Articles | Volume 14, issue 3
https://doi.org/10.5194/tc-14-1067-2020
https://doi.org/10.5194/tc-14-1067-2020
Research article
 | 
24 Mar 2020
Research article |  | 24 Mar 2020

Ice island thinning: rates and model calibration with in situ observations from Baffin Bay, Nunavut

Anna J. Crawford, Derek Mueller, Gregory Crocker, Laurent Mingo, Luc Desjardins, Dany Dumont, and Marcel Babin

Related authors

A new 3D full-Stokes calving algorithm within Elmer/Ice (v9.0)
Iain Wheel, Douglas I. Benn, Anna J. Crawford, Joe A. Todd, and Thomas Zwinger
EGUsphere, https://doi.org/10.5194/egusphere-2023-2778,https://doi.org/10.5194/egusphere-2023-2778, 2024
Short summary
Rapid fragmentation of Thwaites Eastern Ice Shelf
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022,https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary
Brief communication: Thwaites Glacier cavity evolution
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Susheel Adusumilli, and Anna Crawford
The Cryosphere, 15, 3317–3328, https://doi.org/10.5194/tc-15-3317-2021,https://doi.org/10.5194/tc-15-3317-2021, 2021
Short summary

Related subject area

Discipline: Other | Subject: Ocean Interactions
Fjord circulation induced by melting icebergs
Kenneth G. Hughes
The Cryosphere, 18, 1315–1332, https://doi.org/10.5194/tc-18-1315-2024,https://doi.org/10.5194/tc-18-1315-2024, 2024
Short summary
Modeling seasonal-to-decadal ocean–cryosphere interactions along the Sabrina Coast, East Antarctica
Kazuya Kusahara, Daisuke Hirano, Masakazu Fujii, Alexander D. Fraser, Takeshi Tamura, Kohei Mizobata, Guy D. Williams, and Shigeru Aoki
The Cryosphere, 18, 43–73, https://doi.org/10.5194/tc-18-43-2024,https://doi.org/10.5194/tc-18-43-2024, 2024
Short summary
Impact of icebergs on the seasonal submarine melt of Sermeq Kujalleq
Karita Kajanto, Fiammetta Straneo, and Kerim Nisancioglu
The Cryosphere, 17, 371–390, https://doi.org/10.5194/tc-17-371-2023,https://doi.org/10.5194/tc-17-371-2023, 2023
Short summary
Reversal of ocean gyres near ice shelves in the Amundsen Sea caused by the interaction of sea ice and wind
Yixi Zheng, David P. Stevens, Karen J. Heywood, Benjamin G. M. Webber, and Bastien Y. Queste
The Cryosphere, 16, 3005–3019, https://doi.org/10.5194/tc-16-3005-2022,https://doi.org/10.5194/tc-16-3005-2022, 2022
Short summary
Impact of freshwater runoff from the southwest Greenland Ice Sheet on fjord productivity since the late 19th century
Mimmi Oksman, Anna Bang Kvorning, Signe Hillerup Larsen, Kristian Kjellerup Kjeldsen, Kenneth David Mankoff, William Colgan, Thorbjørn Joest Andersen, Niels Nørgaard-Pedersen, Marit-Solveig Seidenkrantz, Naja Mikkelsen, and Sofia Ribeiro
The Cryosphere, 16, 2471–2491, https://doi.org/10.5194/tc-16-2471-2022,https://doi.org/10.5194/tc-16-2471-2022, 2022
Short summary

Cited articles

Abramoff, M. D., Magalhaes, P. J., and Ram, S. J.: Image processing with ImageJ, Biophotonics Int., 11, 36–42, 2004. 
Amundsen Science Data Collection: CTD data collected by the CCGS Amundsen in the Canadian Arctic, Processed data, Version 3, Archived at https://www.polardata.ca/, last access: 18 October 2016. 
Amundsen Science Data Collection: CTD data collected by the CCGS Amundsen in the Canadian Arctic. ArcticNet Inc., Québec, Canada, Processed data, Version 1, Canadian Cryospheric Information Network (CCIN), Waterloo, Canada, https://doi.org/10.5884/12713, 2019. 
Ballicater Consulting: Ice Island and Iceberg Studies 2012, Canadian Ice Service, Environment Can., Ottawa, Ont., Contract Report, 73 pp., 2012. 
Barker, A., Sayed, M., and Carrieres, T.: Determination of iceberg draft, mass and cross-sectional areas, in: Proceedings of the 14th International Offshore and Polar Engineering Conference, Toulon, France, 23–28 May 2004, 1–6, 2004. 
Download
Short summary
Large tabular icebergs (ice islands) are symbols of climate change as well as marine hazards. We measured thickness along radar transects over two visits to a 14 km2 Arctic ice island and left automated equipment to monitor surface ablation and thickness over 1 year. We assess variation in thinning rates and calibrate an ice–ocean melt model with field data. Our work contributes to understanding ice island deterioration via logistically complex fieldwork in a remote environment.