Articles | Volume 13, issue 11
https://doi.org/10.5194/tc-13-2901-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-2901-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wave energy attenuation in fields of colliding ice floes – Part 2: A laboratory case study
Institute of Oceanography, University of Gdańsk, Gdańsk, Poland
Sukun Cheng
Nansen Environmental and Remote Sensing Center, Bergen, Norway
Hayley H. Shen
Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, USA
Related authors
Zuzanna M. Swirad, Mateusz Moskalik, and Agnieszka Herman
Earth Syst. Sci. Data, 15, 2623–2633, https://doi.org/10.5194/essd-15-2623-2023, https://doi.org/10.5194/essd-15-2623-2023, 2023
Short summary
Short summary
Monitoring ocean waves is important for understanding wave climate and seasonal to longer-term (years to decades) changes. In the Arctic, there is limited freely available observational wave information. We placed sensors at the sea bottom of six bays in Hornsund fjord, Svalbard, and calculated wave energy, wave height and wave period for full hours between July 2013 and February 2021. In this paper, we present the procedure of deriving wave properties from raw pressure measurements.
Katarzyna Bradtke and Agnieszka Herman
The Cryosphere, 17, 2073–2094, https://doi.org/10.5194/tc-17-2073-2023, https://doi.org/10.5194/tc-17-2073-2023, 2023
Short summary
Short summary
The frazil streaks are one of the visible signs of complex interactions between the mixed-layer dynamics and the forming sea ice. Using high-resolution visible satellite imagery we characterize their spatial properties, relationship with the meteorological forcing, and role in modifying wind-wave growth in the Terra Nova Bay Polynya. We provide a simple statistical tool for estimating the extent and ice coverage of the region of high ice production under given wind speed and air temperature.
Marta Wenta, David Brus, Konstantinos Doulgeris, Ville Vakkari, and Agnieszka Herman
Earth Syst. Sci. Data, 13, 33–42, https://doi.org/10.5194/essd-13-33-2021, https://doi.org/10.5194/essd-13-33-2021, 2021
Short summary
Short summary
Representations of the atmospheric boundary layer over sea ice are a challenge for numerical weather prediction models. To increase our understanding of the relevant processes, a field campaign was carried out over the sea ice in the Baltic Sea from 27 February to 2 March 2020. Observations included 27 unmanned aerial vehicle flights, four photogrammetry missions, and shore-based automatic weather station and lidar wind measurements. The dataset obtained is used to validate model results.
Agnieszka Herman, Maciej Dojczman, and Kamila Świszcz
The Cryosphere, 14, 3707–3729, https://doi.org/10.5194/tc-14-3707-2020, https://doi.org/10.5194/tc-14-3707-2020, 2020
Short summary
Short summary
Under typical conditions favorable for sea ice formation in many regions (strong wind and waves, low air temperature), ice forms not at the sea surface but within the upper, turbulent layer of the ocean. Although interactions between ice and ocean dynamics are very important for the evolution of sea ice cover, many aspects of them are poorly understood. We use a numerical model to analyze three-dimensional water circulation and ice transport and show that ice strongly modifies that circulation.
Agnieszka Herman, Sukun Cheng, and Hayley H. Shen
The Cryosphere, 13, 2887–2900, https://doi.org/10.5194/tc-13-2887-2019, https://doi.org/10.5194/tc-13-2887-2019, 2019
Short summary
Short summary
Sea ice interactions with waves are extensively studied in recent years, but mechanisms leading to wave energy attenuation in sea ice remain poorly understood. Close to the ice edge, processes contributing to dissipation include collisions between ice floes and turbulence generated under the ice due to velocity differences between ice and water. This paper analyses details of those processes both theoretically and by means of a numerical model.
Agnieszka Herman, Karl-Ulrich Evers, and Nils Reimer
The Cryosphere, 12, 685–699, https://doi.org/10.5194/tc-12-685-2018, https://doi.org/10.5194/tc-12-685-2018, 2018
Short summary
Short summary
In regions close to the ice edge, sea ice is composed of many separate ice floes of different sizes and shapes. Strong fragmentation is caused mainly by ice breaking by waves coming from the open ocean. At present, this process, although recognized as important for many other physical processes, is not well understood. In this study we present results of a laboratory study of ice breaking by waves, and we provide interpretation of those results that may guide analysis of other similar datasets.
Agnieszka Herman
The Cryosphere, 11, 2711–2725, https://doi.org/10.5194/tc-11-2711-2017, https://doi.org/10.5194/tc-11-2711-2017, 2017
Short summary
Short summary
It is often assumed that ocean waves break sea ice into floes with sizes depending on wavelength. The results of this modeling study (in agreement with some earlier observations and models) suggest that this is not the case; instead the sizes of ice floes produced by wave breaking depend only on ice thickness and mechanical properties. This may have important consequences for predicting sea ice response to oceanic and atmospheric forcing in regions where sea ice is influenced by waves.
Agnieszka Herman
Geosci. Model Dev., 9, 1219–1241, https://doi.org/10.5194/gmd-9-1219-2016, https://doi.org/10.5194/gmd-9-1219-2016, 2016
Short summary
Short summary
Recent developments in observational and modeling techniques allow us to analyze sea ice with increasingly higher resolution. Instead of a continuous ice cover we observe a complex, constantly changing medium composed of interacting floes. Understanding these aspects of sea ice behavior requires new modeling methods, like the Discrete-Element Sea Ice model (DESIgn) in which sea ice is treated as an assemblage of grains that freeze together or break apart in response to wind and ocean currents.
A. Herman and O. Glowacki
The Cryosphere, 6, 1553–1559, https://doi.org/10.5194/tc-6-1553-2012, https://doi.org/10.5194/tc-6-1553-2012, 2012
Zuzanna M. Swirad, Mateusz Moskalik, and Agnieszka Herman
Earth Syst. Sci. Data, 15, 2623–2633, https://doi.org/10.5194/essd-15-2623-2023, https://doi.org/10.5194/essd-15-2623-2023, 2023
Short summary
Short summary
Monitoring ocean waves is important for understanding wave climate and seasonal to longer-term (years to decades) changes. In the Arctic, there is limited freely available observational wave information. We placed sensors at the sea bottom of six bays in Hornsund fjord, Svalbard, and calculated wave energy, wave height and wave period for full hours between July 2013 and February 2021. In this paper, we present the procedure of deriving wave properties from raw pressure measurements.
Katarzyna Bradtke and Agnieszka Herman
The Cryosphere, 17, 2073–2094, https://doi.org/10.5194/tc-17-2073-2023, https://doi.org/10.5194/tc-17-2073-2023, 2023
Short summary
Short summary
The frazil streaks are one of the visible signs of complex interactions between the mixed-layer dynamics and the forming sea ice. Using high-resolution visible satellite imagery we characterize their spatial properties, relationship with the meteorological forcing, and role in modifying wind-wave growth in the Terra Nova Bay Polynya. We provide a simple statistical tool for estimating the extent and ice coverage of the region of high ice production under given wind speed and air temperature.
Sukun Cheng, Yumeng Chen, Ali Aydoğdu, Laurent Bertino, Alberto Carrassi, Pierre Rampal, and Christopher K. R. T. Jones
The Cryosphere, 17, 1735–1754, https://doi.org/10.5194/tc-17-1735-2023, https://doi.org/10.5194/tc-17-1735-2023, 2023
Short summary
Short summary
This work studies a novel application of combining a Lagrangian sea ice model, neXtSIM, and data assimilation. It uses a deterministic ensemble Kalman filter to incorporate satellite-observed ice concentration and thickness in simulations. The neXtSIM Lagrangian nature is handled using a remapping strategy on a common homogeneous mesh. The ensemble is formed by perturbing air–ocean boundary conditions and ice cohesion. Thanks to data assimilation, winter Arctic sea ice forecasting is enhanced.
Marta Wenta, David Brus, Konstantinos Doulgeris, Ville Vakkari, and Agnieszka Herman
Earth Syst. Sci. Data, 13, 33–42, https://doi.org/10.5194/essd-13-33-2021, https://doi.org/10.5194/essd-13-33-2021, 2021
Short summary
Short summary
Representations of the atmospheric boundary layer over sea ice are a challenge for numerical weather prediction models. To increase our understanding of the relevant processes, a field campaign was carried out over the sea ice in the Baltic Sea from 27 February to 2 March 2020. Observations included 27 unmanned aerial vehicle flights, four photogrammetry missions, and shore-based automatic weather station and lidar wind measurements. The dataset obtained is used to validate model results.
Agnieszka Herman, Maciej Dojczman, and Kamila Świszcz
The Cryosphere, 14, 3707–3729, https://doi.org/10.5194/tc-14-3707-2020, https://doi.org/10.5194/tc-14-3707-2020, 2020
Short summary
Short summary
Under typical conditions favorable for sea ice formation in many regions (strong wind and waves, low air temperature), ice forms not at the sea surface but within the upper, turbulent layer of the ocean. Although interactions between ice and ocean dynamics are very important for the evolution of sea ice cover, many aspects of them are poorly understood. We use a numerical model to analyze three-dimensional water circulation and ice transport and show that ice strongly modifies that circulation.
Sukun Cheng, Justin Stopa, Fabrice Ardhuin, and Hayley H. Shen
The Cryosphere, 14, 2053–2069, https://doi.org/10.5194/tc-14-2053-2020, https://doi.org/10.5194/tc-14-2053-2020, 2020
Short summary
Short summary
Wave states in ice in polar oceans are mostly studied near the ice edge. However, observations in the internal ice field, where ice morphology is very different from the ice edge, are rare. Recently derived wave data from satellite imagery are easier and cheaper than field studies and provide large coverage. This work presents a way of using these data to have a close view of some key features in the wave propagation over hundreds of kilometers and calibrate models for predicting wave decay.
Agnieszka Herman, Sukun Cheng, and Hayley H. Shen
The Cryosphere, 13, 2887–2900, https://doi.org/10.5194/tc-13-2887-2019, https://doi.org/10.5194/tc-13-2887-2019, 2019
Short summary
Short summary
Sea ice interactions with waves are extensively studied in recent years, but mechanisms leading to wave energy attenuation in sea ice remain poorly understood. Close to the ice edge, processes contributing to dissipation include collisions between ice floes and turbulence generated under the ice due to velocity differences between ice and water. This paper analyses details of those processes both theoretically and by means of a numerical model.
Agnieszka Herman, Karl-Ulrich Evers, and Nils Reimer
The Cryosphere, 12, 685–699, https://doi.org/10.5194/tc-12-685-2018, https://doi.org/10.5194/tc-12-685-2018, 2018
Short summary
Short summary
In regions close to the ice edge, sea ice is composed of many separate ice floes of different sizes and shapes. Strong fragmentation is caused mainly by ice breaking by waves coming from the open ocean. At present, this process, although recognized as important for many other physical processes, is not well understood. In this study we present results of a laboratory study of ice breaking by waves, and we provide interpretation of those results that may guide analysis of other similar datasets.
Agnieszka Herman
The Cryosphere, 11, 2711–2725, https://doi.org/10.5194/tc-11-2711-2017, https://doi.org/10.5194/tc-11-2711-2017, 2017
Short summary
Short summary
It is often assumed that ocean waves break sea ice into floes with sizes depending on wavelength. The results of this modeling study (in agreement with some earlier observations and models) suggest that this is not the case; instead the sizes of ice floes produced by wave breaking depend only on ice thickness and mechanical properties. This may have important consequences for predicting sea ice response to oceanic and atmospheric forcing in regions where sea ice is influenced by waves.
Agnieszka Herman
Geosci. Model Dev., 9, 1219–1241, https://doi.org/10.5194/gmd-9-1219-2016, https://doi.org/10.5194/gmd-9-1219-2016, 2016
Short summary
Short summary
Recent developments in observational and modeling techniques allow us to analyze sea ice with increasingly higher resolution. Instead of a continuous ice cover we observe a complex, constantly changing medium composed of interacting floes. Understanding these aspects of sea ice behavior requires new modeling methods, like the Discrete-Element Sea Ice model (DESIgn) in which sea ice is treated as an assemblage of grains that freeze together or break apart in response to wind and ocean currents.
A. Herman and O. Glowacki
The Cryosphere, 6, 1553–1559, https://doi.org/10.5194/tc-6-1553-2012, https://doi.org/10.5194/tc-6-1553-2012, 2012
Related subject area
Discipline: Sea ice | Subject: Ocean Interactions
Two-dimensional numerical simulations of mixing under ice keels
Seasonal and diurnal variability of sub-ice platelet layer thickness in McMurdo Sound from electromagnetic induction sounding
The role of upper-ocean heat content in the regional variability of Arctic sea ice at sub-seasonal timescales
A method for constructing directional surface wave spectra from ICESat-2 altimetry
A model for the Arctic mixed layer circulation under a summertime lead: implications for the near-surface temperature maximum formation
Underestimation of oceanic carbon uptake in the Arctic Ocean: ice melt as predictor of the sea ice carbon pump
Uncertainty analysis of single- and multiple-size-class frazil ice models
Wave–sea-ice interactions in a brittle rheological framework
Experimental evidence for a universal threshold characterizing wave-induced sea ice break-up
High-resolution simulations of interactions between surface ocean dynamics and frazil ice
Frazil ice growth and production during katabatic wind events in the Ross Sea, Antarctica
Towards a coupled model to investigate wave–sea ice interactions in the Arctic marginal ice zone
Responses of sub-ice platelet layer thickening rate and frazil-ice concentration to variations in ice-shelf water supercooling in McMurdo Sound, Antarctica
Sam De Abreu, Rosalie M. Cormier, Mikhail G. Schee, Varvara E. Zemskova, Erica Rosenblum, and Nicolas Grisouard
The Cryosphere, 18, 3159–3176, https://doi.org/10.5194/tc-18-3159-2024, https://doi.org/10.5194/tc-18-3159-2024, 2024
Short summary
Short summary
Arctic sea ice is becoming more mobile and thinner, which will affect the upper Arctic Ocean in unforeseen ways. Using numerical simulations, we find that mixing by ice keels (ridges underlying sea ice) depends significantly on their speeds and depths and the density structure of the upper ocean. Large uncertainties in our results highlight the need for more realistic numerical simulations and better measurements of ice keel characteristics.
Gemma M. Brett, Greg H. Leonard, Wolfgang Rack, Christian Haas, Patricia J. Langhorne, Natalie J. Robinson, and Anne Irvin
The Cryosphere, 18, 3049–3066, https://doi.org/10.5194/tc-18-3049-2024, https://doi.org/10.5194/tc-18-3049-2024, 2024
Short summary
Short summary
Glacial meltwater with ice crystals flows from beneath ice shelves, causing thicker sea ice with sub-ice platelet layers (SIPLs) beneath. Thicker sea ice and SIPL reveal where and how much meltwater is outflowing. We collected continuous measurements of sea ice and SIPL. In winter, we observed rapid SIPL growth with strong winds. In spring, SIPLs grew when tides caused offshore circulation. Wind-driven and tidal circulation influence glacial meltwater outflow from ice shelf cavities.
Elena Bianco, Doroteaciro Iovino, Simona Masina, Stefano Materia, and Paolo Ruggieri
The Cryosphere, 18, 2357–2379, https://doi.org/10.5194/tc-18-2357-2024, https://doi.org/10.5194/tc-18-2357-2024, 2024
Short summary
Short summary
Changes in ocean heat transport and surface heat fluxes in recent decades have altered the Arctic Ocean heat budget and caused warming of the upper ocean. Using two eddy-permitting ocean reanalyses, we show that this has important implications for sea ice variability. In the Arctic regional seas, upper-ocean heat content acts as an important precursor for sea ice anomalies on sub-seasonal timescales, and this link has strengthened since the 2000s.
Momme C. Hell and Christopher Horvat
The Cryosphere, 18, 341–361, https://doi.org/10.5194/tc-18-341-2024, https://doi.org/10.5194/tc-18-341-2024, 2024
Short summary
Short summary
Sea ice is heavily impacted by waves on its margins, and we currently do not have routine observations of waves in sea ice. Here we propose two methods to separate the surface waves from the sea-ice height observations along each ICESat-2 track using machine learning. Both methods together allow us to follow changes in the wave height through the sea ice.
Alberto Alvarez
The Cryosphere, 17, 3343–3361, https://doi.org/10.5194/tc-17-3343-2023, https://doi.org/10.5194/tc-17-3343-2023, 2023
Short summary
Short summary
A near-surface temperature maximum (NSTM) layer is typically observed under different Arctic basins. Although its development seems to be related to solar heating in leads, its formation mechanism is under debate. This study uses numerical modeling in an idealized framework to demonstrate that the NSTM layer forms under a summer lead exposed to a combination of calm and moderate wind periods. Future warming of this layer could modify acoustic propagation with implications for marine mammals.
Benjamin Richaud, Katja Fennel, Eric C. J. Oliver, Michael D. DeGrandpre, Timothée Bourgeois, Xianmin Hu, and Youyu Lu
The Cryosphere, 17, 2665–2680, https://doi.org/10.5194/tc-17-2665-2023, https://doi.org/10.5194/tc-17-2665-2023, 2023
Short summary
Short summary
Sea ice is a dynamic carbon reservoir. Its seasonal growth and melt modify the carbonate chemistry in the upper ocean, with consequences for the Arctic Ocean carbon sink. Yet, the importance of this process is poorly quantified. Using two independent approaches, this study provides new methods to evaluate the error in air–sea carbon flux estimates due to the lack of biogeochemistry in ice in earth system models. Those errors range from 5 % to 30 %, depending on the model and climate projection.
Fabien Souillé, Cédric Goeury, and Rem-Sophia Mouradi
The Cryosphere, 17, 1645–1674, https://doi.org/10.5194/tc-17-1645-2023, https://doi.org/10.5194/tc-17-1645-2023, 2023
Short summary
Short summary
Models that can predict temperature and ice crystal formation (frazil) in water are important for river and coastal engineering. Indeed, frazil has direct impact on submerged structures and often precedes the formation of ice cover. In this paper, an uncertainty analysis of two mathematical models that simulate supercooling and frazil is carried out within a probabilistic framework. The presented methodology offers new insight into the models and their parameterization.
Guillaume Boutin, Timothy Williams, Pierre Rampal, Einar Olason, and Camille Lique
The Cryosphere, 15, 431–457, https://doi.org/10.5194/tc-15-431-2021, https://doi.org/10.5194/tc-15-431-2021, 2021
Short summary
Short summary
In this study, we investigate the interactions of surface ocean waves with sea ice. We focus on the evolution of sea ice after it has been fragmented by the waves. Fragmented sea ice is expected to experience less resistance to deformation. We reproduce this evolution using a new coupling framework between a wave model and the recently developed sea ice model neXtSIM. We find that waves can significantly increase the mobility of compact sea ice over wide areas in the wake of storm events.
Joey J. Voermans, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Aleksey Marchenko, Clarence O. Collins III, Mohammed Dabboor, Graig Sutherland, and Alexander V. Babanin
The Cryosphere, 14, 4265–4278, https://doi.org/10.5194/tc-14-4265-2020, https://doi.org/10.5194/tc-14-4265-2020, 2020
Short summary
Short summary
In this work we demonstrate the existence of an observational threshold which identifies when waves are most likely to break sea ice. This threshold is based on information from two recent field campaigns, supplemented with existing observations of sea ice break-up. We show that both field and laboratory observations tend to converge to a single quantitative threshold at which the wave-induced sea ice break-up takes place, which opens a promising avenue for operational forecasting models.
Agnieszka Herman, Maciej Dojczman, and Kamila Świszcz
The Cryosphere, 14, 3707–3729, https://doi.org/10.5194/tc-14-3707-2020, https://doi.org/10.5194/tc-14-3707-2020, 2020
Short summary
Short summary
Under typical conditions favorable for sea ice formation in many regions (strong wind and waves, low air temperature), ice forms not at the sea surface but within the upper, turbulent layer of the ocean. Although interactions between ice and ocean dynamics are very important for the evolution of sea ice cover, many aspects of them are poorly understood. We use a numerical model to analyze three-dimensional water circulation and ice transport and show that ice strongly modifies that circulation.
Lisa Thompson, Madison Smith, Jim Thomson, Sharon Stammerjohn, Steve Ackley, and Brice Loose
The Cryosphere, 14, 3329–3347, https://doi.org/10.5194/tc-14-3329-2020, https://doi.org/10.5194/tc-14-3329-2020, 2020
Short summary
Short summary
The offshore winds around Antarctica can reach hurricane strength and produce intense cooling, causing the surface ocean to form a slurry of seawater and ice crystals. For the first time, we observed a buildup of heat and salt in the surface ocean, caused by loose ice crystal formation. We conclude that up to 1 m of ice was formed per day by the intense cooling, suggesting that unconsolidated crystals may be an important part of the total freezing that happens around Antarctica.
Guillaume Boutin, Camille Lique, Fabrice Ardhuin, Clément Rousset, Claude Talandier, Mickael Accensi, and Fanny Girard-Ardhuin
The Cryosphere, 14, 709–735, https://doi.org/10.5194/tc-14-709-2020, https://doi.org/10.5194/tc-14-709-2020, 2020
Short summary
Short summary
We investigate the interactions of surface ocean waves with sea ice taking place at the interface between the compact sea ice cover and the open ocean. We use a newly developed coupling framework between a wave and an ocean–sea ice numerical model. Our results show how the push on sea ice exerted by waves changes the amount and the location of sea ice melting, with a strong impact on the ocean surface properties close to the ice edge.
Chen Cheng, Adrian Jenkins, Paul R. Holland, Zhaomin Wang, Chengyan Liu, and Ruibin Xia
The Cryosphere, 13, 265–280, https://doi.org/10.5194/tc-13-265-2019, https://doi.org/10.5194/tc-13-265-2019, 2019
Short summary
Short summary
The sub-ice platelet layer (SIPL) under fast ice is most prevalent in McMurdo Sound, Antarctica. Using a modified plume model, we investigated the responses of SIPL thickening rate and frazil concentration to variations in ice shelf water supercooling in McMurdo Sound. It would be key to parameterizing the relevant process in more complex three-dimensional, primitive equation ocean models, which relies on the knowledge of the suspended frazil size spectrum within the ice–ocean boundary layer.
Cited articles
Castellani, G., Losch, M., Ungermann, M., and Gerdes, R.: Sea-ice drag as a
function of deformation and ice cover: Effects on simulated sea ice and
ocean circulation in the Arctic, Ocean Model., 128, 48–66,
https://doi.org/10.1016/j.ocemod.2018.06.002, 2018. a
Cheng, S., Tsarau, A., Li, H., Herman, A., Evers, K.-U., and Shen, H.: Loads on
Structure and Waves in Ice (LS-WICE) project, Part 1: Wave
attenuation and dispersion in broken ice fields, in: Proc. 24th Int. Conf. on
Port and Ocean Engineering under Arctic Conditions (POAC), 11–16 June 2017,
Busan, Korea, 2017. a
De Santi, F., De Carolis, G., Olla, P., Doble, M., Cheng, S., Shen, H.,
Wadhams, P., and Thomson, J.: On the Ocean wave attenuation rate in
grease-pancake ice, a comparison of viscous layer propagation models with
field data, J. Geophys. Res., 123, 5933–5948, https://doi.org/10.1029/2018JC013865,
2018. a
Frankenstein, S. and Shen, H.: The effect of waves on pancake ice collisions,
in: Proc. 3rd Int. Offshore and Polar Engng Conf., 6–11 June 1993,
Singapore, 1993. a
Herman, A.: Discrete-Element bonded-particle Sea Ice model DESIgn, version 1.3a – model description and implementation, Geosci. Model Dev., 9, 1219–1241, https://doi.org/10.5194/gmd-9-1219-2016, 2016. a, b
Herman, A.: Wave-induced surge motion and collisions of sea ice floes:
finite-floe-fize effects, J. Geophys. Res., 123, 7472–7494,
https://doi.org/10.1029/2018JC014500, 2018. a, b
Herman, A.: DESIgn – Discrete-Element bonded-particle Sea Ice model, available at: https://herman.ocean.ug.edu.pl/LIGGGHTSseaice.html, last access: 7 November 2019. a
Herman, A., Tsarau, A., Evers, K.-U., Li, H., and Shen, H.: Loads on
Structure and Waves in Ice (LS-WICE) project, Part 2: Sea ice
breaking by waves, in: Proc. 24th Int. Conf. on Port and Ocean Engineering
under Arctic Conditions (POAC), 11–16 June 2017, Busan, Korea, available at:
http://www.poac.com/Papers/2017/pdf/POAC17_051_Agnieszka.pdf (last access: 7 November 2019), 2017. a
Herman, A., Evers, K.-U., and Reimer, N.: Floe-size distributions in laboratory ice broken by waves, The Cryosphere, 12, 685–699, https://doi.org/10.5194/tc-12-685-2018, 2018. a
Herman, A., Cheng, S., and Shen, H. H.: Wave energy attenuation in fields of colliding ice floes – Part 1:
Discrete-element modelling of dissipation due to ice–water drag, The Cryosphere, 13, 2887–2900, https://doi.org/10.5194/tc-13-2887-2019, 2019. a
Hibler III, W. and Leppäranta, M.: MIZEX 83 mesoscale sea ice dynamics:
Initial analysis, MIZEX Bulletin III, USACREL Special Report 84-28,
19–28, 1984. a
Hopkins, M. and Shen, H.: Simulation of pancake-ice dynamics in a wave field,
Ann. Glaciol., 33, 355–360, 2001. a
Kohout, A. and Meylan, M.: An elastic plate model for wave attenuation and ice
floe breaking in the marginal ice zone, J. Geophys. Res., 113, C09016,
https://doi.org/10.1029/2007JC004434, 2008. a
Kohout, A., Meylan, M., Sakai, S., Hanai, K., Leman, P., and Brossard, D.:
Linear water wave propagation through multiple floating elastic plates of
variable properties, J. Fluids Structures, 23, 649–663,
https://doi.org/10.1016/j.jfluidstructs.2006.10.012, 2007. a, b, c, d
Kohout, A., Meylan, M., and Plew, D.: Wave attenuation in a marginal ice zone
due to the bottom roughness of ice floes, Ann. Glaciol., 52, 118–122,
2011. a
Lu, Q., Larsen, J., and Tryde, P.: On the role of ice interaction due to floe
collisions in marginal ice zone dynamics, J. Geophys. Res., 94,
14525–14537, 1989. a
Martin, S. and Becker, P.: High-frequency ice floe collisions in the
Greenland Sea during the 1984 Marginal Ice Zone Experiment, J.
Geophys. Res., 92, 7071–7084, 1987. a
Martin, S. and Becker, P.: Ice floe collisions and their relation to ice
deformation in the Bering Sea during February 1983, J. Geophys. Res.,
93, 1303–1315, https://doi.org/10.1029/JC093iC02p01303, 1988. a
Martin, S. and Drucker, R.: Observations of short-period ice floe accelerations
during leg II of the Polarbjørn drift, J. Geophys. Res., 96,
10567–10580, https://doi.org/10.1029/91JC00785, 1991. a
McKenna, R. and Crocker, G.: Ice-floe collisions interpreted from
acceleration data during LIMEX'89, Atmos. Ocean, 30, 246–269,
https://doi.org/10.1080/07055900.1992.9649440, 1992. a
Rabault, J., Sutherland, G., Jensen, A., Christensen, K., and Marchenko, A.:
Experiments on wave propagation in grease ice: combined wave gauges and
particle image velocimetry measurements, J. Fluid Mech., 864, 876–898,
https://doi.org/10.1017/jfm.2019.16, 2019. a
Rogers, W., Thomson, J., Shen, H., Doble, M., Wadhams, P., and Cheng, S.:
Dissipation of wind waves by pancake and frazil ice in the autumn Beaufort
Sea, J. Geophys. Res., 121, 7991–8007, https://doi.org/10.1002/2016JC012251, 2016. a
Rottier, P.: Floe pair interaction event rates in the marginal ice zone, J.
Geophys. Res., 97, C6, 9391–9400, https://doi.org/10.1029/92JC00152, 1992.
a
Shen, H. and Ackley, S.: A one-dimensional model for wave-induced ice-floe
collisions, Ann. Glaciol., 15, 87–95, 1991. a
Shen, H., Hibler III, W., and Leppäranta, M.: On the rheology of a
broken ice field due to floe collision, MIZEX Bulletin III, USACREL Special
Report 84-28, 29–34, 1984. a
Shen, H., Hibler III, W., and Leppäranta, M.: On applying granular
flow theory to a deforming broken ice field, Acta Mech., 63, 143–160,
1986. a
Shen, H., Hibler III, W., and Leppäranta, M.: The role of floe
collisions in sea ice rheology, J. Geophys. Res., 92, 7085–7096, 1987. a
Skene, D., Bennetts, L., Wright, M., and Meylan, M.: Water wave overwash of a
step, J. Fluid Mech., 839, 293–312, https://doi.org/10.1017/jfm.2017.857, 2018. a
Stopa, J., Ardhuin, F., Thomson, J., Smith, M., Kohout, A., Doble, M., and
Wadhams, P.: Wave attenuation through an Arctic marginal ice zone on 12
October 2015. 1. Measurement of wave spectra and ice features from
Sentinel 1A, J. Geophys. Res., 123, https://doi.org/10.1029/2018JC013791,
2018a. a
Stopa, J., Sutherland, P., and Ardhuin, F.: Strong and highly variable push of
ocean waves on Southern Ocean sea ice, P. Natl. Acad. Sci. USA, 115,
5861–5865, https://doi.org/10.1073/pnas.1802011115, 2018b. a, b
Tsarau, A.: Experimental study on wave propagation in ice and the combined action of waves and ice on structures – Data storage report, available at: https://zenodo.org/record/1067170 (last access: 7 November 2019), 2016. a
Voermans, J., Babanin, A., Thomson, J., Smith, M., and Shen, H.: Wave
attenuation by sea ice turbulence, Geophys. Res. Lett., 46, 6796–6803,
https://doi.org/10.1029/2019GL082945, 2019. a, b, c
Yiew, L., Bennetts, L., Meylan, M., Thomas, G., and French, B.: Wave-induced
collisions of thin floating disks, Phys. Fluids, 29, 127102,
https://doi.org/10.1063/1.5003310, 2017. a
Yiew, L., Parra, S., Wang, D., Sree, D., Babanin, A., and Law, A.-K.: Wave
attenuation and dispersion due to floating ice covers, Appl. Ocean Res.,
87, 256–263, https://doi.org/10.1016/j.apor.2019.04.006, 2019. a, b
Zhao, X. and Shen, H.: Wave propagation in frazil/pancake, pancake, and
fragmented ice covers, Cold Regions Sci. Technol., 113, 71–80,
https://doi.org/10.1016/j.coldregions.2015.02.007, 2015. a, b
Short summary
Sea ice interactions with waves are extensively studied in recent years, but mechanisms leading to wave energy attenuation in sea ice remain poorly understood. One of the reasons limiting progress in modelling is a lack of observational data for model validation. The paper presents an analysis of laboratory observations of waves propagating in colliding ice floes. We show that wave attenuation is sensitive to floe size and wave period. A numerical model is calibrated to reproduce this behaviour.
Sea ice interactions with waves are extensively studied in recent years, but mechanisms leading...