Articles | Volume 13, issue 9
https://doi.org/10.5194/tc-13-2439-2019
https://doi.org/10.5194/tc-13-2439-2019
Research article
 | 
20 Sep 2019
Research article |  | 20 Sep 2019

Two-dimensional inversion of wideband spectral data from the capacitively coupled resistivity method – first applications in periglacial environments

Jan Mudler, Andreas Hördt, Anita Przyklenk, Gianluca Fiandaca, Pradip Kumar Maurya, and Christian Hauck

Related authors

Broadband spectral induced polarization for the detection of Permafrost and an approach to ice content estimation – a case study from Yakutia, Russia
Jan Mudler, Andreas Hördt, Dennis Kreith, Madhuri Sugand, Kirill Bazhin, Lyudmila Lebedeva, and Tino Radić
The Cryosphere, 16, 4727–4744, https://doi.org/10.5194/tc-16-4727-2022,https://doi.org/10.5194/tc-16-4727-2022, 2022
Short summary

Cited articles

Achammer, T. and Denoth, A.: Snow dielectric properties: from DC to microwave X-band, Ann Glaciol, 19, 92–96, https://doi.org/10.3189/S0260305500011034, 1994. a
Arenson, L., Colgan, W., and Marshall, H.: Physical, Thermal, and Mechanical Properties of Snow, Ice, and Permafrost, in: Snow and Ice-Related Hazards, Risks and Disasters, https://doi.org/10.1016/B978-0-12-394849-6.00002-0, 2015. a, b, c, d
Artemov, V. and Volkov, A.: Water and Ice Dielectric Spectra Scaling at 0 C, Ferroelectrics, 466, 158–165, https://doi.org/10.1080/00150193.2014.895216, 2014. a, b
Auken, E., Christiansen, A., Kirkegaard, C., Fiandaca, G., Schamper, C., Behroozmand, A., Binley, A., Nielsen, E., Effersø, F., Christensen, N., Sørensen, K., Foged, N., and Vignoli, G.: An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data, Explor. Geophys., 46, 223–235, https://doi.org/10.1071/EG13097, 2014. a, b
Auty, R. and Cole, R.: Dielectric Properties of Ice and Solid D2O, J. Chem. Phys., 20, 1309, https://doi.org/10.1063/1.1700726, 1952. a, b
Download
Short summary
The capacitively coupled resistivity (CCR) method enables the determination of frequency-dependent electrical parameters of the subsurface. CCR is well suited for application in cryospheric areas because it provides logistical advantages regarding coupling on hard surfaces and highly resistive grounds. With our new spectral two-dimensional inversion, we can identify subsurface structures based on full spectral information. We show the first results of the inversion method on the field scale.