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Section S1 Sensitivity test of the co-latitude range chosen to quantify cone opening angles 

In order to quantify cone opening-angles, we counted the number of c-axes that lie at a given angle (“co-latitude”) from the 

compression axis. In practice we counted the c-axes between two co-latitudes separated by a co-latitude range and calculated 

the MUD (multiples of uniform distribution) as a function of co-latitude. We tested the sensitivity of co-latitude range, using 

    values of 2°, 4°, 6° and 8, on the plot of MUD as a function of co-latitude (Fig. S1) for three different samples. The plots are 

using different co-latitude range are very similar. The 2° range gives rise to significant  “spikes” in the distribution that are 

not apparent in distributions generated with larger co-latitude ranges and probably reflect sparse data sampling. We chose to 

use a co-latitude range of 4° in data analysis to maximise resolution without having significant problems from spikes related 

to sparse sampling. 
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Figure S1. Sensitivity test of co-latitude range on samples of (a) PIL 165, characterised by a random CPO, (b) PIL177, 

characterised by a cone-shaped c-axis CPO and (c) PIL166, characterised by a narrow-cone-shaped c-axis CPO. For each 

sample, the upper left box is the point pole figure with 5000 randomly selected points and the lower left box is the 

corresponding contoured c-axis CPO. The centre of the stereonet is parallel to compression. The right part contains MUD 5 

distribution as a function of co-latitude with the co-latitude ranges of 2°, 4°, 6° and 8°. 
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Section S2 Measures of strain: for comparison of our data with other data sets 

Published experiments use different ways of calculating strain and strain rate and it is necessary to recalculate values so that 

the same measurements are being used for comparisons between different studies. Engineering axial strain 𝑒, true axial strain 

𝜀 and octahedral shear strain 𝛾 are the most frequently used parameters to quantify the sample deformation in the published 

literature. Additionally, Hooke and Hudleston (1981) applied natural octahedral unit shear strain,  𝛾̅𝑜𝑐 , to quantify the 5 

deformation in the Barnes Ice Cap. For comparison with our data (for Figure 13) 𝑒, 𝛾 and 𝛾̅𝑜𝑐  from other studies were 

converted to 𝜀. 

In a uniaxial compression experiment, we define the axial stretch λ (Eq. (S1)) as the ratio of the sample length (𝐿(𝑡)) at time 

𝑡 and the initial sample length (𝐿0). 

𝜆 =
𝐿(𝑡)

𝐿0

(Equation S1) 10 

The true axial strain 𝜀, at time 𝑡, is given by: 

𝜀 = − ln (
𝐿(𝑡)

𝐿0

) 

= − ln(𝜆) (Equation S2) 

The engineering axial strain 𝑒 at time 𝑡 is given by: 

𝑒 =
𝐿0 − 𝐿(𝑡)

𝐿0

 15 

= 1 − 𝜆 (Equation S3) 

Therefore, the conversion between true axial strain 𝜀 and engineering axial strain 𝑒 can be expressed as: 

𝜀 = − ln(1 − 𝑒) (Equation S4) 

The octahedral shear strain 𝛾 at time 𝑡 is given by: 

𝛾 =
1

3
√(𝜖1 − 𝜖2)2 − (𝜖2 − 𝜖3)2 − (𝜖3 − 𝜖1)2, (EquationS5) 20 

where 𝜖1, 𝜖2 and 𝜖3 represent principle engineering strains at time t. For uniaxial compression, we suppose the horizontal 

shortening is radially uniform (𝜖2 = 𝜖3). Therefore, Eq. (S5) can be simplified as: 

𝛾 =
√2

3
(𝜖1 − 𝜖3), (Equation S6) 

where the principle axial engineering strain 𝜖1 is equal to 𝑒. We assume that the sample volume remains unchanged during 

uniaxial compression. The sample volume 𝑉 is given by: 25 

𝑉 = 𝜋𝑅0
2𝐿0 

= 𝜋𝑅(𝑡)2𝐿(𝑡), (Equation S7) 

where 𝑅0 is the initial sample radius, 𝑅(𝑡) is the sample radius at time 𝑡. Therefore, 𝑅(𝑡) is given by: 
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𝑅(𝑡) = 𝑅0√
𝐿0

𝐿(𝑡)
 

= 𝑅0

1

√𝜆
(Equation S8) 

The principle radius engineering strain 𝜖3 is given by: 

𝜖3 =
𝑅0 − 𝑅(𝑡)

𝑅0

 

= 1 −
𝑅(𝑡)

𝑅0

 5 

= 1 −
1

√𝜆
 

= 1 −
1

√1 − 𝑒
(Equation S9) 

Therefore, Eq. (S6) can be converted to: 

𝛾 =
√2

3
(𝑒 +

1

√1 − 𝑒
− 1) (Equation S10) 

In our experiment, the axial displacement remains constant, but the sample length keeps decreasing with time. Consequently, 10 

the axial strain rate increases with time. The engineering axial strain rate (𝑒̇) is given by: 

𝑒̇ =
𝑑(𝑒)

𝑑𝑡
(Equation S11) 

The relationship between true axial strain rate (𝜀̇) and engineering axial strain rate (𝑒̇) is given by: 

𝜀̇ =
𝑑(𝜀)

𝑑𝑡
 

= −
𝑑

𝑑𝑡
(ln(1 − 𝑒)) 15 

=
1

1 − 𝑒

𝑑(𝑒)

𝑑𝑡
 

=
𝑒̇

1 − 𝑒
(Equation S12) 

The relationship between octahedral shear strain rate (𝛾̇) and engineering axial strain rate (𝑒̇) is given by: 

𝛾̇ =
𝑑(𝛾)

𝑑𝑡
 

=
√2

3

𝑑

𝑑𝑡
(𝑒 +

1

√1 − 𝑒
− 1) 20 

=
√2

3
(

𝑑(𝑒)

𝑑𝑡
+

𝑑

𝑑𝑡
(

1

√1 − 𝑒
)) 
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=
√2

3
(1 +

1

2(1 − 𝑒)
3
2

)
𝑑(𝑒)

𝑑𝑡
 

=
√2

3
(1 +

1

2(1 − 𝑒)
3
2

) 𝑒̇ (Equation S13) 

Based on Hooke and Hudleston (1981), the relation between 𝛾̅𝑜𝑐 and principle cumulative longitudinal strain, 𝜖2, horizontal 

strain, 𝜖3 and vertical strain, 𝜖1 is: 

𝛾̅𝑜𝑐 =
2

3
[(𝜖1 − 𝜖2)2 + (𝜖2 − 𝜖3)2 + (𝜖3 − 𝜖1)2]

1
2. (Equation S14) 5 

For uniaxial compression, 𝜖2 = 𝜖3. Therefore, Eq. (S14) can be simplified as: 

𝛾̅𝑜𝑐 =
2√2

3
(𝜖1 − 𝜖3), (Equation S15) 

where 𝜖1equals to 𝑒. We suppose the ice volume remains unchanged during uniaxial compression. Combine Eq. (S15) and 

Eq. (S9), and Eq. (S15) can be converted to: 

𝛾̅𝑜𝑐 =
2√2

3
(𝑒 +

1

√1 − 𝑒
− 1) (Equation S16) 10 

Section S3 An estimate of the proportion of “small” grains that are probably a cut through larger grains 

For each EBSD map, we measured the lengths of 1-D segments between grain boundaries along a randomly placed line (Fig. 

S2(a)). Figure S2(b) shows graphs of the lengths of intercept segments and corresponding area equivalent diameters (grain 

sizes) of the grain that contains each segment. The lengths of intercept segments are generally close to or shorter than the 

sizes of corresponding grains. The graphs have the threshold grain size to separate “big” and “small” grains in 2-D overlain. 15 

Table S1 summarises the statistics of the line intercepts. The percentage of real “small” grains is calculated as the number of 

2-D “small” grains divided by number of 1-D line segments shorter than grain size threshold. This percentage of real “small” 

grains is generally larger at a colder temperature or a higher strain (Table S1, Fig. S3).  

  



6 

 

Table S1 Statistics of line intercepts  

Sample 

number 
T (°C) 

True axial 

strain (𝜀) 

Grain size 

threshold (µm) 

Number of 

grains along 

the line  

Total length 

of line (µm) 

1 % of real 2-D 

“small” grains  

% of grains 

having more than 

1 intercept 

PIL176 

-10 

0.03 

101 

31 4291 20% 3% 

PIL163 0.05 77 7253 31% 5% 

PIL178 0.08 39 4617 22% 5% 

PIL177 0.12 50 4809 21% 4% 

PIL007 0.19 128 11030 43% 6% 

PIL254 

-20 

0.03 

66 

28 4024 44% 0% 

PIL182 0.04 43 4613 30% 7% 

PIL184 0.08 53 4323 32% 8% 

PIL185 0.12 59 4516 53% 8% 

PIL255 0.20 73 2905 76% 10% 

PIL165 

-30 

0.03 

61 

70 8290 28% 4% 

PIL162 0.05 73 7014 33% 4% 

PIL164 0.07 61 4471 51% 7% 

PIL166 0.12 82 6967 77% 0% 

PIL268 0.21 44 3820 64% 6% 

1 % 𝑜𝑓 𝑟𝑒𝑎𝑙 2 − 𝐷 “𝑠𝑚𝑎𝑙𝑙” 𝑔𝑟𝑎𝑖𝑛𝑠 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 2−𝐷 small 𝑔𝑟𝑎𝑖𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑠ℎ𝑜𝑟𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑔𝑟𝑎𝑖𝑛 𝑠𝑖𝑧𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
× 100 
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Figure S2. (a) Example of a measurement line (blue dashed line) superposed on a 2-D grain microstructure. The 

intersections between the line and grain boundaries are marked with green circles. (b) Plots of the lengths of intercept 

segments and corresponding area equivalent diameters (grain sizes). Green lines mark the “small” to “big” threshold grain 

sizes.   5 
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Figure S3. Ratio of real 2-D “small” grains, i.e. number of 2-D “small” grains divided by number of line segments that are 

shorter than grain size threshold, as a function of true axial strain for samples deformed at -10 °C (red line), -20 °C (green 

line) and -30 °C (blue line). 

Section S4 Estimation of the number of grains in a 2D map that belong to the same grain in three dimensions 5 

EBSD data allows us to compare full crystal orientations so that multiple 2-D slices through the same irregular 3-D grain can 

be identified. We calculated the misorientation between each grain in a 2-D EBSD map and all the other grains within a 

distance of 1000 µm (1 mm) from the grain centre. The mean orientation of each grain is used for the calculation. All grains 

with a misorientation from the first grain of less than 10° are counted as the same grain. 

  10 
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Table S2 Summarise of statistics of grains with mean misorientation differences lower than 10° in 2-D EBSD map 

 

Sample 

number 
T Strain 

1Area 

(µm-2) 

Total 

num-

ber of 

grains  

2Number 

of non-

unique 

grains 

Average 

#co-

ordination 

of non-

unique 

grains 

3Number 

of 

unique 

grains 

4Number 

of 

“distinct” 

grains 

5Percentage 

of unique 

grains  

6Percentage 

of repeat 

counted 

grains  

7Number 

density 

of 

“distinct” 

grains 

(µm-2) 

8 Number 

density 

of 

“distinct” 

grains as 

ratio to 

starting 

material 

Undeformed - - 1.19E+08 1242 90 2.61 1152 1186 97.09 2.91 9.97E-06 1.00 

PIL176 

-

10 

0.03 1.81E+07 694 190 2.3 504 587 85.92 14.08 3.24E-05 3.25 

PIL163 0.05 2.40E+07 1494 567 2.66 927 1140 81.30 18.70 4.75E-05 4.76 

PIL178 0.08 1.94E+07 1028 447 2.79 581 741 78.38 21.62 3.82E-05 3.83 

PIL177 0.12 1.98E+07 1507 730 3.04 777 1017 76.39 23.61 5.14E-05 5.15 

PIL007 0.19 1.96E+07 1789 844 3.02 945 1224 77.18 22.82 6.25E-05 6.27 

PIL254 

-

20 

0.03 1.31E+07 903 253 2.44 650 754 86.24 13.76 5.75E-05 5.77 

PIL182 0.04 1.99E+07 907 211 2.24 696 790 88.08 11.92 3.97E-05 3.98 

PIL184 0.08 1.85E+07 1157 458 2.6 699 875 79.87 20.13 4.73E-05 4.74 

PIL185 0.12 2.00E+07 3023 1425 2.88 1598 2093 76.36 23.64 1.05E-04 10.49 

PIL255 0.20 1.27E+07 3057 1941 3.8 1116 1627 68.60 31.40 1.28E-04 12.85 

PIL165 

-

30 

0.03 1.67E+07 589 116 2.18 473 526 89.89 10.11 3.15E-05 3.16 

PIL162 0.05 2.80E+07 2399 622 2.41 1777 2035 87.32 12.68 7.27E-05 7.29 

PIL164 0.07 1.87E+07 1515 446 2.49 1069 1248 85.65 14.35 6.67E-05 6.69 

PIL166 0.12 2.94E+07 6036 3238 2.83 2798 3942 70.98 29.02 1.34E-04 13.45 

PIL268 0.21 4.97E+07 8215 3612 2.81 4603 5888 78.17 21.83 1.18E-04 11.88 

 

1 Total area of grains in 2-D EBSD map. 

2 Total number of grains with misorientation differences lower than 10°. 5 

# co-ordination = number of grains within 1 mm misoriented by less than 10° 

3 Number of unique grains = (Number of  grains in 2– D) − (Number of non– unique grains) 

4 Number of “distinct” grains in 2– D = Number of unique grains +
Number of  non–unique grains 

Average co−ordination
 

5 Percentage of unique grains in 2– D = 100 ×
Number of “distinct” grains in 2–D

Total Number of .grains in 2−D
 

6 Percentage of repeat counted grains in 2– D = 1 − Percentage of unique grains in 2– D 10 

7 Number density of “distinct” grains =
Number of “distinct” grains in 2–D

𝐴𝑟𝑒𝑎
 

8 Number density of “distinct” grains as ratio to starting material =
Number density of “distinct” grains

Number density of “distinct” grains within undeformed sample
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Deformed ice grains might have intragranular distortions, which are presented as misorientation changes within grains. 

Therefore, internal distortion might affect the calculation results using mean orientation. Figure S4 shows the distribution of 

mis2mean (misorientation between each pixel and the mean orientation of its parent grain) values for each sample. The 

distribution of mis2mean for all deformed samples are skewed, with a peak at a smaller mis2mean value and a tail extending 

to higher mis2mean values. For all samples except PIL268 (12% strain, -30 °C), 95% of mis2mean values are lower than 5 

10°. The mean and median mis2mean values are all lower than 5° (Table S3).  

 

 

Figure S4. Distribution of mis2mean values for all deformed samples 
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Table S3 Summary of statistics of mis2mean values 

 

Sample 

number 

Statistics of mis2mean values (degree) 

95% are 

smaller than 
Mean Max Median 

Lower 

quartile 

Higher 

quartile 

PIL176 3 1.23 12.38 0.98 0.61 1.55 

PIL163 5.5 1.84 19.78 1.28 0.66 2.38 

PIL178 4 1.28 15.5 0.83 0.47 1.53 

PIL177 6 1.91 18.87 1.25 0.64 2.48 

PIL007 6 1.65 17.07 0.98 0.57 1.87 

PIL254 4.5 1.69 18.03 1.28 0.76 2.08 

PIL182 5 1.9 21.04 1.43 0.81 2.42 

PIL184 5.5 2.07 19.97 1.54 0.86 2.7 

PIL185 10 3.46 38.69 2.45 1.02 4.73 

PIL255 8.5 2.47 27.29 1.4 0.61 3.2 

PIL165 4 1.48 24.17 1.06 0.64 1.76 

PIL162 7.5 2.54 23.49 1.83 0.89 3.36 

PIL164 10 3.52 31.69 2.57 1.3 4.63 

PIL166 9.5 2.68 36.13 1.33 0.43 3.72 

PIL268 15.5 5.59 56.3 4.12 2.24 7.32 

 

Section S5 Test of the influence of grain size threshold on the CPO of “small” grains 

Figure S5 shows a comparison of contoured stereonets of c-axes of “big” and “small” grains in samples deformed at -10, -20 5 

and -30 °C to ~12% strain. The grain size thresholds chosen are: mean grain size, SMR (square mean root) grain size, 

median grain size and peak grain size. We use M-index values to quantify the strength of the CPOs. The M-index values are 

similar for “big” or “small” grains separated by different grain size thresholds. This observation suggests the grain size 

threshold used to distinguish “big” and “small” grains does affect the observation in a significant way. 
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Figure S5. The contoured c-axis CPOs of “big” and “small” grains in samples deformed at (a) -10, (b) -20 and (c) -30 °C to 

~12% strain. “Big” and “small” grains are separated using the threshold of mean grain size (row 1), SMR (square mean root) 

grain size (row 2), median grain size (row 3) and peak grain size (row 4). Number of grains and M-index value are marked at 

the bottom left corner of the corresponding c-axis CPO. 5 

Section S6 Estimation of activation energy, Q, from the mechanical data in this study 

The relation between activation energy, Q, and strain rate, 𝜀̇, is: 

𝜀̇ = 𝐴𝜎𝑛 exp (−
𝑄

𝑅𝑇
) , (Equation S17) 

where 𝐴 is a material-dependent parameter (𝑀𝑃𝑎−𝑛𝑚𝑝𝑠−1), 𝜎 is the measured bulk stress (𝑀𝑃𝑎), 𝑛 is the stress exponent, 𝑄 

is the activation energy (𝑘𝐽𝑚𝑜𝑙−1), 𝑅 is the gas constant (= 8.314 × 10−3 𝑘𝐽𝑚𝑜𝑙−1𝐾−1) and 𝑇 is the absolute temperature 10 

(𝐾). Note grain size effect is not considered in this calculation.  

Q can be calculated directly from constant stress experiments at different temperatures. However, calculation of Q from a set 

of constant rate experiments requires that the stress exponent (n) is known. We do not have values of n from the experiments 

published here, so we use values of 3 and 4 that span the range from peak stress to flow stress for similar experiments at -10 
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°C (Qi et al., 2017). A peak stress n values of 4.1 was derived for similar experiments at -30 °C (Craw et al., 2018). For 

calculation purposes we generate a modelled strain rate, 𝜀𝑚̇,  that relates to a normalised stress value. The modelled strain 

rate, 𝜀𝑚̇ and 𝜀̇ have the following relationship: 

𝜀̇

𝜀𝑚̇

=
𝜎𝑛

𝜎𝑛𝑜𝑟𝑚
𝑛

, (Equation S18) 

where 𝜎𝑛𝑜𝑟𝑚 is the normalised stress and it is set to 1. 5 

We calculated 𝜀𝑚̇ using measured bulk stress and strain rate data at peak stress or at a final strain of ~20% using n=3 or n=4. 

Q values are calculated from the fit to an Arrhenius plot of log (𝜀𝑚̇) as a function of 1/T as shown in Fig. S6. The slope of 

linear fit is the -Q/(2.3R).  

Best fit to all data (-10, -20 and -30C) give activation energies of 98 kJ/mol and 103 kJ/mol from peak and final stress data 

assuming n=3 and 131 kJ/mol and 138 kJ/mol from peak and flow stress data assuming n=4. These values are close to 10 

reported Q values of 71-124 kJ/mol (-5 °C- -30 °C) from Budd and Jacka (1989) and ~133 kJ/mol (-1.5 °C- -12.8 °C) from 

Glen (1955) and 64-250 kJ/mol from Kuiper and others (2019). Note experiments in this study only covers three temperature 

values. Hence, the calculated Q values have large uncertainties. More data points are needed for a better Q investigation. 

 

Figure S6. Arrhenius plot illustrating the activation energy, Q. 15 

 


