, 153–159,
https://doi.org/10.1016/0165-232x90007-7, 1979.
Craw, L., Qi, C., Prior, D. J., Goldsby, D. L., and Kim, D.: Mechanics and
microstructure of deformed natural anisotropic ice, J. Struct. Geol., 115,
152–166, https://doi.org/10.1016/j.jsg.2018.07.014, 2018.
Cross, A. J., Prior, D. J., Stipp, M., and Kidder, S.: The recrystallized
grain size piezometer for quartz: An EBSD-based calibration, Geophys. Res.
Lett., 44, 6667–6674, https://doi.org/10.1002/2017gl073836, 2017a.
Cross, A. J., Hirth, G., and Prior, D. J.: Effects of secondary phases on
crystallographic preferred orientations in mylonites, Geology, 45, 955–958,
https://doi.org/10.1130/g38936.1, 2017b.
Crossman, F. W. and Ashby, M. F.: The non-uniform flow of polycrystals by
grain-boundary sliding accommodated by power-law creep, Acta Metall., 23,
425–440, https://doi.org/10.1016/0001-616090082-6, 1975.
De Bresser, J., Heege, Ter, J., and Spiers, C.: Grain size reduction by
dynamic recrystallization: can it result in major rheological weakening?
Int. J. Earth Sci., 90, 28–45, https://doi.org/10.1007/s005310000149, 2001.
Derby, B.: The dependence of grain size on stress during dynamic
recrystallisation, Acta Metall. Mater., 39, 955–962,
https://doi.org/10.1016/0956-715190295-c, 1991.
Derby, B. and Ashby, M. F.: On dynamic recrystallization, Scr. Mater., 21,
879–884, https://doi.org/10.1016/0036-974890341-3, 1987.
Drury, M. R. and Humphreys, F. J.: Microstructural shear criteria associated
with grain-boundary sliding during ductile deformation, J. Struct. Geol.,
10, 83–89, https://doi.org/10.1016/0191-814190130-7, 1988.
Durham, W. B. and Goetze, C.: Plastic flow of oriented single crystals of
olivine: 1. Mechanical data, J. Geophys. Res., 82, 5737–5753,
https://doi.org/10.1029/JB082i036p05737, 1977.
Durham, W. B., Heard, H. C., and Kirby, S. H.: Experimental deformation of
polycrystalline H
2O ice at high pressure and low temperature: Preliminary
results, J. Geophys. Res., 88, B377–B392,
https://doi.org/10.1029/JB088iS01p0B377, 1983.
Durham, W. B., Kirby, S. H., and Stern, L. A.: Effects of dispersed
particulates on the rheology of water ice at planetary conditions, J.
Geophys. Res., 97, 20883–20897, https://doi.org/10.1029/92JE02326, 1992.
Durham, W. B., Prieto-Ballesteros, O., Goldsby, D. L., and Kargel, J. S.:
Rheological and Thermal Properties of Icy Materials, Space Sci. Rev., 153,
273–298, https://doi.org/10.1007/s11214-009-9619-1, 2010.
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U.,
DeConto, R., Horton, B. P., Rahmstorf, S., and Raymo, M. E.: Sea-level rise
due to polar ice-sheet mass loss during past warm periods, Science, 349,
aaa4019, https://doi.org/10.1126/science.aaa4019, 2015.
Duval, P.: Creep and recrystallization of polycrystalline ice, Bull.
Minéral., 102, 80–85, https://doi.org/10.3406/bulmi.1979.7258, 1979.
Duval, P.: Grain Growth and Mechanical Behaviour of Polar Ice, Ann.
Glaciol., 6, 79–82, https://doi.org/10.3189/1985AoG6-1-79-82, 1985.
Duval, P. and Castelnau, O.: Dynamic recrystallization of ice in polar ice
sheets, J. Phys. IV, 5, 3-197–C3-205, https://10.1051/jp4:1995317,
1995.
Duval, P., Ashby, M. F., and Anderman, I.: Rate-controlling processes in the creep of polycrystalline ice, J. Phys. Chem., 87, 4066–4074, https://doi.org/10.1021/j100244a014, 1983.
Duval, P., Louchet, F., Weiss, J., and Montagnat, M.: On the role of
long-range internal stresses on grain nucleation during dynamic
discontinuous recrystallization, Mater. Sci. Eng. A, 546, 207–211,
https://doi.org/10.1016/j.msea.2012.03.052, 2012.
Duval, P., Montagnat, M., Grennerat, F., Weiss, J., Meyssonnier, J., and
Philip, A.: Creep and plasticity of glacier ice: a material science
perspective, J. Glaciol., 56, 1059–1068,
https://doi.org/10.3189/002214311796406185, 2010.
Eleti, R. R., Chokshi, A. H., Shibata, A., and Tsuji, N.: Unique
high-temperature deformation dominated by grain boundary sliding in
heterogeneous necklace structure formed by dynamic recrystallization in
HfNbTaTiZr BCC refractory high entropy alloy, Acta Mater., 183, 64–77,
https://doi.org/10.1016/j.actamat.2019.11.001, 2020.
Falus, G., Tommasi, A., and Soustelle, V.: The effect of dynamic
recrystallization on olivine crystal preferred orientations in mantle
xenoliths deformed under varied stress conditions, J. Struct. Geol., 33,
1528–1540, https://doi.org/10.1016/j.jsg.2011.09.010, 2011.
Fan, S., Hager, T., Prior, D. J., Cross, A. J., Goldsby, D. L., Qi, C., Negrini, M., and Wheeler, J.: EBSD data sets for “Temperature and strain controls on ice deformation mechanisms: insights from the microstructures of samples deformed to progressively higher strains at
−10,
−20 and
−30 ∘C”, https://doi.org/10.6084/m9.figshare.12980243.v1, 2020.
Faria, S. H., Weikusat, I., and Azuma, N.: The microstructure of polar ice.
Part II: State of the art, J. Struct. Geol., 61, 21–49,
https://doi.org/10.1016/j.jsg.2013.11.003, 2014.
Fliervoet, T. F., Drury, M. R., and Chopra, P. N.: Crystallographic preferred
orientations and misorientations in some olivine rocks deformed by diffusion
or dislocation creep, Tectonophysics, 303, 1–27,
https://doi.org/10.1016/s0040-195100250-9, 1999.
Gammon, P. H., Kiefte, H., Clouter, M. J., and Denner, W. W.: Elastic
constants of artificial and natural ice samples by Brillouin spectroscopy,
J. Glaciol., 29, 433–460, https://doi.org/10.3189/S0022143000030355, 1983.
Gao, X. Q. and Jacka, T. H.: The approach to similar tertiary creep rates
for antarctic core ice and laboratory prepared ice, J. Phys. Colloques, 48,
C1-289–C1-296, https://doi.org/10.1051/jphyscol:1987141, 1987.
Gifkins, R. C.: Grain-boundary sliding and its accommodation during creep
and superplasticity, Metall. Trans. A, 7, 1225–1232,
https://doi.org/10.1007/BF02656607, 1976.
Glen, J. W.: The creep of polycrystalline ice, Proc. R. Soc. A, 228,
519–538, 1955.
Goldsby, D. L. and Kohlstedt, D. L.: Superplastic deformation of ice:
Experimental observations, J. Geophys. Res.-Sol. Ea., 106, 11017–11030,
https://doi.org/10.1029/2000JB900336, 2001.
Gomez-Rivas, E., Griera, A., Llorens, M. G., Bons, P. D., Lebensohn, R. A.,
and Piazolo, S.: Subgrain rotation recrystallization during shearing:
Insights from full-field numerical simulations of halite polycrystals, J.
Geophys. Res.-Sol. Ea., 122, 8810–8827,
https://doi.org/10.1002/2017jb014508, 2017.
Grennerat, F., Montagnat, M., Castelnau, O., Vacher, P., Moulinec, H.,
Suquet, P., and Duval, P.: Experimental characterization of the intragranular
strain field in columnar ice during transient creep, Acta Mater., 60,
3655–3666, https://doi.org/10.1016/j.actamat.2012.03.025, 2012.
Grimmer, H.: The distribution of disorientation angles if all relative
orientations of neighbouring grains are equally probable, Scr. Mater., 13,
161–164, https://doi.org/10.1016/0036-974890058-9, 1979.
Guillope, M. and Poirier, J. P.: Dynamic recrystallization during creep of
single-crystalline halite: An experimental study, J. Geophys. Res., 84,
5557–5567, https://doi.org/10.1029/JB084iB10p05557, 1979.
Halfpenny, A., Prior, D. J., and Wheeler, J.: Analysis of dynamic
recrystallization and nucleation in a quartzite mylonite, Tectonophysics,
427, 3–14, https://doi.org/10.1016/j.tecto.2006.05.016,
2006.
Hansen, L. N., Zimmerman, M. E., and Kohlstedt, D. L.: The influence of
microstructure on deformation of olivine in the grain-boundary sliding
regime, J. Geophys. Res., 117, 149–17,
https://doi.org/10.1029/2012jb009305, 2012.
Hartmann, W. K.: Surface evolution of two-component stone ice bodies in the
jupiter, Icarus, 44, 441–453, https://doi.org/10.1016/0019-103590036-6,
1980.
Hasegawa, M. and Fukutomi, H.: Microstructural Study on Dynamic
Recrystallization and Texture Formation in Pure Nickel, Mater. Trans., 43,
1183–1190, https://doi.org/10.2320/matertrans.43.1183, 2002.
Hasegawa, M., Yamamoto, M., and Fukutomi, H.: Formation mechanism of texture
during dynamic recrystallization in
γ-TiAl, nickel and copper
examined by microstructure observation and grain boundary analysis based on
local orientation measurements, Acta Mater., 51, 3939–3950,
https://doi.org/10.1016/S1359-645400218-0, 2003.
Hidas, K., Tommasi, A., Mainprice, D., Chauve, T., Barou, F., and Montagnat,
M.: Microstructural evolution during thermal annealing of ice-Ih, J. Struct.
Geol., 99, 31–44, https://doi.org/10.1016/j.jsg.2017.05.001, 2017.
Hirth, G. and Tullis, J.: Dislocation regimes in quartz aggregates, J.
Struct. Geol., 14, 145–159, https://doi.org/10.1016/0191-814190053-y, 1992.
Hobbs, B. E., Means, W. D., and Williams, P. F.: An outline of structural
geology, 1st edn., John Wiley & Sons, Inc., USA, 1976.
Homer, D. R. and Glen, J. W.: The creep activation energies of ice, J.
Glaciol., 21, 429–444, https://doi.org/10.3189/S0022143000033591, 1978.
Hondoh, T. and Higashi, A.: Generation and absorption of dislocations at
large-angle grain boundaries in deformed ice crystals, J. Phys. Chem., 87,
4044–4050, https://doi.org/10.1021/j100244a009, 1983.
Hooke, R. L. and Hudleston, P. J.: Ice fabrics from a borehole at the top of
the south dome, Barnes Ice Cap, Baffin Island, Geol. Soc. Am. Bull., 92,
274–281, https://doi.org/10.1130/0016-760692<274:iffaba>2.0.co;2, 1981.
Hooke, R. L. and Hudleston, P. J.: Ice Fabrics in a Vertical Flow Plane,
Barnes Ice Cap, Canada, J. Glaciol., 25, 195–214,
https://doi.org/10.3189/S0022143000010443, 1980.
Hudleston, P. J.: Structures and fabrics in glacial ice: A review, J.
Struct. Geol., 81, 1–27, https://doi.org/10.1016/j.jsg.2015.09.003, 2015.
Humphreys, J., Rohrer, G. S., and Rollett, A.: Recrystallization and related
annealing phenomena, 3rd edn., Elsevier, Oxford, UK, 2017.
Iliescu, D., Baker, I., and Chang, H.: Determining the orientations of ice
crystals using electron backscatter patterns, Microsc. Res. Tech., 63,
183–187, https://doi.org/10.1017/s1431927605505452, 2004.
Jacka, T. H. and Li, J.: The steady-state crystal size of deforming ice,
Ann. Glaciol., 20, 13–18, https://doi.org/10.3189/172756494794587230, 1994.
Jacka, T. H. and Li, J.: Flow rates and crystal orientation fabrics in compression of polycrystalline ice at low temperatures and stresses, in: International Symposium on Physics of Ice Core Records, edited by: Hondoh, T., Shikotsukohan, Hokkaido, Japan, 14–17 September 1998, 83–102, 2000.
Jacka, T. H. and Maccagnan, M.: ice crystallographic and strain rate changes
with strain in compression and extension, Cold Reg. Sci. Technol., 8,
269–286, https://doi.org/10.1016/0165-232x90058-2, 1984.
Jafari, M. and Najafizadeh, A.: Correlation between Zener–Hollomon
parameter and necklace DRX during hot deformation of 316 stainless steel,
Mater. Sci. Eng. A, 501, 16–25, https://doi.org/10.1016/j.msea.2008.09.073,
2009.
Jessell, M. W.: Grain boundary migration and fabric development in
experimentally deformed octachloropropane, J. Struct. Geol., 8, 527–542,
https://doi.org/10.1016/0191-814190003-9, 1986.
Jiang, Z., Prior, D. J., and Wheeler, J.: Albite crystallographic preferred
orientation and grain misorientation distribution in a low-grade mylonite:
implications for granular flow, J. Struct. Geol., 22, 1663–1674,
https://doi.org/10.1016/s0191-814100079-1, 2000.
Journaux, B., Chauve, T., Montagnat, M., Tommasi, A., Barou, F., Mainprice, D., and Gest, L.: Recrystallization processes, microstructure and crystallographic preferred orientation evolution in polycrystalline ice during high-temperature simple shear, The Cryosphere, 13, 1495–1511, https://doi.org/10.5194/tc-13-1495-2019, 2019.
Kamb, B.: Experimental recrystallization of ice under stress, in: Flow and
Fracture of Rocks, vol. 16, edited by: Heard, H. C., Borg, I. Y., Carter, N.
L., and Raleigh, C. B., American Geophysical Union,
Washington, DC, 211–241, 1972.
Kamb, B.: Basal Zone of the West Antarctic Ice Streams and its Role in
Lubrication of Their Rapid Motion, in: The West Antarctic ice sheet behavior
and environment, vol. 77, edited by: Alley, R. B. and Bindschadler, R. A.,
American Geophysical Union, Washington, DC, 157–199, 2001.
Kamb, W. B.: Ice petrofabric observations from Blue Glacier, Washington, in
relation to theory and experiment, J. Geophys. Res., 64, 1891–1909,
https://doi.org/10.1029/JZ064i011p01891, 1959.
Kilian, R. and Heilbronner, R.: Analysis of crystallographic preferred orientations of experimentally deformed Black Hills Quartzite, Solid Earth, 8, 1095–1117, https://doi.org/10.5194/se-8-1095-2017, 2017.
Kilian, R., Heilbronner, R., and Stünitz, H.: Quartz grain size reduction
in a granitoid rock and the transition from dislocation to diffusion creep,
J. Struct. Geol., 33, 1265–1284, https://doi.org/10.1016/j.jsg.2011.05.004,
2011.
Kirby, S. H., Durham, W. B., Beeman, M. L., Heard, H. C., and Daley, M. A.:
Inelastic properties of ice Ih at low temperatures and high pressures, J.
Phys. Colloques, 48, C1-227–C1-232,
https://doi.org/10.1051/jphyscol:1987131, 1987.
Kopp, R. E., DeConto, R. M., Bader, D. A., Hay, C. C., Horton, R. M., Kulp,
S., Oppenheimer, M., Pollard, D., and Strauss, B. H.: Evolving Understanding
of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level
Projections, Earth's Future, 5, 1217–1233,
https://doi.org/10.1002/2017ef000663, 2017.
Kuiper, E.-J. N., de Bresser, J. H. P., Drury, M. R., Eichler, J., Pennock, G. M., and Weikusat, I.: Using a composite flow law to model deformation in the NEEM deep ice core, Greenland – Part 2: The role of grain size and premelting on ice deformation at high homologous temperature, The Cryosphere, 14, 2449–2467, https://doi.org/10.5194/tc-14-2449-2020, 2020a.
Kuiper, E.-J. N., Weikusat, I., de Bresser, J. H. P., Jansen, D., Pennock, G. M., and Drury, M. R.: Using a composite flow law to model deformation in the NEEM deep ice core, Greenland – Part 1: The role of grain size and grain size distribution on deformation of the upper 2207 m, The Cryosphere, 14, 2429–2448, https://doi.org/10.5194/tc-14-2429-2020, 2020b.
Lallemant, H. G. A.: Subgrain rotation and dynamic recrystallization of
olivine, upper mantle dispirism, and extension of the basin-and-range
province, Tectonophysics, 119, 89–117,
https://doi.org/10.1016/0040-195190034-4, 1985.
Langdon, T. G.: A unified approach to grain boundary sliding in creep and
superplasticity, Acta Metall. Mater., 42, 2437–2443,
https://doi.org/10.1016/0956-715190322-0, 1994.
Langdon, T. G.: Grain boundary sliding revisited: Developments in sliding
over four decades, J. Mater. Sci., 41, 597–609,
https://doi.org/10.1007/s10853-006-6476-0, 2006.
Langdon, T. G.: Seventy-five years of superplasticity: historic developments
and new opportunities, J. Mater. Sci., 44, 5998–6010,
https://doi.org/10.1007/s10853-009-3780-5, 2009.
Lauridsen, E. M., Poulsen, H. F., Nielsen, S. F., and Juul Jensen, D.:
Recrystallization kinetics of individual bulk grains in 90 % cold-rolled
aluminium, Acta Mater., 51, 4423–4435,
https://doi.org/10.1016/s1359-645400278-7, 2003.
Little, T. A., Prior, D. J., Toy, V. G., and Lindroos, Z. R.: The link
between strength of lattice preferred orientation, second phase content and
grain boundary migration: A case study from the Alpine Fault zone, New
Zealand, J. Struct. Geol., 81, 59–77,
https://doi.org/10.1016/j.jsg.2015.09.004, 2015.
Liu, F., Baker, I., and Dudley, M.: Dynamic observations of dislocation
generation at grain boundaries in ice, Philos. Mag. A, 67, 1261–1276,
https://doi.org/10.1080/01418619308224770, 1993.
Liu, F., Baker, I., and Dudley, M.: Dislocation-grain boundary interactions
in ice crystals, Philos. Mag. A, 71, 15–42,
https://doi.org/10.1080/01418619508242954, 1995.
Llorens, M.-G., Griera, A., Bons, P. D., Roessiger, J., Lebensohn, R.,
Evans, L., and Weikusat, I.: Dynamic recrystallisation of ice aggregates
during co-axial viscoplastic deformation: a numerical approach, J. Glaciol.,
62, 1–19, https://doi.org/10.1017/jog.2016.28, 2016.
Lopez-Sanchez, M. A. and Llana-Fúnez, S.: An evaluation of different measures of dynamically recrystallized grain size for paleopiezometry or paleowattometry studies, Solid Earth, 6, 475–495, https://doi.org/10.5194/se-6-475-2015, 2015.
MacDonald, J. M., Wheeler, J., Harley, S. L., Mariani, E., Goodenough, K.
M., Crowley, Q., and Tatham, D.: Lattice distortion in a zircon population
and its effects on trace element mobility and U–Th–Pb isotope systematics:
examples from the Lewisian Gneiss Complex, northwest Scotland, Contrib.
Mineral. Petrol., 166, 21–41, https://doi.org/10.1007/s00410-013-0863-8,
2013.
Mainprice, D., Bachmann, F., Hielscher, R., and Schaeben, H.: Descriptive
tools for the analysis of texture projects with large datasets using MTEX:
strength, symmetry and components, Geol. Soc., London, Spec. Publ., 409,
251–271, https://doi.org/10.1144/sp409.8, 2015.
Maruyama, G. and Hiraga, T.: Grain- to multiple-grain-scale deformation
processes during diffusion creep of forsterite
+ diopside aggregate: 1.
Direct observations, J. Geophys. Res.-Sol. Ea., 122, 5890–5915,
https://doi.org/10.1002/2017jb014254, 2017.
Mellor, M. and Cole, D. M.: Deformation and failure of ice under constant
stress or constant strain-rate, Cold Reg. Sci. Technol., 5, 201–219,
https://doi.org/10.1016/0165-232x90015-5, 1982.
Mellor, M. and Cole, D. M.: Stress/strain/time relations for ice under
uniaxial compression, Cold Reg. Sci. Technol., 6, 207–230,
https://doi.org/10.1016/0165-232x90043-5, 1983.
Montagnat, M., Azuma, N., Dahl-Jensen, D., Eichler, J., Fujita, S., Gillet-Chaulet, F., Kipfstuhl, S., Samyn, D., Svensson, A., and Weikusat, I.: Fabric along the NEEM ice core, Greenland, and its comparison with GRIP and NGRIP ice cores, The Cryosphere, 8, 1129–1138, https://doi.org/10.5194/tc-8-1129-2014, 2014.
Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., and
Fressengeas, C.: Analysis of dynamic recrystallization of ice from EBSD
orientation mapping, Front. Earth Sci., 3, 411–13,
https://doi.org/10.3389/feart.2015.00081, 2015.
Monz, M. E., Hudleston, P. J., Prior, D. J., Michels, Z., Fan, S., Negrini, M., Langhorne, P. J., and Qi, C.: Electron backscatter diffraction (EBSD) based determination of crystallographic preferred orientation (CPO) in warm, coarse-grained ice: a case study, Storglaciären, Sweden, The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-135, in review, 2020.
Morawiec, A.: Misorientation-Angle Distribution of Randomly Oriented
Symmetric Objects, J. Appl. Crystallogr., 28, 289–293,
https://doi.org/10.1107/s0021889894011088, 1995.
Morland, L. W. and Staroszczyk, R.: Ice viscosity enhancement in simple
shear and uni-axial compression due to crystal rotation, Int. J. Eng. Sci.,
47, 1297–1304, https://doi.org/10.1016/j.ijengsci.2008.09.011, 2009.
Obbard, R., Baker, I., and Sieg, K.: Using electron backscatter diffraction
patterns to examine recrystallization in polar ice sheets, J. Glaciol., 52,
546–557, https://doi.org/10.3189/172756506781828458, 2006.
Peternell, M. and Wilson, C. J. L.: Effect of strain rate cycling on
microstructures and crystallographic preferred orientation during
high-temperature creep, Geology, 44, 279–282,
https://doi.org/10.1130/g37521.1, 2016.
Peternell, M., Dierckx, M., Wilson, C. J. L., and Piazolo, S.: Quantification
of the microstructural evolution of polycrystalline fabrics using FAME:
Application to in situ deformation of ice, J. Struct. Geol., 61, 109–122,
https://doi.org/10.1016/j.jsg.2013.05.005, 2014.
Piazolo, S., Bestmann, M., Prior, D. J., and Spiers, C. J.: Temperature
dependent grain boundary migration in deformed-then-annealed material:
Observations from experimentally deformed synthetic rocksalt,
Tectonophysics, 427, 55–71, https://doi.org/10.1016/j.tecto.2006.06.007,
2006.
Piazolo, S., Montagnat, M., and Blackford, J. R.: Sub-structure
characterization of experimentally and naturally deformed ice using
cryo-EBSD, J. Microsc., 230, 509–519,
https://doi.org/10.3189/172756506781828458, 2008.
Piazolo, S., Wilson, C. J. L., Luzin, V., Brouzet, C., and Peternell, M.:
Dynamics of ice mass deformation: Linking processes to rheology, texture,
and microstructure, Geochem. Geophys. Geosyst., 14, 4185–4194,
https://doi.org/10.1002/ggge.20246, 2013.
Pieri, M., Burlini, L., Kunze, K., Stretton, I., and Olgaard, D. L.:
Rheological and microstructural evolution of Carrara marble with high shear
strain: results from high temperature torsion experiments, J. Struct. Geol.,
23, 1393–1413, https://doi.org/10.1016/s0191-814100006-2, 2001.
Placidi, L., Greve, R., Seddik, H., and Faria, S. H.: Continuum-mechanical,
Anisotropic Flow model for polar ice masses, based on an anisotropic Flow
Enhancement factor, Continuum Mech. Thermodyn., 22, 221–237,
https://doi.org/10.1007/s00161-009-0126-0, 2010.
Poirier, J. P.: High-temperature creep of single crystalline sodium
chloride, Philos. Mag., 26, 701–712,
https://doi.org/10.1080/14786437208230114, 1972.
Poirier, J. P. and Nicolas, A.: Deformation-Induced Recrystallization Due to
Progressive Misorientation of Subgrains, with Special Reference to Mantle
Peridotites, J. Geol., 83, 707–720, https://doi.org/10.1086/628163, 1975.
Pollard, D.: A retrospective look at coupled ice sheet–climate modeling,
Clim. Change, 100, 173–194, https://doi.org/10.1007/s10584-010-9830-9,
2010.
Ponge, D. and Gottstein, G.: Necklace formation during dynamic
recrystallization: Mechanisms and impact on flow behavior, Acta Mater., 46,
69–80, https://doi.org/10.1016/s1359-645400233-4, 1998.
Poulsen, H. F.: Three-dimensional X-ray diffraction microscopy: mapping
polycrystals and their dynamics, Springer, Berlin, Germany. 2004.
Prior, D. J.: Problems in determining the misorientation axes, for small
angular misorientations, using electron backscatter diffraction in the SEM,
J. Microsc., 195, 217–225,
https://doi.org/10.1046/j.1365-2818.1999.00572.x, 1999.
Prior, D. J., Lilly, K., Seidemann, M., Vaughan, M., Becroft, L.,
Easingwood, R., Diebold, S., Obbard, R., Daghlian, C., Baker, I., Caswell,
T., Golding, N., Goldsby, D., Durham, W. B., Piazolo, S. and Wilson, C. J.
L.: Making EBSD on water ice routine, J. Microsc., 259, 237–256,
https://doi.org/10.1111/jmi.12258, 2015.
Qi, C., Goldsby, D. L., and Prior, D. J.: The down-stress transition from
cluster to cone fabrics in experimentally deformed ice, Earth Planet. Sci.
Lett., 471, 136–147, https://doi.org/10.1016/j.epsl.2017.05.008, 2017.
Qi, C., Prior, D. J., Craw, L., Fan, S., Llorens, M.-G., Griera, A., Negrini, M., Bons, P. D., and Goldsby, D. L.: Crystallographic preferred orientations of ice deformed in direct-shear experiments at low temperatures, The Cryosphere, 13, 351–371, https://doi.org/10.5194/tc-13-351-2019, 2019.
Raj, R. and Ashby, M. F.: On grain boundary sliding and diffusional creep,
Metall. Trans., 2, 1113–1127, https://doi.org/10.1007/BF02664244, 1971.
Read, W. T. and Shockley, W.: Dislocation Models of Crystal Grain
Boundaries, Phys. Rev., 78, 275–15, https://doi.org/10.1103/PhysRev.78.275,
1950.
Ree, J. H.: Grain boundary sliding and development of grain boundary
openings in experimentally deformed octachloropropane, J. Struct. Geol., 16,
403–418, https://doi.org/10.1016/0191-814190044-2, 1994.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice flow of the Antarctic ice
sheet, Science, 333, 1427–1430, https://doi.org/10.1126/science.1208336,
2011.
Rutter, E. H. and Brodie, K. H.: The role of tectonic grain size reduction
in the rheological stratification of the lithosphere, Geol. Rundsch., 77,
295–307, https://doi.org/10.1007/BF01848691, 1988.
Scapozza, C. and Bartelt, P. A.: The influence of temperature on the
small-strain viscous deformation mechanics of snow: a comparison with
polycrystalline ice, Ann. Glaciol., 37, 90–96,
https://doi.org/10.3189/172756403781815410, 2003.
Schmid, S. M., Boland, J. N., and Paterson, M. S.: Superplastic flow in
finegrained limestone, Tectonophysics, 43, 257–291,
https://doi.org/10.1016/0040-195190120-2, 1977.
Seidemann, M., Prior, D. J., Golding, N., Durham, W. B., Lilly, K., and
Vaughan, M. J.: The role of kink boundaries in the deformation and
recrystallisation of polycrystalline ice, J. Struct. Geol., 136, 104010,
https://doi.org/10.1016/j.jsg.2020.104010, 2020.
Shigematsu, N., Prior, D. J., and Wheeler, J.: First combined electron
backscatter diffraction and transmission electron microscopy study of grain
boundary structure of deformed quartzite, J. Microsc., 224, 306–321,
https://doi.org/10.1111/j.1365-2818.2006.01697.x, 2006.
Skemer, P., Katayama, I., Jiang, Z., and Karato, S.-I.: The misorientation
index: Development of a new method for calculating the strength of
lattice-preferred orientation, Tectonophysics, 411, 157–167,
https://doi.org/10.1016/j.tecto.2005.08.023, 2005.
Spiers, C. J.: Fabric development in calcite polycrystals deformed at
400
∘C, Bull. Minéral., 102, 282–289,
https://doi.org/10.3406/bulmi.1979.7289, 1979.
Stern, L. A., Durham, W. B., and Kirby, S. H.: Grain-size-induced weakening
of H
2O ices I and II and associated anisotropic recrystallization, J.
Geophys. Res., 102, 5313–5325, https://doi.org/10.1029/96JB03894, 1997.
Stipp, M., Stünitz, H., Heilbronner, R., and Schmid, S. M.: The eastern
Tonale fault zone: a “natural laboratory” for crystal plastic deformation
of quartz over a temperature range from 250 to 700
∘C, J. Struct.
Geol., 24, 1861–1884, https://doi.org/10.1016/s0191-814100035-4, 2002.
Storey, C. D. and Prior, D. J.: Plastic deformation and recrystallization of
garnet: a mechanism to facilitate diffusion creep, J. Petrol., 46,
2593–2613, https://doi.org/10.1093/petrology/egi067, 2005.
Treverrow, A., Budd, W. F., Jacka, T. H., and Warner, R. C.: The tertiary
creep of polycrystalline ice: experimental evidence for stress-dependent
levels of strain-rate enhancement, J. Glaciol., 58, 301–314,
https://doi.org/10.3189/2012jog11j149, 2012.
Trimby, P. W., Prior, D. J., and Wheeler, J.: Grain boundary hierarchy
development in a quartz mylonite, J. Struct. Geol., 20, 917–935,
https://doi.org/10.1016/s0191-814100026-1, 1998.
Underwood, E. E.: Quantitative Stereology for Microstructural Analysis, in
Microstructural Analysis, vol. 5/6, 35–66, Springer, Boston, MA, New
York, 1973.
Urai, J. L., Means, W. D., and Lister, G. S.: Dynamic recrystallization of
minerals, in: Mineral and rock deformation laboratory studies, vol. 36,
edited by: Hobbs, B. E. and Heard, H. C., 161–199, AGU, Washington,
DC, 1986.
Vaughan, M. J., Prior, D. J., Jefferd, M., Brantut, N., Mitchell, T. M., and
Seidemann, M.: Insights into anisotropy development and weakening of ice
from in situ P wave velocity monitoring during laboratory creep, J. Geophys.
Res.-Sol. Ea., 122, 7076–7089, https://doi.org/10.1002/2017JB013964,
2017.
Warren, J. M. and Hirth, G.: Grain size sensitive deformation mechanisms in
naturally deformed peridotites, Earth Planet. Sci. Lett., 248, 438–450,
https://doi.org/10.1016/j.epsl.2006.06.006, 2006.
Weertman, J.: Creep deformation of ice, Annu. Rev. Earth Planet. Sci., 11,
215–240, https://doi.org/10.1146/annurev.ea.11.050183.001243, 1983.
Weikusat, I., Kuiper, E.-J. N., Pennock, G. M., Kipfstuhl, S., and Drury, M. R.: EBSD analysis of subgrain boundaries and dislocation slip systems in Antarctic and Greenland ice, Solid Earth, 8, 883–898, https://doi.org/10.5194/se-8-883-2017, 2017.
Whalley, W. B. and Azizi, F.: Rock glaciers and protalus landforms:
Analogous forms and ice sources on Earth and Mars, J. Geophys. Res., 108,
1–17, https://doi.org/10.1029/2002je001864, 2003.
Wheeler, J., Jiang, Z., Prior, D. J., Tullis, J., Drury, M. R., and Trimby,
P. W.: From geometry to dynamics of microstructure: using boundary lengths
to quantify boundary misorientations and anisotropy, Tectonophysics, 376,
19–35, https://doi.org/10.1016/j.tecto.2003.08.007, 2003.
Wheeler, J., Mariani, E., Piazolo, S., Prior, D. J., Trimby, P., and Drury,
M. R.: The weighted Burgers vector: a new quantity for constraining
dislocation densities and types using electron backscatter diffraction on 2D
sections through crystalline materials, J. Microsc., 233, 482–494,
https://doi.org/10.1111/j.1365-2818.2009.03136.x, 2009.
Wheeler, J., Prior, D., Jiang, Z., Spiess, R., and Trimby, P.: The
petrological significance of misorientations between grains, Contrib.
Mineral. Petrol., 141, 109–124, https://doi.org/10.1007/s004100000225,
2001.
White, S.: The effects of strain on the microstructures, fabrics, and
deformation mechanisms in quartzites, Philos. Trans. R. Soc. A, 283, 69–86,
https://doi.org/10.1098/rsta.1976.0070, 1976.
Wilson, C. J. L. and Peternell, M.: Ice deformed in compression and simple
shear: control of temperature and initial fabric, J. Glaciol., 58, 11–22,
https://doi.org/10.3189/2012jog11j065, 2012.
Wilson, C. J. L., Peternell, M., Piazolo, S., and Luzin, V.: Microstructure
and fabric development in ice: Lessons learned from in situ experiments and
implications for understanding rock evolution, J. Struct. Geol., 61, 50–77,
https://doi.org/10.1016/j.jsg.2013.05.006, 2014.
Wilson, C. J. L., Hunter, N. J. R., Luzin, V., Peternell, M., and Piazolo,
S.: The influence of strain rate and presence of dispersed second phases on
the deformation behaviour of polycrystalline D2O ice, J. Glaciol., 65,
101–122, https://doi.org/10.1017/jog.2018.100, 2019.
Wilson, C. J. L., Peternell, M., Hunter, N. J. R., and Luzin, V.: Deformation
of polycrystalline D2O ice: Its sensitivity to temperature and strain-rate
as an analogue for terrestrial ice, Earth Planet. Sci. Lett., 532, 115999,
https://doi.org/10.1016/j.epsl.2019.115999, 2020.
Xia, H. and Platt, J. P.: Quartz grainsize evolution during dynamic
recrystallization across a natural shear zone boundary, J. Struct. Geol.,
109, 120–126, https://doi.org/10.1016/j.jsg.2018.09.010, 2018.