Articles | Volume 14, issue 5
https://doi.org/10.5194/tc-14-1633-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-1633-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
InSAR time series analysis of seasonal surface displacement dynamics on the Tibetan Plateau
Eike Reinosch
CORRESPONDING AUTHOR
Institute of Geodesy and Photogrammetry, Technische Universität
Braunschweig, Braunschweig, Germany
Johannes Buckel
Institute of Geophysics and extraterrestrial Physics, Technische
Universität Braunschweig, Braunschweig, Germany
Jie Dong
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan, China
Markus Gerke
Institute of Geodesy and Photogrammetry, Technische Universität
Braunschweig, Braunschweig, Germany
Jussi Baade
Department of Geography, Friedrich-Schiller-Universität Jena,
Jena, Germany
Björn Riedel
Institute of Geodesy and Photogrammetry, Technische Universität
Braunschweig, Braunschweig, Germany
Related authors
No articles found.
Phillipp Fanta-Jende, Francesco Vultaggio, Alexander Kern, Yasmin Loeper, and Markus Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W6-2025, 75–82, https://doi.org/10.5194/isprs-archives-XLVIII-1-W6-2025-75-2025, https://doi.org/10.5194/isprs-archives-XLVIII-1-W6-2025-75-2025, 2025
Mehdi Maboudi, Karam Mawas, and Markus Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1029–1034, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1029-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1029-2025, 2025
Said Harb, Pedro Achanccaray Diaz, Mehdi Maboudi, and Markus Gerke
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 341–348, https://doi.org/10.5194/isprs-annals-X-G-2025-341-2025, https://doi.org/10.5194/isprs-annals-X-G-2025-341-2025, 2025
Francesco Vultaggio, Phillipp Fanta-Jende, and Markus Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W4-2025, 131–138, https://doi.org/10.5194/isprs-archives-XLVIII-1-W4-2025-131-2025, https://doi.org/10.5194/isprs-archives-XLVIII-1-W4-2025-131-2025, 2025
Yasmin Loeper, Markus Gerke, Ahmed Alamouri, Alexander Kern, Mohammad Shafi Bajauri, and Phillipp Fanta-Jende
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 311–318, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-311-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-311-2024, 2024
Francesco Vultaggio, Phillipp Fanta-Jende, Matthias Schörghuber, Alexander Kern, and Markus Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 447–454, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-447-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-447-2024, 2024
K. Mawas, M. Maboudi, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 307–313, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-307-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-307-2023, 2023
P. Achanccaray, M. Gerke, L. Wesche, S. Hoyer, K. Thiele, U. Knufinke, and C. Krafczyk
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1303–1309, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1303-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1303-2023, 2023
C. Berger and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 223–230, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-223-2022, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-223-2022, 2022
M. S. Bajauri, A. Alamouri, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 335–342, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-335-2022, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-335-2022, 2022
K. Mawas, M. Maboudi, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2022, 459–466, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-459-2022, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-459-2022, 2022
P. Kirui, B. Riedel, and M. Gerke
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 115–122, https://doi.org/10.5194/isprs-annals-V-3-2022-115-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-115-2022, 2022
T. Partovi, M. Dähne, M. Maboudi, D. Krueger, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 85–92, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-85-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-85-2021, 2021
M. Maboudi, A. Elbillehy, Y. Ghassoun, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 183–188, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-183-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-183-2021, 2021
M. Maboudi, A. Alamouri, V. De Arriba López, M. S. Bajauri, C. Berger, and M. Gerke
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2021, 121–128, https://doi.org/10.5194/isprs-annals-V-1-2021-121-2021, https://doi.org/10.5194/isprs-annals-V-1-2021-121-2021, 2021
Cited articles
Åkerman, H. J. and Johansson, M.: Thawing permafrost and thicker active
layers in sub-arctic Sweden, Permafrost Periglac., 19,
279–292, https://doi.org/10.1002/ppp.626, 2008.
Antonova, S., Sudhaus, H., Strozzi, T., Zwieback, S., Kääb, A.,
Heim, B., Langer, M., Bornemann N., and Boike, J.: Thaw subsidence of a
Yedoma landscape in northern Siberia, measured in situ and estimated from
TerraSAR-X interferometry, Remote Sens., 10, 494, https://doi.org/10.3390/rs10040494, 2018.
Bateson, L., Cigna, F., Boon, D., and Sowter, A.: The application of the
Intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield, UK,
Int. J. Appl. Earth Observ. Geoinf., 34,
249–257, https://doi.org/10.1016/j.jag.2014.08.018, 2015.
Bauer, A., Paar, G., and Kaufmann, V.: Terrestrial laser scanning for rock
glacier monitoring, in: 8th International Conference on Permafrost,
Proceedings, vol. 1, 55–60, 2003.
Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A new algorithm
for surface deformation monitoring based on small baseline differential SAR
interferograms, IEEE T. Geosci. Remote, 40,
2375–2383, https://doi.org/10.1109/TGRS.2002.803792, 2002.
Böhme, M., Bunkholt, H. S. S., Oppikofer, T., Dehls, J. F., Hermanns, R.
L., Eriksen, H. Ø., Laukens, T. R., and Eiken, T.: Using 2D InSAR, dGNSS
and structural field data to understand the deformation mechanism of the
unstable rock slope Gamanjunni 3, northern Norway, in: Landslides and
Engineered Slopes, Experience, Theory and Practice, CRC Press, 443–449,
2016.
Bolch, T., Yao, T., Kang, S., Buchroithner, M. F., Scherer, D., Maussion, F., Huintjes, E., and Schneider, C.: A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009, The Cryosphere, 4, 419–433, https://doi.org/10.5194/tc-4-419-2010, 2010.
Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., and
Crippa, B.: Persistent scatterer interferometry: A review, ISPRS J.
Photogramm., 115, 78–89, https://doi.org/10.1016/j.isprsjprs.2015.10.011, 2016.
Daanen, R. P., Grosse, G., Darrow, M. M., Hamilton, T. D., and Jones, B. M.: Rapid movement of frozen debris-lobes: implications for permafrost degradation and slope instability in the south-central Brooks Range, Alaska, Nat. Hazards Earth Syst. Sci., 12, 1521–1537, https://doi.org/10.5194/nhess-12-1521-2012, 2012.
Daout, S., Doin, M. P., Peltzer, G., Socquet, A., and Lasserre, C.:
Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan
Plateau, Geophys. Res. Lett., 44, 901–909, https://doi.org/10.1002/2016GL070781, 2017.
Dini, B., Daout, S., Manconi, A., and Loew, S.: Classification of slope
processes based on multitemporal DInSAR analyses in the Himalaya of NW
Bhutan, Remote Sens. Environ., 233, 111408, https://doi.org/10.1016/j.rse.2019.111408, 2019.
Dong, J., Zhang, L., Liao, M., and Gong, J.: Improved correction of seasonal
tropospheric delay in InSAR observations for landslide deformation
monitoring. Remote Sens. Environ., 233, 111370, https://doi.org/10.1016/j.rse.2019.111370, 2019.
Eriksen, H. Ø., Lauknes, T. R., Larsen, Y., Corner, G. D., Bergh, S. G.,
Dehls, J., and Kierulf, H. P.: Visualizing and interpreting surface
displacement patterns on unstable slopes using multi-geometry satellite SAR
interferometry (2D InSAR), Remote Sens. Environ., 191, 297–312,
https://doi.org/10.1016/j.rse.2016.12.024, 2017.
ESA (European Space Agency): SENTINEL-1, ESA's Radar Observatory Mission for
GMES Operational Services, ESA SP-1322/1, Noordwijk, 2012.
Fischer, L., Kääb, A., Huggel, C., and Noetzli, J.: Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face, Nat. Hazards Earth Syst. Sci., 6, 761–772, https://doi.org/10.5194/nhess-6-761-2006, 2006.
Fort, F. and van Vliet-Lanoe, B.: Permafrost and periglacial environment of
Western Tibet, Landform Analysis, 5, 25–29, 2007.
French, H. M.: The periglacial environment, 4th edn., John Wiley &
Sons, Chichester, England, 2017.
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O.,
Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springmann, S.,
and Mühll, D. V.: Permafrost creep and rock glacier dynamics, Permafrost Periglac., 17, 189–214, https://doi.org/10.1002/ppp.561, 2006.
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled SRTM for
the globe Version 4, International Centre for Tropical Agriculture (CIAT),
available at http://srtm.csi.cgiar.org (last access: 29 July 2019), 2008.
Jiang, L., Nielsen, K., Andersen, O. B., and Bauer-Gottwein, P.: Monitoring
recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn
mode data, J. Hydrology, 544, 109–124, https://doi.org/10.1016/j.jhydrol.2016.11.024, 2017.
Jones, D. B., Harrison, S., Anderson, K., and Whalley, W. B.: Rock glaciers
and mountain hydrology: A review, Earth-Sci. Rev., https://doi.org/10.1016/j.earscirev.2019.04.001, 2019.
Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P.,
Jepsen, R. J., Kuemmerle, T., Meyfroidt, P., Mitchard, E. T. A., Reiche, J.
Ryan, C. M., and Waske, B.: A review of the application of optical and radar
remote sensing data fusion to land use mapping and monitoring, Remote
Sens., 8, 70, https://doi.org/10.3390/rs8010070, 2016.
Kääb, A.: Remote sensing of permafrost-related problems and hazards,
Permafrost Periglac., 19, 107–136, https://doi.org/10.1002/ppp.619, 2008.
Kääb, A., and Vollmer, M.: Surface geometry, thickness changes and flow fields on creeping mountain permafrost: automatic extraction by digital image analysis, Permafrost Periglac., 11, 315–326, https://doi.org/10.1002/1099-1530(200012)11:4<315::AID-PPP365>3.0.CO;2-J, 2000.
Kapp, J. L. D. A., Harrison, T. M., Kapp, P., Grove, M., Lovera, O. M., and
Lin, D.: Nyainqentanglha Shan: a window into the tectonic, thermal, and
geochemical evolution of the Lhasa block, southern Tibet, J.
Geophys. Res.-Sol. Ea., 110, B08413, https://doi.org/10.1029/2004JB003330, 2005.
Keil, A., Berking, J., Mügler, I., Schütt, B., Schwalb, A., and
Steeb, P.: Hydrological and geomorphological basin and catchment
characteristics of Lake Nam Co, South-Central Tibet, Quatern.
Int., 218, 118–130, https://doi.org/10.1016/j.quaint.2009.02.022, 2010.
Kneisel, C., Rödder, T., and Schwindt, D.: Frozen ground dynamics
resolved by multi-year and year-round electrical resistivity monitoring at
three alpine sites in the Swiss Alps, Near Surf. Geophys., 12,
117–132, https://doi.org/10.3997/1873-0604.2013067, 2014.
Kropáček, J., Braun, A., Kang, S., Feng, C., Ye, Q., and Hochschild,
V.: Analysis of lake level changes in Nam Co in central Tibet utilizing
synergistic satellite altimetry and optical imagery, Int. J. Appl. Earth Observ. Geoinfo., 17, 3–11, https://doi.org/10.1016/j.jag.2011.10.001, 2012.
Lei, Y., Yao, T., Bird, B. W., Yang, K., Zhai, J., and Sheng, Y.: Coherent
lake growth on the central Tibetan Plateau since the 1970s: Characterization
and attribution, J. Hydrol., 483, 61–67, https://doi.org/10.1016/j.jhydrol.2013.01.003, 2013.
Li, Z. W., Xu, W. B., Feng, G. C., Hu, J., Wang, C. C., Ding, X. L., and Zhu,
J. J.: Correcting atmospheric effects on InSAR with MERIS water vapour data
and elevation-dependent interpolation model, Geophys. J.
Int., 189, 898–910, https://doi.org/10.1111/j.1365-246X.2012.05432.x, 2012.
Li, B., Yu, Z., Liang, Z., and Acharya, K.: Hydrologic response of a high
altitude glacierized basin in the central Tibetan Plateau, Glob.
Planet. Change, 118, 69–84, https://doi.org/10.1016/j.gloplacha.2014.04.006, 2014.
Li, Z., Zhao, R., Hu, J., Wen, L., Feng, G., Zhang, Z., and Wang, Q.: InSAR
analysis of surface deformation over permafrost to estimate active layer
thickness based on one-dimensional heat transfer model of soils, Sci.
Rep., 5, 15542, https://doi.org/10.1038/srep15542, 2015.
Li, Q.: Spatial variability and long-term change in pollen diversity in Nam
Co catchment (central Tibetan Plateau): Implications for alpine vegetation
restoration from a paleoecological perspective, Science China Earth
Sciences, 61, 270–284, https://doi.org/10.1007/s11430-017-9133-0, 2018.
Liu, L., Millar, C. I., Westfall, R. D., and Zebker, H. A.: Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR, The Cryosphere, 7, 1109–1119, https://doi.org/10.5194/tc-7-1109-2013, 2013.
Matsuoka, N.: Solifluction rates, processes and landforms: a global review,
Earth-Sci. Rev., 55, 107–134, https://doi.org/10.1016/S0012-8252(01)00057-5, 2001.
Matsuoka, N., Abe, M., and Ijiri, M.: Differential frost heave and sorted
patterned ground: field measurements and a laboratory experiment,
Geomorphology, 52, 73–85, https://doi.org/10.1016/S0169-555X(02)00249-0, 2003.
McKenzie, J. M. and Voss, C. I.: Permafrost thaw in a nested
groundwater-flow system, Hydrogeol. J., 21, 299–316, https://doi.org/10.1007/s10040-012-0942-3, 2013.
Messerli, B., Viviroli, D., and Weingartner, R.: Mountains of the World:
Vulnerable Water Towers for the 21st Century, AMBIO, 2004, 29–34, 2004.
Miehe, G., Miehe, S., Kaiser, K., Jianquan, L., and Zhao, X.: Status and
dynamics of the Kobresia pygmaea ecosystem on the Tibetan Plateau, AMBIO, 37, 272–280, https://doi.org/10.1579/0044-7447(2008)37[272:SADOTK]2.0.CO;2, 2008.
Müller, J., Vieli, A., and Gärtner-Roer, I.: Rock glaciers on the run – understanding rock glacier landform evolution and recent changes from numerical flow modeling, The Cryosphere, 10, 2865–2886, https://doi.org/10.5194/tc-10-2865-2016, 2016.
NAMORS: Meteorological Data for the NAMORS research station, 2010 to
2017, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Lhasa, available at: https://data.tpdc.ac.cn/en/data/4deeb2b4-4fc1-4c7c-b0c6-6263a547d53f/, last access: 4 May 2018.
Notti, D., Herrera, G., Bianchini, S., Meisina, C., García-Davalillo,
J. C., and Zucca, F.: A methodology for improving landslide PSI data
analysis, Int. J. Remote Sens., 35, 2186–2214,
https://doi.org/10.1080/01431161.2014.889864, 2014.
Osmanoğlu, B., Sunar, F., Wdowinski, S., and Cabral-Cano, E.: Time series
analysis of InSAR data: Methods and trends, ISPRS J. Photogramm., 115, 90–102, https://doi.org/10.1016/j.isprsjprs.2015.10.003, 2016.
Reinosch, E., Buckel, J., Dong, J., Gerke, M., Baade, J., and Riedel, B.: Surface displacement and velocity models at Lake NamCo (Tibetan Plateau) derived from Sentinel-1 data via InSAR time series analysis, PANGAEA, https://doi.org/10.1594/PANGAEA.907743, 2020.
Riseborough, D., Shiklomanov, N., Etzelmüller, B., Gruber, S., and
Marchenko, S.: Recent advances in permafrost modelling, Permafrost Periglac., 19, 137–156, https://doi.org/10.1002/ppp.615, 2008.
Rouyet, L., Lauknes, T. R., Christiansen, H. H., Strand, S. M., and Larsen,
Y.: Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard,
investigated by InSAR, Remote Sens. Environ., 231, 111236,
https://doi.org/10.1016/j.rse.2019.111236, 2019.
Schuur, E. A., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M.
R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Shur, Y., Hinkel, K. M., and Nelson, F. E.: The transient layer: implications
for geocryology and climate-change science, Permafrost Periglac., 16, 5–17, https://doi.org/10.1002/ppp.518, 2005.
Song, C., Huang, B., Ke, L., and Richards, K. S.: Seasonal and abrupt changes
in the water level of closed lakes on the Tibetan Plateau and implications
for climate impacts, J. Hydrol., 514, 131–144, https://doi.org/10.1016/j.jhydrol.2014.04.018, 2014.
Sowter, A., Bateson, L., Strange, P., Ambrose, K., and Syafiudin, M. F.:
DInSAR estimation of land motion using intermittent coherence with
application to the South Derbyshire and Leicestershire coalfields, Remote
Sens. Lett., 4, 979–987, https://doi.org/10.1080/2150704X.2013.823673, 2013.
Strozzi, T., Caduff, R., Jones, N., Barboux, C., Delaloye, R., Bodin, X.,
Kääb, A., Mätzler, E., and Schrott, L.: Monitoring Rock Glacier
Kinematics with Satellite Synthetic Aperture Radar, Remote Sens., 12,
559, https://doi.org/10.3390/rs12030559, 2020.
Tian, K., Liu, J., Kang, S., Campbell, I. B., Zhang, F., Zhang, Q., and Lu,
W.: Hydrothermal pattern of frozen soil in Nam Co lake basin, the Tibetan
Plateau, Environ. Geol., 57, 1775–1784, https://doi.org/10.1007/s00254-008-1462-2, 2009.
Wang, X., Liu, L., Zhao, L., Wu, T., Li, Z., and Liu, G.: Mapping and inventorying active rock glaciers in the northern Tien Shan of China using satellite SAR interferometry, The Cryosphere, 11, 997–1014, https://doi.org/10.5194/tc-11-997-2017, 2017.
Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D., and Roth, A.: Accuracy assessment of the global TanDEM-X
Digital Elevation Model with GPS data, ISPRS J. Photogramm., 139, 171–182, https://doi.org/10.1016/j.isprsjprs.2018.02.017, 2018.
Whalley, W. B. and Azizi, F.: Rock glaciers and protalus landforms:
Analogous forms and ice sources on Earth and Mars. J. Geophys.
Res.-Planet., 108, 8032, https://doi.org/10.1029/2002JE001864, 2003.
Wu, Q., Zhang, T., and Liu, Y.: Permafrost temperatures and thickness on the
Qinghai-Tibet Plateau, Global Planet. Change, 72, 32–38,
https://doi.org/10.1016/j.gloplacha.2010.03.001, 2010.
Yagüe-Martínez, N., Prats-Iraola, P., Gonzalez, F. R., Brcic, R.,
Shau, R., Geudtner, D., Eineder, M., and Bamler, R.: Interferometric
processing of Sentinel-1 TOPS data, IEEE T. Geosci.
Remote, 54, 2220–2234, https://doi.org/10.1109/TGRS.2015.2497902, 2016.
Yao, T., Liu, X., Wang, N., and Shi, Y.: Amplitude of climatic changes in
Qinghai-Tibetan Plateau, Chinese Sci. Bull., 45, 1236–1243,
https://doi.org/10.1007/BF02886087, 2000.
Yao, T., Pu, J., Lu, A., Wang, Y., and Yu, W.: Recent glacial retreat and its
impact on hydrological processes on the Tibetan Plateau, China, and
surrounding regions, Arct. Antarct. Alp. Res., 39, 642–650,
https://doi.org/10.1657/1523-0430(07-510)[YAO]2.0.CO;2, 2007.
Yao, T., Masson-Delmotte, V., Gao, J., Yu, W., Yang, X., Risi, C., Sturm,
C., Werner, M., Zhao, H., He, Y., Ren, W., Tian, L., Shi, C., and Hou, S.: A
review of climatic controls on δ18O in precipitation over the
Tibetan Plateau: Observations and simulations, Rev. Geophys., 51,
525–548, https://doi.org/10.1002/rog.20023, 2013.
Ye, Q., Zong, J., Tian, L., Cogley, J. G., Song, C., and Guo, W.: Glacier
changes on the Tibetan Plateau derived from Landsat imagery:
mid-1970s – 2000–13, J. Glaciol., 63, 273–287, https://doi.org/10.1017/jog.2016.137, 2017.
Yu, Z., Wu, G., Keys, L., Li, F., Yan, N., Qu, D., and Liu, X.: Seasonal
variation of chemical weathering and its controlling factors in two alpine
catchments, Nam Co basin, central Tibetan Plateau, J. Hydrol.,
576, 381–395, https://doi.org/10.1016/j.jhydrol.2019.06.042,
2019.
Zhang, G., Kang, S., Fujita, K., Huintjes, E., Xu, J., Yamazaki, T.,
Haginoya, S., Wei, Y., Scherer, D., Schneider, C., and Yao, T.: Energy and
mass balance of Zhadang glacier surface, central Tibetan Plateau, J.
Glaciol., 59, 137–148, https://doi.org/10.3189/2013JoG12J152, 2013.
Zhang, G., Li, J., and Zheng, G.: Lake-area mapping in the Tibetan Plateau:
an evaluation of data and methods, Int. J. Remote Sensing,
38, 742–772, https://doi.org/10.1080/01431161.2016.1271478,
2017.
Zhang, Y. and Michalowski, R. L.: Thermal-hydro-mechanical analysis of
frost heave and thaw settlement, J. Geotech.
Geoenviron., 141, 04015027, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001305, 2015.
Zhao, R., Li, Z. W., Feng, G. C., Wang, Q. J., and Hu, J.: Monitoring surface
deformation over permafrost with an improved SBAS-InSAR algorithm: With
emphasis on climatic factors modeling, Remote Sens. Environ., 184,
276–287, https://doi.org/10.1016/j.rse.2016.07.019, 2016.
Zhou, S., Kang, S., Chen, F., and Joswiak, D. R.: Water balance observations
reveal significant subsurface water seepage from Lake Nam Co, south-central
Tibetan Plateau, J. Hydrol., 491, 89–99, https://doi.org/10.1016/j.jhydrol.2013.03.030, 2013.
Zink, M., Bachmann, M., Bräutigam, B., Fritz, T., Hajnsek, I., Moreira,
A., Wessel, B., and Krieger, G.: TanDEM-X: The New Global DEM Takes Shape,
IEEE Geosci. Remote S., 2, 8–23, https://doi.org/10.1109/MGRS.2014.2318895, 2014.
Zou, D., Zhao, L., Sheng, Y., Chen, J., Hu, G., Wu, T., Wu, J., Xie, C., Wu, X., Pang, Q., Wang, W., Du, E., Li, W., Liu, G., Li, J., Qin, Y., Qiao, Y., Wang, Z., Shi, J., and Cheng, G.: A new map of permafrost distribution on the Tibetan Plateau, The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-2017, 2017.
Zwieback, S., Hensley, S., and Hajnsek, I.: Soil moisture estimation using
differential radar interferometry: Toward separating soil moisture and
displacements, IEEE T. Geoscience Remote, 55,
5069–5083, https://doi.org/10.1109/TGRS.2017.2702099, 2017.
Short summary
In this research we present the results of our satellite analysis of a permafrost landscape and periglacial landforms in mountainous regions on the Tibetan Plateau. We study seasonal and multiannual surface displacement processes, such as the freezing and thawing of the ground, seasonally accelerated sliding on steep slopes, and continuous permafrost creep. This study is the first step of our goal to create an inventory of actively moving landforms within the Nyainqêntanglha range.
In this research we present the results of our satellite analysis of a permafrost landscape and...