Articles | Volume 13, issue 6
The Cryosphere, 13, 1621–1633, 2019
https://doi.org/10.5194/tc-13-1621-2019
The Cryosphere, 13, 1621–1633, 2019
https://doi.org/10.5194/tc-13-1621-2019

Research article 13 Jun 2019

Research article | 13 Jun 2019

Scaling of instability timescales of Antarctic outlet glaciers based on one-dimensional similitude analysis

Anders Levermann and Johannes Feldmann

Related authors

Stabilizing effect of mélange buttressing on the Marine Ice Cliff Instability of the West Antarctic Ice Sheet
Tanja Schlemm, Johannes Feldmann, Ricarda Winkelmann, and Anders Levermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-238,https://doi.org/10.5194/tc-2021-238, 2021
Preprint under review for TC
Short summary
Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP6 models
Anja Katzenberger, Jacob Schewe, Julia Pongratz, and Anders Levermann
Earth Syst. Dynam., 12, 367–386, https://doi.org/10.5194/esd-12-367-2021,https://doi.org/10.5194/esd-12-367-2021, 2021
Short summary
A simple parametrization of mélange buttressing for calving glaciers
Tanja Schlemm and Anders Levermann
The Cryosphere, 15, 531–545, https://doi.org/10.5194/tc-15-531-2021,https://doi.org/10.5194/tc-15-531-2021, 2021
Short summary
Sensitivity of ice loss to uncertainty in flow law parameters in an idealized one-dimensional geometry
Maria Zeitz, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 14, 3537–3550, https://doi.org/10.5194/tc-14-3537-2020,https://doi.org/10.5194/tc-14-3537-2020, 2020
Short summary
The role of history and strength of the oceanic forcing in sea level projections from Antarctica with the Parallel Ice Sheet Model
Ronja Reese, Anders Levermann, Torsten Albrecht, Hélène Seroussi, and Ricarda Winkelmann
The Cryosphere, 14, 3097–3110, https://doi.org/10.5194/tc-14-3097-2020,https://doi.org/10.5194/tc-14-3097-2020, 2020
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Sheets
Remapping of Greenland ice sheet surface mass balance anomalies for large ensemble sea-level change projections
Heiko Goelzer, Brice P. Y. Noël, Tamsin L. Edwards, Xavier Fettweis, Jonathan M. Gregory, William H. Lipscomb, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 14, 1747–1762, https://doi.org/10.5194/tc-14-1747-2020,https://doi.org/10.5194/tc-14-1747-2020, 2020
Short summary
Brief communication: On calculating the sea-level contribution in marine ice-sheet models
Heiko Goelzer, Violaine Coulon, Frank Pattyn, Bas de Boer, and Roderik van de Wal
The Cryosphere, 14, 833–840, https://doi.org/10.5194/tc-14-833-2020,https://doi.org/10.5194/tc-14-833-2020, 2020
Short summary
A simple stress-based cliff-calving law
Tanja Schlemm and Anders Levermann
The Cryosphere, 13, 2475–2488, https://doi.org/10.5194/tc-13-2475-2019,https://doi.org/10.5194/tc-13-2475-2019, 2019
Short summary
A statistical fracture model for Antarctic ice shelves and glaciers
Veronika Emetc, Paul Tregoning, Mathieu Morlighem, Chris Borstad, and Malcolm Sambridge
The Cryosphere, 12, 3187–3213, https://doi.org/10.5194/tc-12-3187-2018,https://doi.org/10.5194/tc-12-3187-2018, 2018
Short summary
Modelled fracture and calving on the Totten Ice Shelf
Sue Cook, Jan Åström, Thomas Zwinger, Benjamin Keith Galton-Fenzi, Jamin Stevens Greenbaum, and Richard Coleman
The Cryosphere, 12, 2401–2411, https://doi.org/10.5194/tc-12-2401-2018,https://doi.org/10.5194/tc-12-2401-2018, 2018
Short summary

Cited articles

Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a
Bamber, J. L., Riva, R. E. M., Vermeersen, B. L. A., and LeBrocq, A. M.: Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet, Science, 324, 901–903, https://doi.org/10.1126/science.1169335, 2009. a
Bentley, C. R., Crary, A. P., Ostenso, N. A., and Thiel, E. C.: Structure of West Antarctica, Science, 131, 131–136, https://doi.org/10.1126/science.131.3394.131, 1960. a
Buckingham, E.: On Physically Similar Systems; Illustrations of the Use of Dimensional Equations, Phys. Rev., 4, 345–376, https://doi.org/10.1103/PhysRev.4.345, 1914. a
Burton, J. C., Amundson, J. M., Abbot, D. S., Boghosian, A., Cathles, L. M., Correa-Legisos, S., Darnell, K. N., Guttenberg, N., Holland, D. M., and MacAyeal, D. R.: Laboratory Investigations of Iceberg Capsize Dynamics, Energy Dissipation and Tsunamigenesis: Iceberg capsize dynamics, J. Geophys. Res.-Earth, 117, F01007, https://doi.org/10.1029/2011JF002055, 2012. a
Download
Short summary
Using scaling analysis we propose that the currently observed marine ice-sheet instability in the Amundsen Sea sector might be faster than all other potential instabilities in Antarctica.