Articles | Volume 14, issue 5
https://doi.org/10.5194/tc-14-1633-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-1633-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
InSAR time series analysis of seasonal surface displacement dynamics on the Tibetan Plateau
Eike Reinosch
CORRESPONDING AUTHOR
Institute of Geodesy and Photogrammetry, Technische Universität
Braunschweig, Braunschweig, Germany
Johannes Buckel
Institute of Geophysics and extraterrestrial Physics, Technische
Universität Braunschweig, Braunschweig, Germany
Jie Dong
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan, China
Markus Gerke
Institute of Geodesy and Photogrammetry, Technische Universität
Braunschweig, Braunschweig, Germany
Jussi Baade
Department of Geography, Friedrich-Schiller-Universität Jena,
Jena, Germany
Björn Riedel
Institute of Geodesy and Photogrammetry, Technische Universität
Braunschweig, Braunschweig, Germany
Related authors
Johannes Buckel, Eike Reinosch, Andreas Hördt, Fan Zhang, Björn Riedel, Markus Gerke, Antje Schwalb, and Roland Mäusbacher
The Cryosphere, 15, 149–168, https://doi.org/10.5194/tc-15-149-2021, https://doi.org/10.5194/tc-15-149-2021, 2021
Short summary
Short summary
This study presents insights into the remote cryosphere of a mountain range at the Tibetan Plateau. Small-scaled studies and field data about permafrost occurrence are very scarce. A multi-method approach (geomorphological mapping, geophysics, InSAR time series analysis) assesses the lower occurrence of permafrost the range of 5350 and 5500 m above sea level (a.s.l.) in the Qugaqie basin. The highest, multiannual creeping rates up to 150 mm/yr are observed on rock glaciers.
Sten Anslan, Mina Azizi Rad, Johannes Buckel, Paula Echeverria Galindo, Jinlei Kai, Wengang Kang, Laura Keys, Philipp Maurischat, Felix Nieberding, Eike Reinosch, Handuo Tang, Tuong Vi Tran, Yuyang Wang, and Antje Schwalb
Biogeosciences, 17, 1261–1279, https://doi.org/10.5194/bg-17-1261-2020, https://doi.org/10.5194/bg-17-1261-2020, 2020
Short summary
Short summary
Due to the high elevation, the Tibetan Plateau (TP) is affected more strongly than the global average by climate warming. As a result of increasing air temperature, several environmental processes have accelerated, such as melting glaciers, thawing permafrost and grassland degradation. We review several modern and paleoenvironmental changes forced by climate warming in the lake system of Nam Co to shape our understanding of global warming effects on current and future geobiodiversity.
Yasmin Loeper, Markus Gerke, Ahmed Alamouri, Alexander Kern, Mohammad Shafi Bajauri, and Phillipp Fanta-Jende
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 311–318, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-311-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-311-2024, 2024
Francesco Vultaggio, Phillipp Fanta-Jende, Matthias Schörghuber, Alexander Kern, and Markus Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 447–454, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-447-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-447-2024, 2024
K. Mawas, M. Maboudi, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 307–313, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-307-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-307-2023, 2023
P. Achanccaray, M. Gerke, L. Wesche, S. Hoyer, K. Thiele, U. Knufinke, and C. Krafczyk
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1303–1309, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1303-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1303-2023, 2023
C. Berger and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 223–230, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-223-2022, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-223-2022, 2022
M. S. Bajauri, A. Alamouri, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 335–342, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-335-2022, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-335-2022, 2022
K. Mawas, M. Maboudi, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2022, 459–466, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-459-2022, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-459-2022, 2022
P. Kirui, B. Riedel, and M. Gerke
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 115–122, https://doi.org/10.5194/isprs-annals-V-3-2022-115-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-115-2022, 2022
T. Partovi, M. Dähne, M. Maboudi, D. Krueger, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 85–92, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-85-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-85-2021, 2021
M. Maboudi, A. Elbillehy, Y. Ghassoun, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 183–188, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-183-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-183-2021, 2021
M. Maboudi, A. Alamouri, V. De Arriba López, M. S. Bajauri, C. Berger, and M. Gerke
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2021, 121–128, https://doi.org/10.5194/isprs-annals-V-1-2021-121-2021, https://doi.org/10.5194/isprs-annals-V-1-2021-121-2021, 2021
Johannes Buckel, Eike Reinosch, Andreas Hördt, Fan Zhang, Björn Riedel, Markus Gerke, Antje Schwalb, and Roland Mäusbacher
The Cryosphere, 15, 149–168, https://doi.org/10.5194/tc-15-149-2021, https://doi.org/10.5194/tc-15-149-2021, 2021
Short summary
Short summary
This study presents insights into the remote cryosphere of a mountain range at the Tibetan Plateau. Small-scaled studies and field data about permafrost occurrence are very scarce. A multi-method approach (geomorphological mapping, geophysics, InSAR time series analysis) assesses the lower occurrence of permafrost the range of 5350 and 5500 m above sea level (a.s.l.) in the Qugaqie basin. The highest, multiannual creeping rates up to 150 mm/yr are observed on rock glaciers.
M. Maboudi, M. Gerke, N. Hack, L. Brohmann, P. Schwerdtner, and G. Placzek
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2020, 763–768, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-763-2020, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-763-2020, 2020
M.-O. Löwner, N. C. Bandelow, M. Gerke, F. Hillen, L. Klein, A. Schmidt, and T. Siefer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2020, 55–61, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-55-2020, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-55-2020, 2020
M. Gerke, Y. Ghassoun, A. Alamouri, M. Bobbe, Y. Khedar, and F. Plöger
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2020, 293–299, https://doi.org/10.5194/isprs-annals-V-1-2020-293-2020, https://doi.org/10.5194/isprs-annals-V-1-2020-293-2020, 2020
N. Fiorentini, M. Maboudi, M. Losa, and M. Gerke
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2020, 19–26, https://doi.org/10.5194/isprs-annals-V-4-2020-19-2020, https://doi.org/10.5194/isprs-annals-V-4-2020-19-2020, 2020
Sten Anslan, Mina Azizi Rad, Johannes Buckel, Paula Echeverria Galindo, Jinlei Kai, Wengang Kang, Laura Keys, Philipp Maurischat, Felix Nieberding, Eike Reinosch, Handuo Tang, Tuong Vi Tran, Yuyang Wang, and Antje Schwalb
Biogeosciences, 17, 1261–1279, https://doi.org/10.5194/bg-17-1261-2020, https://doi.org/10.5194/bg-17-1261-2020, 2020
Short summary
Short summary
Due to the high elevation, the Tibetan Plateau (TP) is affected more strongly than the global average by climate warming. As a result of increasing air temperature, several environmental processes have accelerated, such as melting glaciers, thawing permafrost and grassland degradation. We review several modern and paleoenvironmental changes forced by climate warming in the lake system of Nam Co to shape our understanding of global warming effects on current and future geobiodiversity.
M. Maboudi, J. Amini, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W18, 683–686, https://doi.org/10.5194/isprs-archives-XLII-4-W18-683-2019, https://doi.org/10.5194/isprs-archives-XLII-4-W18-683-2019, 2019
P. Fanta-Jende, F. Nex, M. Gerke, J. Lijnen, and G. Vosselman
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1649–1654, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1649-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1649-2019, 2019
A. Riedel, B. Riedel, D. Tengen, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1945–1949, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1945-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1945-2019, 2019
A. Alamouri, M. Gerke, S. Batzdorfer, M. Becker, U. Bestmann, M. Bobbe, Y. Khedar, T. Blume, J. Schattenberg, and J. Schmiemann
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 165–172, https://doi.org/10.5194/isprs-archives-XLII-2-W13-165-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-165-2019, 2019
H.-J. Przybilla, M. Gerke, I. Dikhoff, and Y. Ghassoun
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 531–538, https://doi.org/10.5194/isprs-archives-XLII-2-W13-531-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-531-2019, 2019
C. Stöcker, F. Nex, M. Koeva, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 613–617, https://doi.org/10.5194/isprs-archives-XLII-2-W13-613-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-613-2019, 2019
A. Alamouri and M. Gerke
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 87–93, https://doi.org/10.5194/isprs-annals-IV-2-W5-87-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-87-2019, 2019
Z. Zhang, G. Vosselman, M. Gerke, C. Persello, D. Tuia, and M. Y. Yang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 453–460, https://doi.org/10.5194/isprs-annals-IV-2-W5-453-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-453-2019, 2019
N. H. Isya, W. Niemeier, and M. Gerke
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 623–630, https://doi.org/10.5194/isprs-annals-IV-2-W5-623-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-623-2019, 2019
Changhu Xue, Guigen Nie, Jie Dong, Shuguang Wu, Jing Wang, Xiuzhen Li, and Xiaogang Zhang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-16, https://doi.org/10.5194/nhess-2019-16, 2019
Revised manuscript not accepted
Short summary
Short summary
This paper provides an approach to apply data assimilation method to stability analysis and parameter update and feedback in a landslide. The experiment is implemented by particle filter algorithm. The result FS sequence of TRIGRS output decreases continuously with time and the assimilation can effectively correct the FS of the model output. The RMSD of FS indicates the assimilation results can correct the estimation of TRIGRS output close to actual observations.
P. Jende, F. Nex, M. Gerke, and G. Vosselman
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 471–477, https://doi.org/10.5194/isprs-archives-XLII-2-471-2018, https://doi.org/10.5194/isprs-archives-XLII-2-471-2018, 2018
M. Maboudi, D. Bánhidi, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 637–642, https://doi.org/10.5194/isprs-archives-XLII-2-637-2018, https://doi.org/10.5194/isprs-archives-XLII-2-637-2018, 2018
Z. Zhang, M. Gerke, G. Vosselman, and M. Y. Yang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2, 319–326, https://doi.org/10.5194/isprs-annals-IV-2-319-2018, https://doi.org/10.5194/isprs-annals-IV-2-319-2018, 2018
M. Koeva, R. Bennett, M. Gerke, S. Crommelinck, C. Stöcker, J. Crompvoets, S. Ho, A. Schwering, M. Chipofya, C. Schultz, T. Zein, M. Biraro, B. Alemie, R. Wayumba, and K. Kundert
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 37–43, https://doi.org/10.5194/isprs-archives-XLII-2-W7-37-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W7-37-2017, 2017
C. Stöcker, F. Nex, M. Koeva, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W6, 355–361, https://doi.org/10.5194/isprs-archives-XLII-2-W6-355-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W6-355-2017, 2017
S. Crommelinck, R. Bennett, M. Gerke, M. N. Koeva, M. Y. Yang, and G. Vosselman
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W3, 9–16, https://doi.org/10.5194/isprs-annals-IV-2-W3-9-2017, https://doi.org/10.5194/isprs-annals-IV-2-W3-9-2017, 2017
P. Jende, F. Nex, M. Gerke, and G. Vosselman
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1-W1, 317–323, https://doi.org/10.5194/isprs-archives-XLII-1-W1-317-2017, https://doi.org/10.5194/isprs-archives-XLII-1-W1-317-2017, 2017
M. Gerke, F. Nex, F. Remondino, K. Jacobsen, J. Kremer, W. Karel, H. Hu, and W. Ostrowski
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B1, 185–191, https://doi.org/10.5194/isprs-archives-XLI-B1-185-2016, https://doi.org/10.5194/isprs-archives-XLI-B1-185-2016, 2016
M. Gerke, F. Nex, and P. Jende
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-3-W4, 11–18, https://doi.org/10.5194/isprs-archives-XL-3-W4-11-2016, https://doi.org/10.5194/isprs-archives-XL-3-W4-11-2016, 2016
P. Jende, Z. Hussnain, M. Peter, S. Oude Elberink, M. Gerke, and G. Vosselman
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-3-W4, 19–26, https://doi.org/10.5194/isprs-archives-XL-3-W4-19-2016, https://doi.org/10.5194/isprs-archives-XL-3-W4-19-2016, 2016
K. Jacobsen and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-3-W4, 35–40, https://doi.org/10.5194/isprs-archives-XL-3-W4-35-2016, https://doi.org/10.5194/isprs-archives-XL-3-W4-35-2016, 2016
T. Kraft, M. Geßner, H. Meißner, H. J. Przybilla, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-3-W4, 71–75, https://doi.org/10.5194/isprs-archives-XL-3-W4-71-2016, https://doi.org/10.5194/isprs-archives-XL-3-W4-71-2016, 2016
W. Kim, N. Kerle, and M. Gerke
Nat. Hazards Earth Syst. Sci., 16, 287–298, https://doi.org/10.5194/nhess-16-287-2016, https://doi.org/10.5194/nhess-16-287-2016, 2016
Short summary
Short summary
This study assesses the value of a novel technology, mobile augmented reality, for rapid damage and safety assessment of the state of buildings in the aftermath of a disaster event. In this study, we propose and demonstrate conceptual frameworks and approaches for in situ ground-based assessment based on augmented reality using mobile devices such as smartphones and tablet PCs.
J. Fernandez Galarreta, N. Kerle, and M. Gerke
Nat. Hazards Earth Syst. Sci., 15, 1087–1101, https://doi.org/10.5194/nhess-15-1087-2015, https://doi.org/10.5194/nhess-15-1087-2015, 2015
D. Liu, R. Chen, B. Riedel, and W. Niemeier
Solid Earth Discuss., https://doi.org/10.5194/sed-6-2759-2014, https://doi.org/10.5194/sed-6-2759-2014, 2014
Revised manuscript has not been submitted
Related subject area
Discipline: Frozen ground | Subject: Remote Sensing
Multitemporal UAV lidar detects seasonal heave and subsidence on palsas
Land cover succession for recently drained lakes in permafrost on the Yamal Peninsula, Western Siberia
Toward long-term monitoring of regional permafrost thaw with satellite interferometric synthetic aperture radar
Benchmarking passive microwave satellite derived freeze/thaw datasets
Allometric scaling of retrogressive thaw slumps
Brief communication: Identification of tundra topsoil frozen/thawed state from SMAP and GCOM-W1 radiometer measurements using the spectral gradient method
Bedfast and floating-ice dynamics of thermokarst lakes using a temporal deep-learning mapping approach: case study of the Old Crow Flats, Yukon, Canada
Contribution of ground ice melting to the expansion of Selin Co (lake) on the Tibetan Plateau
Incorporating InSAR kinematics into rock glacier inventories: insights from 11 regions worldwide
Assessing volumetric change distributions and scaling relations of retrogressive thaw slumps across the Arctic
Top-of-permafrost ground ice indicated by remotely sensed late-season subsidence
Inventory and changes of rock glacier creep speeds in Ile Alatau and Kungöy Ala-Too, northern Tien Shan, since the 1950s
The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: fast-forward into the future
Global Positioning System interferometric reflectometry (GPS-IR) measurements of ground surface elevation changes in permafrost areas in northern Canada
Rapid retreat of permafrost coastline observed with aerial drone photogrammetry
Brief communication: Rapid machine-learning-based extraction and measurement of ice wedge polygons in high-resolution digital elevation models
Sensitivity of active-layer freezing process to snow cover in Arctic Alaska
An estimate of ice wedge volume for a High Arctic polar desert environment, Fosheim Peninsula, Ellesmere Island
Cas Renette, Mats Olvmo, Sofia Thorsson, Björn Holmer, and Heather Reese
The Cryosphere, 18, 5465–5480, https://doi.org/10.5194/tc-18-5465-2024, https://doi.org/10.5194/tc-18-5465-2024, 2024
Short summary
Short summary
We used a drone to monitor seasonal changes in the height of subarctic permafrost mounds (palsas). With five drone flights in 1 year, we found a seasonal fluctuation of ca. 15 cm as a result of freeze–thaw cycles. On one mound, a large area sank down between each flight as a result of permafrost thaw. The approach of using repeated high-resolution scans from such a drone is unique for such environments and highlights its effectiveness in capturing the subtle dynamics of permafrost landscapes.
Clemens von Baeckmann, Annett Bartsch, Helena Bergstedt, Aleksandra Efimova, Barbara Widhalm, Dorothee Ehrich, Timo Kumpula, Alexander Sokolov, and Svetlana Abdulmanova
The Cryosphere, 18, 4703–4722, https://doi.org/10.5194/tc-18-4703-2024, https://doi.org/10.5194/tc-18-4703-2024, 2024
Short summary
Short summary
Lakes are common features in Arctic permafrost areas. Land cover change following their drainage needs to be monitored since it has implications for ecology and the carbon cycle. Satellite data are key in this context. We compared a common vegetation index approach with a novel land-cover-monitoring scheme. Land cover information provides specific information on wetland features. We also showed that the bioclimatic gradients play a significant role after drainage within the first 10 years.
Taha Sadeghi Chorsi, Franz J. Meyer, and Timothy H. Dixon
The Cryosphere, 18, 3723–3740, https://doi.org/10.5194/tc-18-3723-2024, https://doi.org/10.5194/tc-18-3723-2024, 2024
Short summary
Short summary
The active layer thaws and freezes seasonally. The annual freeze–thaw cycle of the active layer causes significant surface height changes due to the volume difference between ice and liquid water. We estimate the subsidence rate and active-layer thickness (ALT) for part of northern Alaska for summer 2017 to 2022 using interferometric synthetic aperture radar and lidar. ALT estimates range from ~20 cm to larger than 150 cm in area. Subsidence rate varies between close points (2–18 mm per month).
Annett Bartsch, Xaver Muri, Markus Hetzenecker, Kimmo Rautiainen, Helena Bergstedt, Jan Wuite, Thomas Nagler, and Dmitry Nicolsky
EGUsphere, https://doi.org/10.5194/egusphere-2024-2518, https://doi.org/10.5194/egusphere-2024-2518, 2024
Short summary
Short summary
We developed a robust freeze/thaw detection approach, applying a constant threshold on Copernicus Sentinel-1 data, that is suitable for tundra regions. All global, coarser resolution products, tested with the resulting benchmarking dataset, are of value for freeze/thaw retrieval, although differences were found depending on seasons, in particular during spring and autumn transition.
Jurjen van der Sluijs, Steven V. Kokelj, and Jon F. Tunnicliffe
The Cryosphere, 17, 4511–4533, https://doi.org/10.5194/tc-17-4511-2023, https://doi.org/10.5194/tc-17-4511-2023, 2023
Short summary
Short summary
There is an urgent need to obtain size and erosion estimates of climate-driven landslides, such as retrogressive thaw slumps. We evaluated surface interpolation techniques to estimate slump erosional volumes and developed a new inventory method by which the size and activity of these landslides are tracked through time. Models between slump area and volume reveal non-linear intensification, whereby model coefficients improve our understanding of how permafrost landscapes may evolve over time.
Konstantin Muzalevskiy, Zdenek Ruzicka, Alexandre Roy, Michael Loranty, and Alexander Vasiliev
The Cryosphere, 17, 4155–4164, https://doi.org/10.5194/tc-17-4155-2023, https://doi.org/10.5194/tc-17-4155-2023, 2023
Short summary
Short summary
A new all-weather method for determining the frozen/thawed (FT) state of soils in the Arctic region based on satellite data was proposed. The method is based on multifrequency measurement of brightness temperatures by the SMAP and GCOM-W1/AMSR2 satellites. The created method was tested at sites in Canada, Finland, Russia, and the USA, based on climatic weather station data. The proposed method identifies the FT state of Arctic soils with better accuracy than existing methods.
Maria Shaposhnikova, Claude Duguay, and Pascale Roy-Léveillée
The Cryosphere, 17, 1697–1721, https://doi.org/10.5194/tc-17-1697-2023, https://doi.org/10.5194/tc-17-1697-2023, 2023
Short summary
Short summary
We explore lake ice in the Old Crow Flats, Yukon, Canada, using a novel approach that employs radar imagery and deep learning. Results indicate an 11 % increase in the fraction of lake ice that grounds between 1992/1993 and 2020/2021. We believe this is caused by widespread lake drainage and fluctuations in water level and snow depth. This transition is likely to have implications for permafrost beneath the lakes, with a potential impact on methane ebullition and the regional carbon budget.
Lingxiao Wang, Lin Zhao, Huayun Zhou, Shibo Liu, Erji Du, Defu Zou, Guangyue Liu, Yao Xiao, Guojie Hu, Chong Wang, Zhe Sun, Zhibin Li, Yongping Qiao, Tonghua Wu, Chengye Li, and Xubing Li
The Cryosphere, 16, 2745–2767, https://doi.org/10.5194/tc-16-2745-2022, https://doi.org/10.5194/tc-16-2745-2022, 2022
Short summary
Short summary
Selin Co has exhibited the greatest increase in water storage among all the lakes on the Tibetan Plateau in the past decades. This study presents the first attempt to quantify the water contribution of ground ice melting to the expansion of Selin Co by evaluating the ground surface deformation since terrain surface settlement provides a
windowto detect the subsurface ground ice melting. Results reveal that ground ice meltwater contributed ~ 12 % of the lake volume increase during 2017–2020.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Short summary
We present the guidelines developed by the IPA Action Group and within the ESA Permafrost CCI project to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to 11 regions worldwide; more than 3600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Philipp Bernhard, Simon Zwieback, Nora Bergner, and Irena Hajnsek
The Cryosphere, 16, 1–15, https://doi.org/10.5194/tc-16-1-2022, https://doi.org/10.5194/tc-16-1-2022, 2022
Short summary
Short summary
We present an investigation of retrogressive thaw slumps in 10 study sites across the Arctic. These slumps have major impacts on hydrology and ecosystems and can also reinforce climate change by the mobilization of carbon. Using time series of digital elevation models, we found that thaw slump change rates follow a specific type of distribution that is known from landslides in more temperate landscapes and that the 2D area change is strongly related to the 3D volumetric change.
Simon Zwieback and Franz J. Meyer
The Cryosphere, 15, 2041–2055, https://doi.org/10.5194/tc-15-2041-2021, https://doi.org/10.5194/tc-15-2041-2021, 2021
Short summary
Short summary
Thawing of ice-rich permafrost leads to subsidence and slumping, which can compromise Arctic infrastructure. However, we lack fine-scale maps of permafrost ground ice, chiefly because it is usually invisible at the surface. We show that subsidence at the end of summer serves as a
fingerprintwith which near-surface permafrost ground ice can be identified. As this can be done with satellite data, this method may help improve ground ice maps and thus sustainably steward the Arctic.
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Short summary
We present a map of rock glacier motion over parts of the northern Tien Shan and time series of surface speed for six of them over almost 70 years.
This is by far the most detailed investigation of this kind available for central Asia.
We detect a 2- to 4-fold increase in rock glacier motion between the 1950s and present, which we attribute to atmospheric warming.
Relative to the shrinking glaciers in the region, this implies increased importance of periglacial sediment transport.
Ingmar Nitze, Sarah W. Cooley, Claude R. Duguay, Benjamin M. Jones, and Guido Grosse
The Cryosphere, 14, 4279–4297, https://doi.org/10.5194/tc-14-4279-2020, https://doi.org/10.5194/tc-14-4279-2020, 2020
Short summary
Short summary
In summer 2018, northwestern Alaska was affected by widespread lake drainage which strongly exceeded previous observations. We analyzed the spatial and temporal patterns with remote sensing observations, weather data and lake-ice simulations. The preceding fall and winter season was the second warmest and wettest on record, causing the destabilization of permafrost and elevated water levels which likely led to widespread and rapid lake drainage during or right after ice breakup.
Jiahua Zhang, Lin Liu, and Yufeng Hu
The Cryosphere, 14, 1875–1888, https://doi.org/10.5194/tc-14-1875-2020, https://doi.org/10.5194/tc-14-1875-2020, 2020
Short summary
Short summary
Ground surface in permafrost areas undergoes uplift and subsides seasonally due to freezing–thawing active layer. Surface elevation change serves as an indicator of frozen-ground dynamics. In this study, we identify 12 GPS stations across the Canadian Arctic, which are useful for measuring elevation changes by using reflected GPS signals. Measurements span from several years to over a decade and at daily intervals and help to reveal frozen ground dynamics at various temporal and spatial scales.
Andrew M. Cunliffe, George Tanski, Boris Radosavljevic, William F. Palmer, Torsten Sachs, Hugues Lantuit, Jeffrey T. Kerby, and Isla H. Myers-Smith
The Cryosphere, 13, 1513–1528, https://doi.org/10.5194/tc-13-1513-2019, https://doi.org/10.5194/tc-13-1513-2019, 2019
Short summary
Short summary
Episodic changes of permafrost coastlines are poorly understood in the Arctic. By using drones, satellite images, and historic photos we surveyed a permafrost coastline on Qikiqtaruk – Herschel Island. We observed short-term coastline retreat of 14.5 m per year (2016–2017), exceeding long-term average rates of 2.2 m per year (1952–2017). Our study highlights the value of these tools to assess understudied episodic changes of eroding permafrost coastlines in the context of a warming Arctic.
Charles J. Abolt, Michael H. Young, Adam L. Atchley, and Cathy J. Wilson
The Cryosphere, 13, 237–245, https://doi.org/10.5194/tc-13-237-2019, https://doi.org/10.5194/tc-13-237-2019, 2019
Short summary
Short summary
We present a workflow that uses a machine-learning algorithm known as a convolutional neural network (CNN) to rapidly delineate ice wedge polygons in high-resolution topographic datasets. Our workflow permits thorough assessments of polygonal microtopography at the kilometer scale or greater, which can improve understanding of landscape hydrology and carbon budgets. We demonstrate that a single CNN can be trained to delineate polygons with high accuracy in diverse tundra settings.
Yonghong Yi, John S. Kimball, Richard H. Chen, Mahta Moghaddam, and Charles E. Miller
The Cryosphere, 13, 197–218, https://doi.org/10.5194/tc-13-197-2019, https://doi.org/10.5194/tc-13-197-2019, 2019
Short summary
Short summary
To better understand active-layer freezing process and its climate sensitivity, we developed a new 1 km snow data set for permafrost modeling and used the model simulations with multiple new in situ and P-band radar data sets to characterize the soil freeze onset and duration of zero curtain in Arctic Alaska. Results show that zero curtains of upper soils are primarily affected by early snow cover accumulation, while zero curtains of deeper soils are more closely related to maximum thaw depth.
Claire Bernard-Grand'Maison and Wayne Pollard
The Cryosphere, 12, 3589–3604, https://doi.org/10.5194/tc-12-3589-2018, https://doi.org/10.5194/tc-12-3589-2018, 2018
Short summary
Short summary
This study provides a first approximation of the volume of ice in ice wedges, a ground-ice feature in permafrost for a High Arctic polar desert region. We demonstrate that Geographical Information System analyses can be used on satellite images to estimate ice wedge volume. We estimate that 3.81 % of the top 5.9 m of permafrost could be ice-wedge ice on the Fosheim Peninsula. In response to climate change, melting ice wedges will result in widespread terrain disturbance in this region.
Cited articles
Åkerman, H. J. and Johansson, M.: Thawing permafrost and thicker active
layers in sub-arctic Sweden, Permafrost Periglac., 19,
279–292, https://doi.org/10.1002/ppp.626, 2008.
Antonova, S., Sudhaus, H., Strozzi, T., Zwieback, S., Kääb, A.,
Heim, B., Langer, M., Bornemann N., and Boike, J.: Thaw subsidence of a
Yedoma landscape in northern Siberia, measured in situ and estimated from
TerraSAR-X interferometry, Remote Sens., 10, 494, https://doi.org/10.3390/rs10040494, 2018.
Bateson, L., Cigna, F., Boon, D., and Sowter, A.: The application of the
Intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield, UK,
Int. J. Appl. Earth Observ. Geoinf., 34,
249–257, https://doi.org/10.1016/j.jag.2014.08.018, 2015.
Bauer, A., Paar, G., and Kaufmann, V.: Terrestrial laser scanning for rock
glacier monitoring, in: 8th International Conference on Permafrost,
Proceedings, vol. 1, 55–60, 2003.
Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A new algorithm
for surface deformation monitoring based on small baseline differential SAR
interferograms, IEEE T. Geosci. Remote, 40,
2375–2383, https://doi.org/10.1109/TGRS.2002.803792, 2002.
Böhme, M., Bunkholt, H. S. S., Oppikofer, T., Dehls, J. F., Hermanns, R.
L., Eriksen, H. Ø., Laukens, T. R., and Eiken, T.: Using 2D InSAR, dGNSS
and structural field data to understand the deformation mechanism of the
unstable rock slope Gamanjunni 3, northern Norway, in: Landslides and
Engineered Slopes, Experience, Theory and Practice, CRC Press, 443–449,
2016.
Bolch, T., Yao, T., Kang, S., Buchroithner, M. F., Scherer, D., Maussion, F., Huintjes, E., and Schneider, C.: A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009, The Cryosphere, 4, 419–433, https://doi.org/10.5194/tc-4-419-2010, 2010.
Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., and
Crippa, B.: Persistent scatterer interferometry: A review, ISPRS J.
Photogramm., 115, 78–89, https://doi.org/10.1016/j.isprsjprs.2015.10.011, 2016.
Daanen, R. P., Grosse, G., Darrow, M. M., Hamilton, T. D., and Jones, B. M.: Rapid movement of frozen debris-lobes: implications for permafrost degradation and slope instability in the south-central Brooks Range, Alaska, Nat. Hazards Earth Syst. Sci., 12, 1521–1537, https://doi.org/10.5194/nhess-12-1521-2012, 2012.
Daout, S., Doin, M. P., Peltzer, G., Socquet, A., and Lasserre, C.:
Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan
Plateau, Geophys. Res. Lett., 44, 901–909, https://doi.org/10.1002/2016GL070781, 2017.
Dini, B., Daout, S., Manconi, A., and Loew, S.: Classification of slope
processes based on multitemporal DInSAR analyses in the Himalaya of NW
Bhutan, Remote Sens. Environ., 233, 111408, https://doi.org/10.1016/j.rse.2019.111408, 2019.
Dong, J., Zhang, L., Liao, M., and Gong, J.: Improved correction of seasonal
tropospheric delay in InSAR observations for landslide deformation
monitoring. Remote Sens. Environ., 233, 111370, https://doi.org/10.1016/j.rse.2019.111370, 2019.
Eriksen, H. Ø., Lauknes, T. R., Larsen, Y., Corner, G. D., Bergh, S. G.,
Dehls, J., and Kierulf, H. P.: Visualizing and interpreting surface
displacement patterns on unstable slopes using multi-geometry satellite SAR
interferometry (2D InSAR), Remote Sens. Environ., 191, 297–312,
https://doi.org/10.1016/j.rse.2016.12.024, 2017.
ESA (European Space Agency): SENTINEL-1, ESA's Radar Observatory Mission for
GMES Operational Services, ESA SP-1322/1, Noordwijk, 2012.
Fischer, L., Kääb, A., Huggel, C., and Noetzli, J.: Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face, Nat. Hazards Earth Syst. Sci., 6, 761–772, https://doi.org/10.5194/nhess-6-761-2006, 2006.
Fort, F. and van Vliet-Lanoe, B.: Permafrost and periglacial environment of
Western Tibet, Landform Analysis, 5, 25–29, 2007.
French, H. M.: The periglacial environment, 4th edn., John Wiley &
Sons, Chichester, England, 2017.
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O.,
Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springmann, S.,
and Mühll, D. V.: Permafrost creep and rock glacier dynamics, Permafrost Periglac., 17, 189–214, https://doi.org/10.1002/ppp.561, 2006.
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled SRTM for
the globe Version 4, International Centre for Tropical Agriculture (CIAT),
available at http://srtm.csi.cgiar.org (last access: 29 July 2019), 2008.
Jiang, L., Nielsen, K., Andersen, O. B., and Bauer-Gottwein, P.: Monitoring
recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn
mode data, J. Hydrology, 544, 109–124, https://doi.org/10.1016/j.jhydrol.2016.11.024, 2017.
Jones, D. B., Harrison, S., Anderson, K., and Whalley, W. B.: Rock glaciers
and mountain hydrology: A review, Earth-Sci. Rev., https://doi.org/10.1016/j.earscirev.2019.04.001, 2019.
Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P.,
Jepsen, R. J., Kuemmerle, T., Meyfroidt, P., Mitchard, E. T. A., Reiche, J.
Ryan, C. M., and Waske, B.: A review of the application of optical and radar
remote sensing data fusion to land use mapping and monitoring, Remote
Sens., 8, 70, https://doi.org/10.3390/rs8010070, 2016.
Kääb, A.: Remote sensing of permafrost-related problems and hazards,
Permafrost Periglac., 19, 107–136, https://doi.org/10.1002/ppp.619, 2008.
Kääb, A., and Vollmer, M.: Surface geometry, thickness changes and flow fields on creeping mountain permafrost: automatic extraction by digital image analysis, Permafrost Periglac., 11, 315–326, https://doi.org/10.1002/1099-1530(200012)11:4<315::AID-PPP365>3.0.CO;2-J, 2000.
Kapp, J. L. D. A., Harrison, T. M., Kapp, P., Grove, M., Lovera, O. M., and
Lin, D.: Nyainqentanglha Shan: a window into the tectonic, thermal, and
geochemical evolution of the Lhasa block, southern Tibet, J.
Geophys. Res.-Sol. Ea., 110, B08413, https://doi.org/10.1029/2004JB003330, 2005.
Keil, A., Berking, J., Mügler, I., Schütt, B., Schwalb, A., and
Steeb, P.: Hydrological and geomorphological basin and catchment
characteristics of Lake Nam Co, South-Central Tibet, Quatern.
Int., 218, 118–130, https://doi.org/10.1016/j.quaint.2009.02.022, 2010.
Kneisel, C., Rödder, T., and Schwindt, D.: Frozen ground dynamics
resolved by multi-year and year-round electrical resistivity monitoring at
three alpine sites in the Swiss Alps, Near Surf. Geophys., 12,
117–132, https://doi.org/10.3997/1873-0604.2013067, 2014.
Kropáček, J., Braun, A., Kang, S., Feng, C., Ye, Q., and Hochschild,
V.: Analysis of lake level changes in Nam Co in central Tibet utilizing
synergistic satellite altimetry and optical imagery, Int. J. Appl. Earth Observ. Geoinfo., 17, 3–11, https://doi.org/10.1016/j.jag.2011.10.001, 2012.
Lei, Y., Yao, T., Bird, B. W., Yang, K., Zhai, J., and Sheng, Y.: Coherent
lake growth on the central Tibetan Plateau since the 1970s: Characterization
and attribution, J. Hydrol., 483, 61–67, https://doi.org/10.1016/j.jhydrol.2013.01.003, 2013.
Li, Z. W., Xu, W. B., Feng, G. C., Hu, J., Wang, C. C., Ding, X. L., and Zhu,
J. J.: Correcting atmospheric effects on InSAR with MERIS water vapour data
and elevation-dependent interpolation model, Geophys. J.
Int., 189, 898–910, https://doi.org/10.1111/j.1365-246X.2012.05432.x, 2012.
Li, B., Yu, Z., Liang, Z., and Acharya, K.: Hydrologic response of a high
altitude glacierized basin in the central Tibetan Plateau, Glob.
Planet. Change, 118, 69–84, https://doi.org/10.1016/j.gloplacha.2014.04.006, 2014.
Li, Z., Zhao, R., Hu, J., Wen, L., Feng, G., Zhang, Z., and Wang, Q.: InSAR
analysis of surface deformation over permafrost to estimate active layer
thickness based on one-dimensional heat transfer model of soils, Sci.
Rep., 5, 15542, https://doi.org/10.1038/srep15542, 2015.
Li, Q.: Spatial variability and long-term change in pollen diversity in Nam
Co catchment (central Tibetan Plateau): Implications for alpine vegetation
restoration from a paleoecological perspective, Science China Earth
Sciences, 61, 270–284, https://doi.org/10.1007/s11430-017-9133-0, 2018.
Liu, L., Millar, C. I., Westfall, R. D., and Zebker, H. A.: Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR, The Cryosphere, 7, 1109–1119, https://doi.org/10.5194/tc-7-1109-2013, 2013.
Matsuoka, N.: Solifluction rates, processes and landforms: a global review,
Earth-Sci. Rev., 55, 107–134, https://doi.org/10.1016/S0012-8252(01)00057-5, 2001.
Matsuoka, N., Abe, M., and Ijiri, M.: Differential frost heave and sorted
patterned ground: field measurements and a laboratory experiment,
Geomorphology, 52, 73–85, https://doi.org/10.1016/S0169-555X(02)00249-0, 2003.
McKenzie, J. M. and Voss, C. I.: Permafrost thaw in a nested
groundwater-flow system, Hydrogeol. J., 21, 299–316, https://doi.org/10.1007/s10040-012-0942-3, 2013.
Messerli, B., Viviroli, D., and Weingartner, R.: Mountains of the World:
Vulnerable Water Towers for the 21st Century, AMBIO, 2004, 29–34, 2004.
Miehe, G., Miehe, S., Kaiser, K., Jianquan, L., and Zhao, X.: Status and
dynamics of the Kobresia pygmaea ecosystem on the Tibetan Plateau, AMBIO, 37, 272–280, https://doi.org/10.1579/0044-7447(2008)37[272:SADOTK]2.0.CO;2, 2008.
Müller, J., Vieli, A., and Gärtner-Roer, I.: Rock glaciers on the run – understanding rock glacier landform evolution and recent changes from numerical flow modeling, The Cryosphere, 10, 2865–2886, https://doi.org/10.5194/tc-10-2865-2016, 2016.
NAMORS: Meteorological Data for the NAMORS research station, 2010 to
2017, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Lhasa, available at: https://data.tpdc.ac.cn/en/data/4deeb2b4-4fc1-4c7c-b0c6-6263a547d53f/, last access: 4 May 2018.
Notti, D., Herrera, G., Bianchini, S., Meisina, C., García-Davalillo,
J. C., and Zucca, F.: A methodology for improving landslide PSI data
analysis, Int. J. Remote Sens., 35, 2186–2214,
https://doi.org/10.1080/01431161.2014.889864, 2014.
Osmanoğlu, B., Sunar, F., Wdowinski, S., and Cabral-Cano, E.: Time series
analysis of InSAR data: Methods and trends, ISPRS J. Photogramm., 115, 90–102, https://doi.org/10.1016/j.isprsjprs.2015.10.003, 2016.
Reinosch, E., Buckel, J., Dong, J., Gerke, M., Baade, J., and Riedel, B.: Surface displacement and velocity models at Lake NamCo (Tibetan Plateau) derived from Sentinel-1 data via InSAR time series analysis, PANGAEA, https://doi.org/10.1594/PANGAEA.907743, 2020.
Riseborough, D., Shiklomanov, N., Etzelmüller, B., Gruber, S., and
Marchenko, S.: Recent advances in permafrost modelling, Permafrost Periglac., 19, 137–156, https://doi.org/10.1002/ppp.615, 2008.
Rouyet, L., Lauknes, T. R., Christiansen, H. H., Strand, S. M., and Larsen,
Y.: Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard,
investigated by InSAR, Remote Sens. Environ., 231, 111236,
https://doi.org/10.1016/j.rse.2019.111236, 2019.
Schuur, E. A., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M.
R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Shur, Y., Hinkel, K. M., and Nelson, F. E.: The transient layer: implications
for geocryology and climate-change science, Permafrost Periglac., 16, 5–17, https://doi.org/10.1002/ppp.518, 2005.
Song, C., Huang, B., Ke, L., and Richards, K. S.: Seasonal and abrupt changes
in the water level of closed lakes on the Tibetan Plateau and implications
for climate impacts, J. Hydrol., 514, 131–144, https://doi.org/10.1016/j.jhydrol.2014.04.018, 2014.
Sowter, A., Bateson, L., Strange, P., Ambrose, K., and Syafiudin, M. F.:
DInSAR estimation of land motion using intermittent coherence with
application to the South Derbyshire and Leicestershire coalfields, Remote
Sens. Lett., 4, 979–987, https://doi.org/10.1080/2150704X.2013.823673, 2013.
Strozzi, T., Caduff, R., Jones, N., Barboux, C., Delaloye, R., Bodin, X.,
Kääb, A., Mätzler, E., and Schrott, L.: Monitoring Rock Glacier
Kinematics with Satellite Synthetic Aperture Radar, Remote Sens., 12,
559, https://doi.org/10.3390/rs12030559, 2020.
Tian, K., Liu, J., Kang, S., Campbell, I. B., Zhang, F., Zhang, Q., and Lu,
W.: Hydrothermal pattern of frozen soil in Nam Co lake basin, the Tibetan
Plateau, Environ. Geol., 57, 1775–1784, https://doi.org/10.1007/s00254-008-1462-2, 2009.
Wang, X., Liu, L., Zhao, L., Wu, T., Li, Z., and Liu, G.: Mapping and inventorying active rock glaciers in the northern Tien Shan of China using satellite SAR interferometry, The Cryosphere, 11, 997–1014, https://doi.org/10.5194/tc-11-997-2017, 2017.
Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D., and Roth, A.: Accuracy assessment of the global TanDEM-X
Digital Elevation Model with GPS data, ISPRS J. Photogramm., 139, 171–182, https://doi.org/10.1016/j.isprsjprs.2018.02.017, 2018.
Whalley, W. B. and Azizi, F.: Rock glaciers and protalus landforms:
Analogous forms and ice sources on Earth and Mars. J. Geophys.
Res.-Planet., 108, 8032, https://doi.org/10.1029/2002JE001864, 2003.
Wu, Q., Zhang, T., and Liu, Y.: Permafrost temperatures and thickness on the
Qinghai-Tibet Plateau, Global Planet. Change, 72, 32–38,
https://doi.org/10.1016/j.gloplacha.2010.03.001, 2010.
Yagüe-Martínez, N., Prats-Iraola, P., Gonzalez, F. R., Brcic, R.,
Shau, R., Geudtner, D., Eineder, M., and Bamler, R.: Interferometric
processing of Sentinel-1 TOPS data, IEEE T. Geosci.
Remote, 54, 2220–2234, https://doi.org/10.1109/TGRS.2015.2497902, 2016.
Yao, T., Liu, X., Wang, N., and Shi, Y.: Amplitude of climatic changes in
Qinghai-Tibetan Plateau, Chinese Sci. Bull., 45, 1236–1243,
https://doi.org/10.1007/BF02886087, 2000.
Yao, T., Pu, J., Lu, A., Wang, Y., and Yu, W.: Recent glacial retreat and its
impact on hydrological processes on the Tibetan Plateau, China, and
surrounding regions, Arct. Antarct. Alp. Res., 39, 642–650,
https://doi.org/10.1657/1523-0430(07-510)[YAO]2.0.CO;2, 2007.
Yao, T., Masson-Delmotte, V., Gao, J., Yu, W., Yang, X., Risi, C., Sturm,
C., Werner, M., Zhao, H., He, Y., Ren, W., Tian, L., Shi, C., and Hou, S.: A
review of climatic controls on δ18O in precipitation over the
Tibetan Plateau: Observations and simulations, Rev. Geophys., 51,
525–548, https://doi.org/10.1002/rog.20023, 2013.
Ye, Q., Zong, J., Tian, L., Cogley, J. G., Song, C., and Guo, W.: Glacier
changes on the Tibetan Plateau derived from Landsat imagery:
mid-1970s – 2000–13, J. Glaciol., 63, 273–287, https://doi.org/10.1017/jog.2016.137, 2017.
Yu, Z., Wu, G., Keys, L., Li, F., Yan, N., Qu, D., and Liu, X.: Seasonal
variation of chemical weathering and its controlling factors in two alpine
catchments, Nam Co basin, central Tibetan Plateau, J. Hydrol.,
576, 381–395, https://doi.org/10.1016/j.jhydrol.2019.06.042,
2019.
Zhang, G., Kang, S., Fujita, K., Huintjes, E., Xu, J., Yamazaki, T.,
Haginoya, S., Wei, Y., Scherer, D., Schneider, C., and Yao, T.: Energy and
mass balance of Zhadang glacier surface, central Tibetan Plateau, J.
Glaciol., 59, 137–148, https://doi.org/10.3189/2013JoG12J152, 2013.
Zhang, G., Li, J., and Zheng, G.: Lake-area mapping in the Tibetan Plateau:
an evaluation of data and methods, Int. J. Remote Sensing,
38, 742–772, https://doi.org/10.1080/01431161.2016.1271478,
2017.
Zhang, Y. and Michalowski, R. L.: Thermal-hydro-mechanical analysis of
frost heave and thaw settlement, J. Geotech.
Geoenviron., 141, 04015027, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001305, 2015.
Zhao, R., Li, Z. W., Feng, G. C., Wang, Q. J., and Hu, J.: Monitoring surface
deformation over permafrost with an improved SBAS-InSAR algorithm: With
emphasis on climatic factors modeling, Remote Sens. Environ., 184,
276–287, https://doi.org/10.1016/j.rse.2016.07.019, 2016.
Zhou, S., Kang, S., Chen, F., and Joswiak, D. R.: Water balance observations
reveal significant subsurface water seepage from Lake Nam Co, south-central
Tibetan Plateau, J. Hydrol., 491, 89–99, https://doi.org/10.1016/j.jhydrol.2013.03.030, 2013.
Zink, M., Bachmann, M., Bräutigam, B., Fritz, T., Hajnsek, I., Moreira,
A., Wessel, B., and Krieger, G.: TanDEM-X: The New Global DEM Takes Shape,
IEEE Geosci. Remote S., 2, 8–23, https://doi.org/10.1109/MGRS.2014.2318895, 2014.
Zou, D., Zhao, L., Sheng, Y., Chen, J., Hu, G., Wu, T., Wu, J., Xie, C., Wu, X., Pang, Q., Wang, W., Du, E., Li, W., Liu, G., Li, J., Qin, Y., Qiao, Y., Wang, Z., Shi, J., and Cheng, G.: A new map of permafrost distribution on the Tibetan Plateau, The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-2017, 2017.
Zwieback, S., Hensley, S., and Hajnsek, I.: Soil moisture estimation using
differential radar interferometry: Toward separating soil moisture and
displacements, IEEE T. Geoscience Remote, 55,
5069–5083, https://doi.org/10.1109/TGRS.2017.2702099, 2017.
Short summary
In this research we present the results of our satellite analysis of a permafrost landscape and periglacial landforms in mountainous regions on the Tibetan Plateau. We study seasonal and multiannual surface displacement processes, such as the freezing and thawing of the ground, seasonally accelerated sliding on steep slopes, and continuous permafrost creep. This study is the first step of our goal to create an inventory of actively moving landforms within the Nyainqêntanglha range.
In this research we present the results of our satellite analysis of a permafrost landscape and...