Articles | Volume 13, issue 12
https://doi.org/10.5194/tc-13-3353-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-3353-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Validating modeled critical crack length for crack propagation in the snow cover model SNOWPACK
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Jürg Schweizer
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Mathias W. Rotach
Institute for Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
Alec van Herwijnen
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Related authors
Stephanie Mayer, Martin Hendrick, Adrien Michel, Bettina Richter, Jürg Schweizer, Heini Wernli, and Alec van Herwijnen
The Cryosphere, 18, 5495–5517, https://doi.org/10.5194/tc-18-5495-2024, https://doi.org/10.5194/tc-18-5495-2024, 2024
Short summary
Short summary
Understanding the impact of climate change on snow avalanche activity is crucial for safeguarding lives and infrastructure. Here, we project changes in avalanche activity in the Swiss Alps throughout the 21st century. Our findings reveal elevation-dependent patterns of change, indicating a decrease in dry-snow avalanches alongside an increase in wet-snow avalanches at elevations above the current treeline. These results underscore the necessity to revisit measures for avalanche risk mitigation.
Jürg Schweizer, Benjamin Reuter, Alec van Herwijnen, Bettina Richter, and Johan Gaume
The Cryosphere, 10, 2637–2653, https://doi.org/10.5194/tc-10-2637-2016, https://doi.org/10.5194/tc-10-2637-2016, 2016
Stephanie Mayer, Martin Hendrick, Adrien Michel, Bettina Richter, Jürg Schweizer, Heini Wernli, and Alec van Herwijnen
The Cryosphere, 18, 5495–5517, https://doi.org/10.5194/tc-18-5495-2024, https://doi.org/10.5194/tc-18-5495-2024, 2024
Short summary
Short summary
Understanding the impact of climate change on snow avalanche activity is crucial for safeguarding lives and infrastructure. Here, we project changes in avalanche activity in the Swiss Alps throughout the 21st century. Our findings reveal elevation-dependent patterns of change, indicating a decrease in dry-snow avalanches alongside an increase in wet-snow avalanches at elevations above the current treeline. These results underscore the necessity to revisit measures for avalanche risk mitigation.
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024, https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Short summary
Glide-snow avalanches release at the ground–snow interface, and their release process is poorly understood. To investigate the influence of spatial variability (snowpack and basal friction) on avalanche release, we developed a 3D, mechanical, threshold-based model that reproduces an observed release area distribution. A sensitivity analysis showed that the distribution was mostly influenced by the basal friction uniformity, while the variations in snowpack properties had little influence.
Amelie Fees, Michael Lombardo, Alec van Herwijnen, Peter Lehmann, and Jürg Schweizer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2485, https://doi.org/10.5194/egusphere-2024-2485, 2024
Short summary
Short summary
Glide-snow avalanches release at the soil-snow interface due to a loss of friction which is suspected to be linked to interfacial water. The importance of the interfacial water was investigated with a spatio-temporal soil and local snow monitoring setup in an avalanche-prone slope. Seven glide-snow avalanches released on the monitoring grid (season 2021/22 to 2023/24) and provided insights into the source, quantity, and spatial distribution of interfacial water before avalanche release.
Philipp L. Rosendahl, Johannes Schneider, Grégoire Bobillier, Florian Rheinschmidt, Bastian Bergfeld, Alec van Herwijnen, and Philipp Weißgraeber
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-122, https://doi.org/10.5194/nhess-2024-122, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
Our research investigates the role of anticracks in snowpacks and their impact on avalanche formation, focusing on anticracks due to weak layer collapse. We discovered that slab touchdown on the snow below the weak layer decreases the energy available for crack propagation, potentially leading to a stop of crack propagation. This underscores the importance of mechanical interactions in snowpack stability. Our work offers new insights for enhancing avalanche prediction and mitigation strategies.
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2374, https://doi.org/10.5194/egusphere-2024-2374, 2024
Short summary
Short summary
This study assesses the performance and explainability of a random forest classifier for predicting dry-snow avalanche danger levels during initial live-testing. The model achieved ∼70 % agreement with human forecasts, performing equally well in nowcast and forecast modes, while capturing the temporal dynamics of avalanche forecasting. The explainability approach enhances the transparency of the model's decision-making process, providing a valuable tool for operational avalanche forecasting.
Jan Svoboda, Marc Ruesch, David Liechti, Corinne Jones, Michele Volpi, Michael Zehnder, and Jürg Schweizer
EGUsphere, https://doi.org/10.5194/egusphere-2024-1752, https://doi.org/10.5194/egusphere-2024-1752, 2024
Short summary
Short summary
Accurately measuring snow height is key for modeling approaches in climate sciences, snow hydrology and avalanche forecasting. Erroneous snow height measurements often occur when the snow height is low or changes, for instance, during a snowfall in the summer. We prepare a new benchmark dataset with annotated snow height data and demonstrate how to improve the measurement quality using modern deep learning approaches. Our approach can be easily implemented into a data pipeline for snow modeling.
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510, https://doi.org/10.5194/egusphere-2024-1510, 2024
Short summary
Short summary
Understanding snowpack wetness is crucial for predicting wet snow avalanches, but detailed data is often limited to certain locations. Using satellite radar, we monitor snow wetness spatially continuously. By combining different radar tracks from Sentinel-1, we improved spatial resolution and tracked snow wetness over several seasons. Our results indicate higher snow wetness to correlate with increased wet snow avalanche activity, suggesting our method can help identify potential risk areas.
Andri Simeon, Cristina Pérez-Guillén, Michele Volpi, Christine Seupel, and Alec van Herwijnen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-76, https://doi.org/10.5194/gmd-2024-76, 2024
Revised manuscript under review for GMD
Short summary
Short summary
Avalanche seismic detection systems are key for forecasting, but distinguishing avalanches from other seismic sources remains challenging. We propose novel autoencoder models to automatically extract features and compare them with standard seismic attributes. These features are then used to classify avalanches and noise events. The autoencoder feature classifiers have the highest sensitivity to detect avalanches, while the standard seismic classifier performs better overall.
Grégoire Bobillier, Bertil Trottet, Bastian Bergfeld, Ron Simenhois, Alec van Herwijnen, Jürg Schweizer, and Johan Gaume
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-70, https://doi.org/10.5194/nhess-2024-70, 2024
Preprint under review for NHESS
Short summary
Short summary
Our study focuses on the initiation process of snow slab avalanches. By combining experimental data and numerical simulations, we show that on gentle slopes, a crack forms and propagates due to compression fracture within a weak layer, and on steep slopes, the crack velocity can increase dramatically after about 5 meters due to a fracture mode transition (compression to shear). Understanding these dynamics represents an essential additional piece in the dry-snow slab avalanche formation puzzle.
Bastian Bergfeld, Karl W. Birkeland, Valentin Adam, Philipp L. Rosendahl, and Alec van Herwijnen
EGUsphere, https://doi.org/10.5194/egusphere-2024-690, https://doi.org/10.5194/egusphere-2024-690, 2024
Short summary
Short summary
To release a slab avalanche, a crack in a weak snow layer beneath a cohesive slab has to propagate. Information on that is essential for assessing avalanche risk. In the field, information can be gathered with the Propagation Saw Test (PST). However, there are different standards on how to cut the PST. In this study, we experimentally investigate the effect of these different column geometries and provide models to correct for imprecise field test geometry effects on the critical cut length.
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023, https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Short summary
We present statistical models to estimate the probability for natural dry-snow avalanche release and avalanche size based on the simulated layering of the snowpack. The benefit of these models is demonstrated in comparison with benchmark models based on the amount of new snow. From the validation with data sets of quality-controlled avalanche observations and danger levels, we conclude that these models may be valuable tools to support forecasting natural dry-snow avalanche activity.
Matthias Göbel, Stefano Serafin, and Mathias W. Rotach
Weather Clim. Dynam., 4, 725–745, https://doi.org/10.5194/wcd-4-725-2023, https://doi.org/10.5194/wcd-4-725-2023, 2023
Short summary
Short summary
On summer days over mountains, upslope winds transport moist air towards mountain tops and beyond, making local rain showers more likely. We use idealized simulations to investigate how mountain steepness affects this mechanism. We find that steeper mountains lead to a delayed onset and lower intensity of the storms, because less moisture accumulates over the ridges and the thermal updraft zone at the top is narrower and thus more prone to the intrusion of dry air from the environment.
Mathieu Le Breton, Éric Larose, Laurent Baillet, Yves Lejeune, and Alec van Herwijnen
The Cryosphere, 17, 3137–3156, https://doi.org/10.5194/tc-17-3137-2023, https://doi.org/10.5194/tc-17-3137-2023, 2023
Short summary
Short summary
We monitor the amount of snow on the ground using passive radiofrequency identification (RFID) tags. These small and inexpensive tags are wirelessly read by a stationary reader placed above the snowpack. Variations in the radiofrequency phase delay accurately reflect variations in snow amount, known as snow water equivalent. Additionally, each tag is equipped with a sensor that monitors the snow temperature.
Hetal P. Dabhi, Mathias W. Rotach, and Michael Oberguggenberger
Hydrol. Earth Syst. Sci., 27, 2123–2147, https://doi.org/10.5194/hess-27-2123-2023, https://doi.org/10.5194/hess-27-2123-2023, 2023
Short summary
Short summary
Spatiotemporally consistent high-resolution precipitation data on climate are needed for climate change impact assessments, but obtaining these data is challenging for areas with complex topography. We present a model that generates synthetic gridded daily precipitation data at a 1 km spatial resolution using observed meteorological station data as input, thereby providing data where historical observations are unavailable. We evaluate this model for a mountainous region in the European Alps.
Bastian Bergfeld, Alec van Herwijnen, Grégoire Bobillier, Philipp L. Rosendahl, Philipp Weißgraeber, Valentin Adam, Jürg Dual, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 23, 293–315, https://doi.org/10.5194/nhess-23-293-2023, https://doi.org/10.5194/nhess-23-293-2023, 2023
Short summary
Short summary
For a slab avalanche to release, the snowpack must facilitate crack propagation over large distances. Field measurements on crack propagation at this scale are very scarce. We performed a series of experiments, up to 10 m long, over a period of 10 weeks. Beside the temporal evolution of the mechanical properties of the snowpack, we found that crack speeds were highest for tests resulting in full propagation. Based on these findings, an index for self-sustained crack propagation is proposed.
Stephanie Mayer, Alec van Herwijnen, Frank Techel, and Jürg Schweizer
The Cryosphere, 16, 4593–4615, https://doi.org/10.5194/tc-16-4593-2022, https://doi.org/10.5194/tc-16-4593-2022, 2022
Short summary
Short summary
Information on snow instability is crucial for avalanche forecasting. We introduce a novel machine-learning-based method to assess snow instability from snow stratigraphy simulated with the snow cover model SNOWPACK. To develop the model, we compared observed and simulated snow profiles. Our model provides a probability of instability for every layer of a simulated snow profile, which allows detection of the weakest layer and assessment of its degree of instability with one single index.
Cornelius Immanuel Weiß, Alexander Gohm, Mathias Walter Rotach, and Thomas Torora Minda
Weather Clim. Dynam., 3, 1003–1019, https://doi.org/10.5194/wcd-3-1003-2022, https://doi.org/10.5194/wcd-3-1003-2022, 2022
Short summary
Short summary
Two gap flow events in the Great Rift Valley in Ethiopia were investigated based on observations, ERA5 reanalysis data, and simulations with the numerical weather prediction model WRF. The main focus was on strong winds in the area around Lake Abaya since the winds may generate waves on the lake which help to sustain the lake's ecology. That is important in terms of food supply for the local population. The gap winds exhibit a diurnal cycle and a seasonal dependence.
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022, https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
Short summary
A fully data-driven approach to predicting the danger level for dry-snow avalanche conditions in Switzerland was developed. Two classifiers were trained using a large database of meteorological data, snow cover simulations, and danger levels. The models performed well throughout the Swiss Alps, reaching a performance similar to the current experience-based avalanche forecasts. This approach shows the potential to be a valuable supplementary decision support tool for assessing avalanche hazard.
Helen Claire Ward, Mathias Walter Rotach, Alexander Gohm, Martin Graus, Thomas Karl, Maren Haid, Lukas Umek, and Thomas Muschinski
Atmos. Chem. Phys., 22, 6559–6593, https://doi.org/10.5194/acp-22-6559-2022, https://doi.org/10.5194/acp-22-6559-2022, 2022
Short summary
Short summary
This study examines how cities and their surroundings influence turbulent exchange processes responsible for weather and climate. Analysis of a 4-year observational dataset for the Alpine city of Innsbruck reveals several similarities with other (flat) city centre sites. However, the mountain setting leads to characteristic daily and seasonal flow patterns (valley winds) and downslope windstorms that have a marked effect on temperature, wind speed, turbulence and pollutant concentration.
Achille Capelli, Franziska Koch, Patrick Henkel, Markus Lamm, Florian Appel, Christoph Marty, and Jürg Schweizer
The Cryosphere, 16, 505–531, https://doi.org/10.5194/tc-16-505-2022, https://doi.org/10.5194/tc-16-505-2022, 2022
Short summary
Short summary
Snow occurrence, snow amount, snow density and liquid water content (LWC) can vary considerably with climatic conditions and elevation. We show that low-cost Global Navigation Satellite System (GNSS) sensors as GPS can be used for reliably measuring the amount of water stored in the snowpack or snow water equivalent (SWE), snow depth and the LWC under a broad range of climatic conditions met at different elevations in the Swiss Alps.
Matthias Göbel, Stefano Serafin, and Mathias W. Rotach
Geosci. Model Dev., 15, 669–681, https://doi.org/10.5194/gmd-15-669-2022, https://doi.org/10.5194/gmd-15-669-2022, 2022
Short summary
Short summary
We present WRFlux, an open-source software that allows numerically consistent, time-averaged budget evaluation of prognostic variables for the numerical weather prediction model WRF as well as the transformation of the budget equations from the terrain-following grid of the model to the Cartesian coordinate system. We demonstrate the performance and a possible application of WRFlux and illustrate the detrimental effects of approximations that are inconsistent with the model numerics.
Antoine Guillemot, Alec van Herwijnen, Eric Larose, Stephanie Mayer, and Laurent Baillet
The Cryosphere, 15, 5805–5817, https://doi.org/10.5194/tc-15-5805-2021, https://doi.org/10.5194/tc-15-5805-2021, 2021
Short summary
Short summary
Ambient noise correlation is a broadly used method in seismology to monitor tiny changes in subsurface properties. Some environmental forcings may influence this method, including snow. During one winter season, we studied this snow effect on seismic velocity of the medium, recorded by a pair of seismic sensors. We detected and modeled a measurable effect during early snowfalls: the fresh new snow layer modifies rigidity and density of the medium, thus decreasing the recorded seismic velocity.
Nora Helbig, Michael Schirmer, Jan Magnusson, Flavia Mäder, Alec van Herwijnen, Louis Quéno, Yves Bühler, Jeff S. Deems, and Simon Gascoin
The Cryosphere, 15, 4607–4624, https://doi.org/10.5194/tc-15-4607-2021, https://doi.org/10.5194/tc-15-4607-2021, 2021
Short summary
Short summary
The snow cover spatial variability in mountains changes considerably over the course of a snow season. In applications such as weather, climate and hydrological predictions the fractional snow-covered area is therefore an essential parameter characterizing how much of the ground surface in a grid cell is currently covered by snow. We present a seasonal algorithm and a spatiotemporal evaluation suggesting that the algorithm can be applied in other geographic regions by any snow model application.
Bastian Bergfeld, Alec van Herwijnen, Benjamin Reuter, Grégoire Bobillier, Jürg Dual, and Jürg Schweizer
The Cryosphere, 15, 3539–3553, https://doi.org/10.5194/tc-15-3539-2021, https://doi.org/10.5194/tc-15-3539-2021, 2021
Short summary
Short summary
The modern picture of the snow slab avalanche release process involves a
dynamic crack propagation phasein which a whole slope becomes detached. The present work contains the first field methodology which provides the temporal and spatial resolution necessary to study this phase. We demonstrate the versatile capabilities and accuracy of our method by revealing intricate dynamics and present how to determine relevant characteristics of crack propagation such as crack speed.
Jürg Schweizer, Christoph Mitterer, Benjamin Reuter, and Frank Techel
The Cryosphere, 15, 3293–3315, https://doi.org/10.5194/tc-15-3293-2021, https://doi.org/10.5194/tc-15-3293-2021, 2021
Short summary
Short summary
Snow avalanches threaten people and infrastructure in snow-covered mountain regions. To mitigate the effects of avalanches, warnings are issued by public forecasting services. Presently, the five danger levels are described in qualitative terms. We aim to characterize the avalanche danger levels based on expert field observations of snow instability. Our findings contribute to an evidence-based description of danger levels and to improve consistency and accuracy of avalanche forecasts.
Johannes Horak, Marlis Hofer, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Geosci. Model Dev., 14, 1657–1680, https://doi.org/10.5194/gmd-14-1657-2021, https://doi.org/10.5194/gmd-14-1657-2021, 2021
Short summary
Short summary
This process-based evaluation of the atmospheric model ICAR is conducted to derive recommendations to increase the likelihood of its results being correct for the right reasons. We conclude that a different diagnosis of the atmospheric background state is necessary, as well as a model top at an elevation of at least 10 km. Alternative boundary conditions at the top were not found to be effective in reducing this model top elevation. The results have wide implications for future ICAR studies.
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361, https://doi.org/10.5194/nhess-21-339-2021, https://doi.org/10.5194/nhess-21-339-2021, 2021
Short summary
Short summary
Mass movements constitute a risk to property and human life. In this study we use machine learning to automatically detect and classify slope failure events using ground vibrations. We explore the influence of non-ideal though commonly encountered conditions: poor network coverage, small number of events, and low signal-to-noise ratios. Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million windowed seismic signals.
Bettina Richter, Alec van Herwijnen, Mathias W. Rotach, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 20, 2873–2888, https://doi.org/10.5194/nhess-20-2873-2020, https://doi.org/10.5194/nhess-20-2873-2020, 2020
Short summary
Short summary
We investigated the sensitivity of modeled snow instability to uncertainties in meteorological input, typically found in complex terrain. The formation of the weak layer was very robust due to the long dry period, indicated by a widespread avalanche problem. Once a weak layer has formed, precipitation mostly determined slab and weak layer properties and hence snow instability. When spatially assessing snow instability for avalanche forecasting, accurate precipitation patterns have to be known.
Frank Techel, Karsten Müller, and Jürg Schweizer
The Cryosphere, 14, 3503–3521, https://doi.org/10.5194/tc-14-3503-2020, https://doi.org/10.5194/tc-14-3503-2020, 2020
Short summary
Short summary
Exploring a large data set of snow stability tests and avalanche observations, we quantitatively describe the three key elements that characterize avalanche danger: snowpack stability, the frequency distribution of snowpack stability, and avalanche size. The findings will aid in refining the definitions of the avalanche danger scale and in fostering its consistent usage.
Louis Quéno, Charles Fierz, Alec van Herwijnen, Dylan Longridge, and Nander Wever
The Cryosphere, 14, 3449–3464, https://doi.org/10.5194/tc-14-3449-2020, https://doi.org/10.5194/tc-14-3449-2020, 2020
Short summary
Short summary
Deep ice layers may form in the snowpack due to preferential water flow with impacts on the snowpack mechanical, hydrological and thermodynamical properties. We studied their formation and evolution at a high-altitude alpine site, combining a comprehensive observation dataset at a daily frequency (with traditional snowpack observations, penetration resistance and radar measurements) and detailed snowpack modeling, including a new parameterization of ice formation in the 1-D SNOWPACK model.
Frank Techel, Kurt Winkler, Matthias Walcher, Alec van Herwijnen, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 20, 1941–1953, https://doi.org/10.5194/nhess-20-1941-2020, https://doi.org/10.5194/nhess-20-1941-2020, 2020
Short summary
Short summary
Snow instability tests, like the extended column test (ECT), provide valuable information regarding point snow instability. A large data set of ECT – together with information on slope instability – was explored. The findings clearly show that combining information regarding propagation propensity and fracture initiation provided the best correlation with slope instability. A new four-class stability interpretation scheme is proposed for ECT results.
Neige Calonne, Bettina Richter, Henning Löwe, Cecilia Cetti, Judith ter Schure, Alec Van Herwijnen, Charles Fierz, Matthias Jaggi, and Martin Schneebeli
The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020, https://doi.org/10.5194/tc-14-1829-2020, 2020
Short summary
Short summary
During winter 2015–2016, the standard program to monitor the structure and stability of the snowpack at Weissflujoch, Swiss Alps, was complemented by additional measurements to compare between various traditional and newly developed techniques. Snow micro-penetrometer measurements allowed monitoring of the evolution of the snowpack's internal structure at a daily resolution throughout the winter. We show the potential of such high-resolution data for detailed evaluations of snowpack models.
Emanuele Marchetti, Alec van Herwijnen, Marc Christen, Maria Cristina Silengo, and Giulia Barfucci
Earth Surf. Dynam., 8, 399–411, https://doi.org/10.5194/esurf-8-399-2020, https://doi.org/10.5194/esurf-8-399-2020, 2020
Short summary
Short summary
We present infrasonic and seismic array data of a powder snow avalanche, that was released on 5 February 2016, in the Dischma valley nearby Davos, Switzerland. Combining information derived from both arrays, we show how infrasound and seismic energy are radiated from different sources acting along the path. Moreover, infrasound transmits to the ground and affects the recorded seismic signal. Results highlight the benefits of combined seismo-acoustic array analyses for monitoring and research.
Jürg Schweizer, Christoph Mitterer, Frank Techel, Andreas Stoffel, and Benjamin Reuter
The Cryosphere, 14, 737–750, https://doi.org/10.5194/tc-14-737-2020, https://doi.org/10.5194/tc-14-737-2020, 2020
Short summary
Short summary
Snow avalanches represent a major natural hazard in seasonally snow-covered mountain regions around the world. To avoid periods and locations of high hazard, avalanche warnings are issued by public authorities. In these bulletins, the hazard is characterized by a danger level. Since the danger levels are not well defined, we analyzed a large data set of avalanches to improve the description. Our findings show discrepancies in present usage of the danger scale and show ways to improve the scale.
Grégoire Bobillier, Bastian Bergfeld, Achille Capelli, Jürg Dual, Johan Gaume, Alec van Herwijnen, and Jürg Schweizer
The Cryosphere, 14, 39–49, https://doi.org/10.5194/tc-14-39-2020, https://doi.org/10.5194/tc-14-39-2020, 2020
Christian Mallaun, Andreas Giez, Georg J. Mayr, and Mathias W. Rotach
Atmos. Chem. Phys., 19, 9769–9786, https://doi.org/10.5194/acp-19-9769-2019, https://doi.org/10.5194/acp-19-9769-2019, 2019
Short summary
Short summary
This study presents airborne measurements in shallow convection over land to investigate the dynamic properties of clouds focusing on possible narrow downdraughts in the surrounding of the clouds. A characteristic narrow downdraught region (
subsiding shell) is found directly outside the cloud borders for the mean vertical wind distribution. The
subsiding shellresults from the distribution of the highly variable updraughts and downdraughts in the near vicinity of the cloud.
Johannes Horak, Marlis Hofer, Fabien Maussion, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Hydrol. Earth Syst. Sci., 23, 2715–2734, https://doi.org/10.5194/hess-23-2715-2019, https://doi.org/10.5194/hess-23-2715-2019, 2019
Short summary
Short summary
This study presents an in-depth evaluation of the Intermediate Complexity Atmospheric Research (ICAR) model for high-resolution precipitation fields in complex topography. ICAR is evaluated with data from weather stations located in the Southern Alps of New Zealand. While ICAR underestimates rainfall amounts, it clearly improves over a coarser global model and shows potential to generate precipitation fields for long-term impact studies focused on the local impact of a changing global climate.
Matthias Heck, Alec van Herwijnen, Conny Hammer, Manuel Hobiger, Jürg Schweizer, and Donat Fäh
Earth Surf. Dynam., 7, 491–503, https://doi.org/10.5194/esurf-7-491-2019, https://doi.org/10.5194/esurf-7-491-2019, 2019
Short summary
Short summary
We used continuous seismic data from two small aperture geophone arrays deployed in the region above Davos in the eastern Swiss Alps to develop a machine learning workflow to automatically identify signals generated by snow avalanches. Our results suggest that the method presented could be used to identify major avalanche periods and highlight the importance of array processing techniques for the automatic classification of avalanches in seismic data.
Matthias Heck, Conny Hammer, Alec van Herwijnen, Jürg Schweizer, and Donat Fäh
Nat. Hazards Earth Syst. Sci., 18, 383–396, https://doi.org/10.5194/nhess-18-383-2018, https://doi.org/10.5194/nhess-18-383-2018, 2018
Short summary
Short summary
In this study we use hidden Markov models, a machine learning algorithm to automatically identify avalanche events in a continuous seismic data set recorded during the winter 2010. With additional post processing steps, we detected around 70 avalanche events. Although not every detection could be confirmed as an avalanche, we clearly identified the two main avalanche periods of the winter season 2010 in our classification results.
Johan Gaume, Alec van Herwijnen, Guillaume Chambon, Nander Wever, and Jürg Schweizer
The Cryosphere, 11, 217–228, https://doi.org/10.5194/tc-11-217-2017, https://doi.org/10.5194/tc-11-217-2017, 2017
Short summary
Short summary
Based on DEM simulations we developed a new model for the onset of crack propagation in snow slab avalanche release. The model reconciles past approaches by considering the complex interplay between slab elasticity and the mechanical behavior of the weak layer including its structural collapse. The model agrees with extensive field data and can reproduce crack propagation on low-angle terrain and the decrease in critical crack length with increasing slope angle observed in numerical experiments.
Jürg Schweizer, Benjamin Reuter, Alec van Herwijnen, Bettina Richter, and Johan Gaume
The Cryosphere, 10, 2637–2653, https://doi.org/10.5194/tc-10-2637-2016, https://doi.org/10.5194/tc-10-2637-2016, 2016
Daniel Leukauf, Alexander Gohm, and Mathias W. Rotach
Atmos. Chem. Phys., 16, 13049–13066, https://doi.org/10.5194/acp-16-13049-2016, https://doi.org/10.5194/acp-16-13049-2016, 2016
Short summary
Short summary
Since populated valleys suffer often from poor air quality, it is of interest to better understand the various mechanisms relevant to remove pollutants from the valley atmosphere. One mechanism is the transport by along-slope flows, which are generated during fair-weather days. In this study we quantify the amount of tracer that is removed from a valley atmosphere and the amount that is re-circulated within the valleys. For this study we are using the numerical weather model WRF.
Fabiano Monti, Johan Gaume, Alec van Herwijnen, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 16, 775–788, https://doi.org/10.5194/nhess-16-775-2016, https://doi.org/10.5194/nhess-16-775-2016, 2016
Short summary
Short summary
We propose a new approach based on a simplification of the multi-layered elasticity theory in order to easily compute the additional stress due to a skier at the depth of the weak layer, taking into account the layering of the snow slab and the substratum. The method was tested on simplified snow profiles, then on manually observed snow profiles including a stability test and, finally, on simulated snow profiles, thereby showing the promise of our approach.
N. Kljun, P. Calanca, M. W. Rotach, and H. P. Schmid
Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, https://doi.org/10.5194/gmd-8-3695-2015, 2015
Short summary
Short summary
Flux footprint models describe the surface area of influence of a flux measurement. They are used for designing flux tower sites, and for interpretation of flux measurements. The two-dimensional footprint parameterisation (FFP) presented here is suitable for processing large data sets, and, unlike other fast footprint models, FFP is applicable to daytime or night-time measurements, fluxes from short masts over grassland to tall towers over mature forests, and even to airborne flux measurements.
J. Gaume, A. van Herwijnen, G. Chambon, K. W. Birkeland, and J. Schweizer
The Cryosphere, 9, 1915–1932, https://doi.org/10.5194/tc-9-1915-2015, https://doi.org/10.5194/tc-9-1915-2015, 2015
Short summary
Short summary
We proposed a new approach to characterize the dynamic phase of crack propagation in weak snowpack layers as well as fracture arrest propensity by means of numerical "propagation saw test" simulations based on the discrete element method. Crack propagation speed and distance before fracture arrest were derived from the simulations for different snowpack configurations and mechanical properties. Numerical and experimental results were compared and the mechanical processes at play were discussed.
G. Massaro, I. Stiperski, B. Pospichal, and M. W. Rotach
Atmos. Meas. Tech., 8, 3355–3367, https://doi.org/10.5194/amt-8-3355-2015, https://doi.org/10.5194/amt-8-3355-2015, 2015
J. S. Wagner, A. Gohm, and M. W. Rotach
Atmos. Chem. Phys., 15, 6589–6603, https://doi.org/10.5194/acp-15-6589-2015, https://doi.org/10.5194/acp-15-6589-2015, 2015
B. Reuter, J. Schweizer, and A. van Herwijnen
The Cryosphere, 9, 837–847, https://doi.org/10.5194/tc-9-837-2015, https://doi.org/10.5194/tc-9-837-2015, 2015
Short summary
Short summary
We present a novel approach to estimate point snow instability based on snow mechanical properties from snow micro-penetrometer measurements. This is the first approach that takes into account the essential processes involved in dry-snow slab avalanche release: failure initiation and crack propagation. Comparison with field observations confirms that the two-step calculation of a stability criterion and a critical crack length is suited to describe point snow instability.
J. Gaume, G. Chambon, N. Eckert, M. Naaim, and J. Schweizer
The Cryosphere, 9, 795–804, https://doi.org/10.5194/tc-9-795-2015, https://doi.org/10.5194/tc-9-795-2015, 2015
Short summary
Short summary
Slab tensile failure propensity is examined using a mechanical--statistical model of the slab–-weak layer (WL) system based on the finite element method. This model accounts for WL heterogeneity, stress redistribution by elasticity of the slab and the slab possible tensile failure. For realistic values of the parameters, the tensile failure propensity is mainly driven by slab properties. Hard and thick snow slabs are more prone to wide–scale crack propagation and thus lead to larger avalanches.
M. Stähli, M. Sättele, C. Huggel, B. W. McArdell, P. Lehmann, A. Van Herwijnen, A. Berne, M. Schleiss, A. Ferrari, A. Kos, D. Or, and S. M. Springman
Nat. Hazards Earth Syst. Sci., 15, 905–917, https://doi.org/10.5194/nhess-15-905-2015, https://doi.org/10.5194/nhess-15-905-2015, 2015
Short summary
Short summary
This review paper describes the state of the art in monitoring and predicting rapid mass movements for early warning. It further presents recent innovations in observation technologies and modelling to be used in future early warning systems (EWS). Finally, the paper proposes avenues towards successful implementation of next-generation EWS.
N. Helbig, A. van Herwijnen, J. Magnusson, and T. Jonas
Hydrol. Earth Syst. Sci., 19, 1339–1351, https://doi.org/10.5194/hess-19-1339-2015, https://doi.org/10.5194/hess-19-1339-2015, 2015
J. Schweizer and B. Reuter
Nat. Hazards Earth Syst. Sci., 15, 109–118, https://doi.org/10.5194/nhess-15-109-2015, https://doi.org/10.5194/nhess-15-109-2015, 2015
E. H. Bair, R. Simenhois, A. van Herwijnen, and K. Birkeland
The Cryosphere, 8, 1407–1418, https://doi.org/10.5194/tc-8-1407-2014, https://doi.org/10.5194/tc-8-1407-2014, 2014
K. Zink, A. Pauling, M. W. Rotach, H. Vogel, P. Kaufmann, and B. Clot
Geosci. Model Dev., 6, 1961–1975, https://doi.org/10.5194/gmd-6-1961-2013, https://doi.org/10.5194/gmd-6-1961-2013, 2013
I. Reiweger and J. Schweizer
The Cryosphere, 7, 1447–1453, https://doi.org/10.5194/tc-7-1447-2013, https://doi.org/10.5194/tc-7-1447-2013, 2013
C. Mitterer and J. Schweizer
The Cryosphere, 7, 205–216, https://doi.org/10.5194/tc-7-205-2013, https://doi.org/10.5194/tc-7-205-2013, 2013
Related subject area
Discipline: Snow | Subject: Natural Hazards
Impact of climate change on snow avalanche activity in the Swiss Alps
Interactive snow avalanche segmentation from webcam imagery: results, potential, and limitations
Snow mechanical property variability at the slope scale – implication for snow mechanical modelling
Combining modelled snowpack stability with machine learning to predict avalanche activity
Can Saharan dust deposition impact snowpack stability in the French Alps?
A closed-form model for layered snow slabs
A random forest model to assess snow instability from simulated snow stratigraphy
Using snow depth observations to provide insight into the quality of snowpack simulations for regional-scale avalanche forecasting
Snow Avalanche Frequency Estimation (SAFE): 32 years of monitoring remote avalanche depositional zones in high mountains of Afghanistan
Brief communication: Weak control of snow avalanche deposit volumes by avalanche path morphology
Elevation-dependent trends in extreme snowfall in the French Alps from 1959 to 2019
Dynamic crack propagation in weak snowpack layers: insights from high-resolution, high-speed photography
Avalanche danger level characteristics from field observations of snow instability
Using avalanche problems to examine the effect of large-scale atmosphere–ocean oscillations on avalanche hazard in western Canada
On the importance of snowpack stability, the frequency distribution of snowpack stability, and avalanche size in assessing the avalanche danger level
The mechanical origin of snow avalanche dynamics and flow regime transitions
On the relation between avalanche occurrence and avalanche danger level
Where are the avalanches? Rapid SPOT6 satellite data acquisition to map an extreme avalanche period over the Swiss Alps
Cold-to-warm flow regime transition in snow avalanches
Stephanie Mayer, Martin Hendrick, Adrien Michel, Bettina Richter, Jürg Schweizer, Heini Wernli, and Alec van Herwijnen
The Cryosphere, 18, 5495–5517, https://doi.org/10.5194/tc-18-5495-2024, https://doi.org/10.5194/tc-18-5495-2024, 2024
Short summary
Short summary
Understanding the impact of climate change on snow avalanche activity is crucial for safeguarding lives and infrastructure. Here, we project changes in avalanche activity in the Swiss Alps throughout the 21st century. Our findings reveal elevation-dependent patterns of change, indicating a decrease in dry-snow avalanches alongside an increase in wet-snow avalanches at elevations above the current treeline. These results underscore the necessity to revisit measures for avalanche risk mitigation.
Elisabeth D. Hafner, Theodora Kontogianni, Rodrigo Caye Daudt, Lucien Oberson, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 18, 3807–3823, https://doi.org/10.5194/tc-18-3807-2024, https://doi.org/10.5194/tc-18-3807-2024, 2024
Short summary
Short summary
For many safety-related applications such as road management, well-documented avalanches are important. To enlarge the information, webcams may be used. We propose supporting the mapping of avalanches from webcams with a machine learning model that interactively works together with the human. Relying on that model, there is a 90% saving of time compared to the "traditional" mapping. This gives a better base for safety-critical decisions and planning in avalanche-prone mountain regions.
Francis Meloche, Francis Gauthier, and Alexandre Langlois
The Cryosphere, 18, 1359–1380, https://doi.org/10.5194/tc-18-1359-2024, https://doi.org/10.5194/tc-18-1359-2024, 2024
Short summary
Short summary
Snow avalanches are a dangerous natural hazard. Backcountry recreationists and avalanche practitioners try to predict avalanche hazard based on the stability of snow cover. However, snow cover is variable in space, and snow stability observations can vary within several meters. We measure the snow stability several times on a small slope to create high-resolution maps of snow cover stability. These results help us to understand the snow variation for scientists and practitioners.
Léo Viallon-Galinier, Pascal Hagenmuller, and Nicolas Eckert
The Cryosphere, 17, 2245–2260, https://doi.org/10.5194/tc-17-2245-2023, https://doi.org/10.5194/tc-17-2245-2023, 2023
Short summary
Short summary
Avalanches are a significant issue in mountain areas where they threaten recreationists and human infrastructure. Assessments of avalanche hazards and the related risks are therefore an important challenge for local authorities. Meteorological and snow cover simulations are thus important to support operational forecasting. In this study we combine it with mechanical analysis of snow profiles and find that observed avalanche data improve avalanche activity prediction through statistical methods.
Oscar Dick, Léo Viallon-Galinier, François Tuzet, Pascal Hagenmuller, Mathieu Fructus, Benjamin Reuter, Matthieu Lafaysse, and Marie Dumont
The Cryosphere, 17, 1755–1773, https://doi.org/10.5194/tc-17-1755-2023, https://doi.org/10.5194/tc-17-1755-2023, 2023
Short summary
Short summary
Saharan dust deposition can drastically change the snow color, turning mountain landscapes into sepia scenes. Dust increases the absorption of solar energy by the snow cover and thus modifies the snow evolution and potentially the avalanche risk. Here we show that dust can lead to increased or decreased snowpack stability depending on the snow and meteorological conditions after the deposition event. We also show that wet-snow avalanches happen earlier in the season due to the presence of dust.
Philipp Weißgraeber and Philipp L. Rosendahl
The Cryosphere, 17, 1475–1496, https://doi.org/10.5194/tc-17-1475-2023, https://doi.org/10.5194/tc-17-1475-2023, 2023
Short summary
Short summary
The work presents a mathematical model that calculates the behavior of layered snow covers in response to loadings. The information is necessary to predict the formation of snow slab avalanches. While sophisticated computer simulations may achieve the same goal, they can require weeks to run. By using mathematical simplifications commonly used by structural engineers, the present model can provide hazard assessments in milliseconds, even for snowpacks with many layers of different types of snow.
Stephanie Mayer, Alec van Herwijnen, Frank Techel, and Jürg Schweizer
The Cryosphere, 16, 4593–4615, https://doi.org/10.5194/tc-16-4593-2022, https://doi.org/10.5194/tc-16-4593-2022, 2022
Short summary
Short summary
Information on snow instability is crucial for avalanche forecasting. We introduce a novel machine-learning-based method to assess snow instability from snow stratigraphy simulated with the snow cover model SNOWPACK. To develop the model, we compared observed and simulated snow profiles. Our model provides a probability of instability for every layer of a simulated snow profile, which allows detection of the weakest layer and assessment of its degree of instability with one single index.
Simon Horton and Pascal Haegeli
The Cryosphere, 16, 3393–3411, https://doi.org/10.5194/tc-16-3393-2022, https://doi.org/10.5194/tc-16-3393-2022, 2022
Short summary
Short summary
Snowpack models can help avalanche forecasters but are difficult to verify. We present a method for evaluating the accuracy of simulated snow profiles using readily available observations of snow depth. This method could be easily applied to understand the representativeness of available observations, the agreement between modelled and observed snow depths, and the implications for interpreting avalanche conditions.
Arnaud Caiserman, Roy C. Sidle, and Deo Raj Gurung
The Cryosphere, 16, 3295–3312, https://doi.org/10.5194/tc-16-3295-2022, https://doi.org/10.5194/tc-16-3295-2022, 2022
Short summary
Short summary
Snow avalanches cause considerable material and human damage in all mountain regions of the world. We present the first model to automatically inventory avalanche deposits at the scale of a catchment area – here the Amu Panj in Afghanistan – every year since 1990. This model called Snow Avalanche Frequency Estimation (SAFE) is available online on the Google Engine. SAFE has been designed to be simple and universal to use. Nearly 810 000 avalanches were detected over the 32 years studied.
Hippolyte Kern, Nicolas Eckert, Vincent Jomelli, Delphine Grancher, Michael Deschatres, and Gilles Arnaud-Fassetta
The Cryosphere, 15, 4845–4852, https://doi.org/10.5194/tc-15-4845-2021, https://doi.org/10.5194/tc-15-4845-2021, 2021
Short summary
Short summary
Snow avalanches are a major component of the mountain cryosphere that often put people, settlements, and infrastructures at risk. This study investigated avalanche path morphological factors controlling snow deposit volumes, a critical aspect of snow avalanche dynamics that remains poorly known. Different statistical techniques show a slight but significant link between deposit volumes and avalanche path morphology.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 15, 4335–4356, https://doi.org/10.5194/tc-15-4335-2021, https://doi.org/10.5194/tc-15-4335-2021, 2021
Short summary
Short summary
Extreme snowfall can cause major natural hazards (avalanches, winter storms) that can generate casualties and economic damage. In the French Alps, we show that between 1959 and 2019 extreme snowfall mainly decreased below 2000 m of elevation and increased above 2000 m. At 2500 m, we find a contrasting pattern: extreme snowfall decreased in the north, while it increased in the south. This pattern might be related to increasing trends in extreme snowfall observed near the Mediterranean Sea.
Bastian Bergfeld, Alec van Herwijnen, Benjamin Reuter, Grégoire Bobillier, Jürg Dual, and Jürg Schweizer
The Cryosphere, 15, 3539–3553, https://doi.org/10.5194/tc-15-3539-2021, https://doi.org/10.5194/tc-15-3539-2021, 2021
Short summary
Short summary
The modern picture of the snow slab avalanche release process involves a
dynamic crack propagation phasein which a whole slope becomes detached. The present work contains the first field methodology which provides the temporal and spatial resolution necessary to study this phase. We demonstrate the versatile capabilities and accuracy of our method by revealing intricate dynamics and present how to determine relevant characteristics of crack propagation such as crack speed.
Jürg Schweizer, Christoph Mitterer, Benjamin Reuter, and Frank Techel
The Cryosphere, 15, 3293–3315, https://doi.org/10.5194/tc-15-3293-2021, https://doi.org/10.5194/tc-15-3293-2021, 2021
Short summary
Short summary
Snow avalanches threaten people and infrastructure in snow-covered mountain regions. To mitigate the effects of avalanches, warnings are issued by public forecasting services. Presently, the five danger levels are described in qualitative terms. We aim to characterize the avalanche danger levels based on expert field observations of snow instability. Our findings contribute to an evidence-based description of danger levels and to improve consistency and accuracy of avalanche forecasts.
Pascal Haegeli, Bret Shandro, and Patrick Mair
The Cryosphere, 15, 1567–1586, https://doi.org/10.5194/tc-15-1567-2021, https://doi.org/10.5194/tc-15-1567-2021, 2021
Short summary
Short summary
Numerous large-scale atmosphere–ocean oscillations including the El Niño–Southern Oscillation, the Pacific Decadal Oscillation, the Pacific North American Teleconnection Pattern, and the Arctic Oscillation are known to substantially affect winter weather patterns in western Canada. Using avalanche problem information from public avalanche bulletins, this study presents a new approach for examining the effect of these atmospheric oscillations on the nature of avalanche hazard in western Canada.
Frank Techel, Karsten Müller, and Jürg Schweizer
The Cryosphere, 14, 3503–3521, https://doi.org/10.5194/tc-14-3503-2020, https://doi.org/10.5194/tc-14-3503-2020, 2020
Short summary
Short summary
Exploring a large data set of snow stability tests and avalanche observations, we quantitatively describe the three key elements that characterize avalanche danger: snowpack stability, the frequency distribution of snowpack stability, and avalanche size. The findings will aid in refining the definitions of the avalanche danger scale and in fostering its consistent usage.
Xingyue Li, Betty Sovilla, Chenfanfu Jiang, and Johan Gaume
The Cryosphere, 14, 3381–3398, https://doi.org/10.5194/tc-14-3381-2020, https://doi.org/10.5194/tc-14-3381-2020, 2020
Short summary
Short summary
This numerical study investigates how different types of snow avalanches behave, how key factors affect their dynamics and flow regime transitions, and what are the underpinning rules. According to the unified trends obtained from the simulations, we are able to quantify the complex interplay between bed friction, slope geometry and snow mechanical properties (cohesion and friction) on the maximum velocity, runout distance and deposit height of the avalanches.
Jürg Schweizer, Christoph Mitterer, Frank Techel, Andreas Stoffel, and Benjamin Reuter
The Cryosphere, 14, 737–750, https://doi.org/10.5194/tc-14-737-2020, https://doi.org/10.5194/tc-14-737-2020, 2020
Short summary
Short summary
Snow avalanches represent a major natural hazard in seasonally snow-covered mountain regions around the world. To avoid periods and locations of high hazard, avalanche warnings are issued by public authorities. In these bulletins, the hazard is characterized by a danger level. Since the danger levels are not well defined, we analyzed a large data set of avalanches to improve the description. Our findings show discrepancies in present usage of the danger scale and show ways to improve the scale.
Yves Bühler, Elisabeth D. Hafner, Benjamin Zweifel, Mathias Zesiger, and Holger Heisig
The Cryosphere, 13, 3225–3238, https://doi.org/10.5194/tc-13-3225-2019, https://doi.org/10.5194/tc-13-3225-2019, 2019
Short summary
Short summary
We manually map 18 737 avalanche outlines based on SPOT6 optical satellite imagery acquired in January 2018. This is the most complete and accurate avalanche documentation of a large avalanche period covering a big part of the Swiss Alps. This unique dataset can be applied for the validation of other remote-sensing-based avalanche-mapping procedures and for updating avalanche databases to improve hazard maps.
Anselm Köhler, Jan-Thomas Fischer, Riccardo Scandroglio, Mathias Bavay, Jim McElwaine, and Betty Sovilla
The Cryosphere, 12, 3759–3774, https://doi.org/10.5194/tc-12-3759-2018, https://doi.org/10.5194/tc-12-3759-2018, 2018
Short summary
Short summary
Snow avalanches show complicated flow behaviour, characterized by several flow regimes which coexist in one avalanche. In this work, we analyse flow regime transitions where a powder snow avalanche transforms into a plug flow avalanche by incorporating warm snow due to entrainment. Prediction of such a transition is very important for hazard mitigation, as the efficiency of protection dams are strongly dependent on the flow regime, and our results should be incorporated into avalanche models.
Cited articles
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche
warning Part I: Numerical model, Cold Reg. Sci. Technol., 35, 123–145,
https://doi.org/10.1016/S0165-232X(02)00074-5, 2002. a, b
Brun, E., David, P., and Sudul, M.: A numerical-model to simulate
snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol.,
38, 13–22, https://doi.org/10.3189/S0022143000009552, 1992. a
Chalmers, T. S.: Forecasting shear strength and skier-triggered avalanches for
buried surface hoar layers, MSc thesis, Dept. of Civil Eng., University of
Calgary, Calgary, Canada, 2001. a
Davies, J. H. and Davies, D. R.: Earth's surface heat flux, Solid Earth, 1, 5–24, https://doi.org/10.5194/se-1-5-2010, 2010. a
Durand, Y., Giraud, G., Brun, E., Merindol, L., and Martin, E.: A
computer-based system simulating snowpack structures as a tool for regional
avalanche forecasting, J. Glaciol., 45, 469–484, https://doi.org/10.3189/S0022143000001337, 1999. a
Föhn, P.: The “Rutschblock” as a pratical tool for slope stability
evaluation, IAHS-AISH Publ., 162, 223–228, 1987. a
Föhn, P., Camponovo, C., and Krüsi, G.: Mechanical and
structural properties of weak snow layers measured in situ, Ann. Glaciol.,
26, 1–6, https://doi.org/10.3189/1998AoG26-1-1-6, 1998. a
Gauthier, D. and Jamieson, B.: Towards a field test for fracture propagation
propensity in weak snowpack layers, J. Glaciol., 52, 164–168,
https://doi.org/10.3189/172756506781828962, 2006. a
Gauthier, D. and Jamieson, B.: Evaluation of a prototype field test for
fracture and failure propagation propensity in weak snowpack layers, Cold
Reg. Sci. Technol., 51, 87–97, https://doi.org/10.1016/j.coldregions.2007.04.005, 2008a. a
Gauthier, D. and Jamieson, B.: Frature propagation propensity in relation
to snow slab avalanche release: Validating the propagation saw test,
Geophys. Res. Lett., 35, L13501, https://doi.org/10.1029/2008GL034245, 2008b. a
Gauthier, D., Brown, C., and Jamieson, B.: Modeling strength and stability in
storm snow for slab avalanche forecasting, Cold Reg. Sci. Technol., 62, 107–118, https://doi.org/10.1016/j.coldregions.2010.04.004, 2010. a
Giraud, G. and Navarre, J.: MEPRA et le risque de déclenchement accidentel
d'avalanches, in: Les apports de la recherche scientifique à la
sécurité neige, glace et avalanche, Actes de Colloque, Chamonix, 30 May–3 June, 145–150, 1995. a
Jamieson, J. and Johnston, C.: Refinements to the stability index for
skier-triggered dry-slab avalanches, Ann. Glaciol., 26, 296–302,
https://doi.org/10.3189/1998AoG26-1-296-302, 1998. a
Jamieson, J. and Johnston, C.: Evaluation of the shear frame test for weak
snowpack layers, Ann. Glaciol., 32, 59–69, https://doi.org/10.3189/172756401781819472, 2001. a, b, c
Jamieson, J. B. and Schweizer, J.: Texture and strength changes of buried
surface-hoar layers with implications for dry snow-slab avalanche release,
J. Glaciol., 46, 151–160, https://doi.org/10.3189/172756500781833278, 2000. a
Lafaysse, M., Morin, S., Coléou, C., Vernay, M., Serça, D., Besson,
F., Willemet, J.-M., Giraud, G., Durand, Y., and Météo-France, D.:
Towards a new chain of models for avalanche hazard forecasting in French
mountain ranges, including low altitude mountains, in: Proceedings of
International Snow Science Workshop Grenoble–Chamonix Mont-Blanc,
162–166, 2013. a, b
Lehning, M., Bartelt, P., Brown, B., and Fierz, C.: A physical SNOWPACK model
for the Swiss avalanche warning: Part III: meteorological forcing, thin layer
formation and evaluation, Cold Reg. Sci. Technol., 35, 169–184,
https://doi.org/10.1016/S0165-232X(02)00072-1, 2002. a, b, c, d
Lehning, M., Fierz, C., Brown, B., and Jamieson, B.: Modeling snow instability
with the snow-cover model SNOWPACK, Ann. Glaciol., 38, 331–338,
https://doi.org/10.3189/172756404781815220, 2004. a, b, c, d
McClung, D. M. and Schweizer, J.: Skier triggering, snow temperatures and the
stability index for dry-slab avalanche initiation, J. Glaciol., 45,
190–200, https://doi.org/10.3189/S0022143000001696, 1999. a
Monti, F., Schweizer, J., and Fierz, C.: Hardness estimation and weak layer
detection in simulated snow stratigraphy, Cold Reg. Sci. Technol., 103, 82–90, https://doi.org/10.1016/j.coldregions.2014.03.009, 2014. a
Monti, F., Gaume, J., van Herwijnen, A., and Schweizer, J.: Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack, Nat. Hazards Earth Syst. Sci., 16, 775–788, https://doi.org/10.5194/nhess-16-775-2016, 2016. a
Pollack, H. N., Hurter, S. J., and Johnson, J. R.: Heat flow from the Earth's
interior: Analysis of the global data set, Rev. Geophys., 31,
267–280, https://doi.org/10.1029/93RG01249, 1993. a
Proksch, M., Löwe, H., and Schneebeli, M.: Density, specific surface area and
correlation length of snow measured by high-resolution penetrometry, J. Geophys. Res., 120, 346–362, https://doi.org/10.1002/2014JF003266, 2015. a
Proksch, M., Rutter, N., Fierz, C., and Schneebeli, M.: Intercomparison of snow density measurements: bias, precision, and vertical resolution, The Cryosphere, 10, 371–384, https://doi.org/10.5194/tc-10-371-2016, 2016. a
Reiweger, I., Schweizer, J., Ernst, R., and Dual, J.: Load-controlled
test apparatus for snow, Cold Reg. Sci. Technol., 62, 119–125,
https://doi.org/10.1016/j.coldregions.2010.04.002, 2010. a
Reuter, B. and Schweizer, J.: Describing snow instability by failure
initiation, crack propagation, and slab tensile support, Geophys. Res.
Lett., 45, 7019–7027, https://doi.org/10.1029/2018GL078069, 2018. a, b
Richter, B., Schweizer, J., Rotach, M. W., and van Herwijnen, A.: Validating and improving the critical crack length in SNOWPACK, https://doi.org/10.16904/envidat.119, 2019. a
Schulson, E. M.: Brittle failure of ice, Eng. Fract. Mech., 68,
1839–1887, https://doi.org/10.1016/S0013-7944(01)00037-6, 2001. a
Schweizer, J. and Jamieson, B.: Snowpack properties for snow profile analysis,
Cold Reg. Sci. Technol., 37, 233–241, https://doi.org/10.1016/S0165-232X(03)00067-3, 2003. a
Schweizer, J. and Jamieson, B.: Snowpack tests for assessing snow-slope
stability, Ann. Glaciol., 51, 187–193, https://doi.org/10.3189/172756410791386652, 2010. a
Schweizer, J. and Jamieson, J.: A threshold sum approach to stability
evaluation of manual snow profiles, Cold Reg. Sci. Technol., 47, 50–59,
https://doi.org/10.1016/j.coldregions.2006.08.011, 2007. a
Schweizer, J., Jamieson, J., and Schneebeli, M.: Snow avalanche formation,
Rev. Geophys., 41, 1016, https://doi.org/10.1029/2002RG000123, 2003a. a, b
Schweizer, J., Kronholm, K., and Wiesinger, T.: Verification of regional
snowpack stability and avalanche danger, Cold Reg. Sci. Technol., 37,
277–288, https://doi.org/10.1016/S0165-232X(03)00070-3, 2003b. a
Schweizer, J., Michot, G., and Kirchner, H. O.: On the fracture toughness of
snow, Ann. Glaciol., 38, 1–8, https://doi.org/10.3189/172756404781814906, 2004. a
Schweizer, J., Bellaire, S., Fierz, C., Lehning, M., and Pielmeier, C.:
Evaluating and improving the stability predictions of the snow cover model
SNOWPACK, Cold Reg. Sci. Technol., 46, 52–59, https://doi.org/10.1016/j.coldregions.2006.05.007, 2006. a, b, c
Schweizer, J., McCammon, I., and Jamieson, J. B.: Snowpack observations and
fracture concepts for skier-triggering of dry-snow slab avalanches, Cold
Reg. Sci. Technol., 51, 112–121, https://doi.org/10.1016/j.coldregions.2007.04.019, 2008. a, b
Schweizer, J., Reuter, B., van Herwijnen, A., Richter, B., and Gaume, J.: Temporal evolution of crack propagation propensity in snow in relation to slab and weak layer properties, The Cryosphere, 10, 2637–2653, https://doi.org/10.5194/tc-10-2637-2016, 2016. a, b
Sigrist, C. and Schweizer, J.: Critical energy release rates of weak
snowpack layers determined in field experiments, Geophys. Res.
Lett., 34, L03502, https://doi.org/10.1029/2006GL028576, 2007. a
Simenhois, R. and Birkeland, K. W.: The Extended Column Test: Test
effectiveness, spatial variability, and comparison with the Propagation Saw
Test, Cold Reg. Sci. Technol., 59, 210–216,
https://doi.org/10.1016/j.coldregions.2009.04.001, 2009. a
Simenhois, R., Birkeland, K., and van Herwijnen, A.: Measurements of ECT
scores and crack-face friction in non-persistent weak layers: What are the
implications for practitioners?, Proceedings of International Snow Science
Workshop, Anchorage, AK, USA, 2012. a
SNOWPACK: available at: http://models.slf.ch/p/snowpack/, last access: 16 December 2019. a
Techel, F., Jarry, F., Kronthaler, G., Mitterer, S., Nairz, P., Pavšek, M., Valt, M., and Darms, G.: Avalanche fatalities in the European Alps: long-term trends and statistics, Geogr. Helv., 71, 147–159, https://doi.org/10.5194/gh-71-147-2016, 2016. a
van Herwijnen, A. and Heierli, J.: Measurement of crack-face friction in
collapsed weak snow layers, Geophys. Res. Lett., 36, L23502,
https://doi.org/10.1029/2009GL040389, 2009. a
van Herwijnen, A. and Jamieson, B.: High-speed photography of fractures in
weak snowpack layers, Cold Reg. Sci. Technol., 43, 71–82, https://doi.org/10.1016/j.coldregions.2005.05.005, 2005. a, b, c, d
van Herwijnen, A. and Jamieson, B.: Snowpack properties associated with
fracture initiation and propagation resulting in skier-triggered dry snow
slab avalanches, Cold Reg. Sci. Technol., 50, 13–22,
https://doi.org/10.1016/j.coldregions.2007.02.004, 2007a. a, b
van Herwijnen, A. and Jamieson, B.: Fracture character in compression tests,
Cold Reg. Sci. Technol., 47, 60–68,
https://doi.org/10.1016/j.coldregions.2006.08.016, 2007b.
a
van Herwijnen, A., Schweizer, J., and Heierli, J.: Measurement of the
deformation field associated with fracture propagation in weak snowpack
layers, J. Geophys. Res.-Earth, 115, F03042,
https://doi.org/10.1029/2009JF001515, 2010. a, b
van Herwijnen, A., Gaume, J., Bair, E. H., Reuter, B., Birkeland, K. W., and
Schweizer, J.: Estimating the effective elastic modulus and specific fracture
energy of snowpack layers from field experiments, J. Glaciol., 62,
997–1007, https://doi.org/10.1017/jog.2016.90, 2016. a
Vernay, M., Lafaysse, M., Mérindol, L., Giraud, G., and Morin, S.: Ensemble
forecasting of snowpack conditions and avalanche hazard, Cold Reg. Sci.
Technol., 120, 251–262, https://doi.org/10.1016/j.coldregions.2015.04.010, 2015. a
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012. a
Wever, N., Schmid, L., Heilig, A., Eisen, O., Fierz, C., and Lehning, M.: Verification of the multi-layer SNOWPACK model with different water transport schemes, The Cryosphere, 9, 2271–2293, https://doi.org/10.5194/tc-9-2271-2015, 2015. a
Wilks, D. S.: Statistical methods in the atmospheric sciences, 100,
Academic press, 2011. a
WSL Institute for Snow and Avalanche Research SLF: WFJ_MOD: Meteorological
and snowpack measurements from Weissfluhjoch, WSL Institute for Snow and
Avalanche Research SLF, https://doi.org/10.16904/1, 2015. a
Short summary
Information on snow stability is important for avalanche forecasting. To improve the stability estimation in the snow cover model SNOWPACK, we suggested an improved parameterization for the critical crack length. We compared 3 years of field data to SNOWPACK simulations. The match between observed and modeled critical crack lengths greatly improved, and critical weak layers appear more prominently in the modeled vertical profile of critical crack length.
Information on snow stability is important for avalanche forecasting. To improve the stability...