Articles | Volume 14, issue 6
https://doi.org/10.5194/tc-14-1971-2020
https://doi.org/10.5194/tc-14-1971-2020
Research article
 | Highlight paper
 | 
18 Jun 2020
Research article | Highlight paper |  | 18 Jun 2020

Changes of the Arctic marginal ice zone during the satellite era

Rebecca J. Rolph, Daniel L. Feltham, and David Schröder

Related authors

ArcticBeach v1.0: A physics-based parameterization of pan-Arctic coastline erosion
Rebecca Rolph, Pier Paul Overduin, Thomas Ravens, Hugues Lantuit, and Moritz Langer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-28,https://doi.org/10.5194/gmd-2021-28, 2021
Revised manuscript not accepted
Short summary
Impacts of a lengthening open water season on Alaskan coastal communities: deriving locally relevant indices from large-scale datasets and community observations
Rebecca J. Rolph, Andrew R. Mahoney, John Walsh, and Philip A. Loring
The Cryosphere, 12, 1779–1790, https://doi.org/10.5194/tc-12-1779-2018,https://doi.org/10.5194/tc-12-1779-2018, 2018
Short summary

Related subject area

Discipline: Sea ice | Subject: Sea Ice
Impact of atmospheric rivers on Arctic sea ice variations
Linghan Li, Forest Cannon, Matthew R. Mazloff, Aneesh C. Subramanian, Anna M. Wilson, and Fred Martin Ralph
The Cryosphere, 18, 121–137, https://doi.org/10.5194/tc-18-121-2024,https://doi.org/10.5194/tc-18-121-2024, 2024
Short summary
The impacts of anomalies in atmospheric circulations on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: case study in 2020
Fanyi Zhang, Ruibo Lei, Mengxi Zhai, Xiaoping Pang, and Na Li
The Cryosphere, 17, 4609–4628, https://doi.org/10.5194/tc-17-4609-2023,https://doi.org/10.5194/tc-17-4609-2023, 2023
Short summary
Atmospheric highs drive asymmetric sea ice drift during lead opening from Point Barrow
MacKenzie E. Jewell, Jennifer K. Hutchings, and Cathleen A. Geiger
The Cryosphere, 17, 3229–3250, https://doi.org/10.5194/tc-17-3229-2023,https://doi.org/10.5194/tc-17-3229-2023, 2023
Short summary
Why is Summertime Arctic Sea Ice Drift Speed Projected to Decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-99,https://doi.org/10.5194/tc-2023-99, 2023
Revised manuscript accepted for TC
Short summary
Spatial characteristics of frazil streaks in the Terra Nova Bay Polynya from high-resolution visible satellite imagery
Katarzyna Bradtke and Agnieszka Herman
The Cryosphere, 17, 2073–2094, https://doi.org/10.5194/tc-17-2073-2023,https://doi.org/10.5194/tc-17-2073-2023, 2023
Short summary

Cited articles

Aksenov, Y., Popova, E. E., Yool, A., Nurser, A. J. G., Williams, T. D., Bertino, L., and Bergh, J.: On the future navigability of Arctic sea routes: High-resolution projections of the Arctic Ocean and sea ice, Mar. Pol., 75, 300–317, https://doi.org/10.1016/j.marpol.2015.12.027, 2017. 
Alexander, V. and Niebauer, H. J.: Oceanography of the eastern Bering Sea ice-edge zone in spring, Limnol. Oceanogr., 26, 1111–1125, https://doi.org/10.4319/lo.1981.26.6.1111, 1981. 
Barber, D. G., Hop, H., Mundy, C. J., Else, B., Dmitrenko, I. A., Tremblay, J. E., Ehn, J. K., Assmy, P., Daase, M., Candlish, L. M., and Rysgaard, S.: Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone, Prog. Oceanogr., 139, 122–150, https://doi.org/10.1016/j.pocean.2015.09.003, 2015. 
Bateson, A. W., Feltham, D. L., Schröder, D., Hosekova, L., Ridley, J. K., and Aksenov, Y.: Impact of sea ice floe size distribution on seasonal fragmentation and melt of Arctic sea ice, The Cryosphere, 14, 403–428, https://doi.org/10.5194/tc-14-403-2020, 2020. 
Bennetts, L. G., O'Farrell, S., and Uotila, P.: Brief communication: Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone version of the CICE sea-ice model, The Cryosphere, 11, 1035–1040, https://doi.org/10.5194/tc-11-1035-2017, 2017. 
Download
Short summary
It is well known that the Arctic sea ice extent is declining, and it is often assumed that the marginal ice zone (MIZ), the area of partial sea ice cover, is consequently increasing. However, we find no trend in the MIZ extent during the last 40 years from observations that is consistent with a widening of the MIZ as it moves northward. Differences of MIZ extent between different satellite retrievals are too large to provide a robust basis to verify model simulations of MIZ extent.