Articles | Volume 13, issue 6
https://doi.org/10.5194/tc-13-1621-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-1621-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Scaling of instability timescales of Antarctic outlet glaciers based on one-dimensional similitude analysis
Anders Levermann
CORRESPONDING AUTHOR
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
LDEO, Columbia University, New York, USA
Institute of Physics, University of Potsdam, Potsdam, Germany
Johannes Feldmann
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
Related authors
Johannes Feldmann, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 18, 4011–4028, https://doi.org/10.5194/tc-18-4011-2024, https://doi.org/10.5194/tc-18-4011-2024, 2024
Short summary
Short summary
Here we show in simplified simulations that the (ir)reversibility of the retreat of instability-prone, Antarctica-type glaciers can strongly depend on the depth of the bed depression they rest on. If it is sufficiently deep, then the destabilized glacier does not recover from its collapsed state. Our results suggest that glaciers resting on a wide and deep bed depression, such as Antarctica's Thwaites Glacier, are particularly susceptible to irreversible retreat.
Anja Katzenberger and Anders Levermann
Earth Syst. Dynam., 15, 1137–1151, https://doi.org/10.5194/esd-15-1137-2024, https://doi.org/10.5194/esd-15-1137-2024, 2024
Short summary
Short summary
A fifth of the world's population lives in eastern China, whose climate is dominated by the East Asian Summer Monsoon (EASM). Therefore, it is important to know how the EASM will change under global warming. Here, we use the data of 34 climate models of the latest generation to understand how the EASM will change throughout the 21st century. The models project that the EASM will intensify and that variability between years will increase associated with an increase in extremely wet seasons.
Robert E. Kopp, Gregory G. Garner, Tim H. J. Hermans, Shantenu Jha, Praveen Kumar, Alexander Reedy, Aimée B. A. Slangen, Matteo Turilli, Tamsin L. Edwards, Jonathan M. Gregory, George Koubbe, Anders Levermann, Andre Merzky, Sophie Nowicki, Matthew D. Palmer, and Chris Smith
Geosci. Model Dev., 16, 7461–7489, https://doi.org/10.5194/gmd-16-7461-2023, https://doi.org/10.5194/gmd-16-7461-2023, 2023
Short summary
Short summary
Future sea-level rise projections exhibit multiple forms of uncertainty, all of which must be considered by scientific assessments intended to inform decision-making. The Framework for Assessing Changes To Sea-level (FACTS) is a new software package intended to support assessments of global mean, regional, and extreme sea-level rise. An early version of FACTS supported the development of the IPCC Sixth Assessment Report sea-level projections.
Johannes Feldmann and Anders Levermann
The Cryosphere, 17, 327–348, https://doi.org/10.5194/tc-17-327-2023, https://doi.org/10.5194/tc-17-327-2023, 2023
Short summary
Short summary
Here we present a scaling relation that allows the comparison of the timescales of glaciers with geometric similarity. According to the relation, thicker and wider glaciers on a steeper bed slope have a much faster timescale than shallower, narrower glaciers on a flatter bed slope. The relation is supported by observations and simplified numerical simulations. We combine the scaling relation with a statistical analysis of the topography of 13 instability-prone Antarctic outlet glaciers.
Tanja Schlemm, Johannes Feldmann, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1979–1996, https://doi.org/10.5194/tc-16-1979-2022, https://doi.org/10.5194/tc-16-1979-2022, 2022
Short summary
Short summary
Marine cliff instability, if it exists, could dominate Antarctica's contribution to future sea-level rise. It is likely to speed up with ice thickness and thus would accelerate in most parts of Antarctica. Here, we investigate a possible mechanism that might stop cliff instability through cloaking by ice mélange. It is only a first step, but it shows that embayment geometry is, in principle, able to stop marine cliff instability in most parts of West Antarctica.
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1927–1940, https://doi.org/10.5194/tc-16-1927-2022, https://doi.org/10.5194/tc-16-1927-2022, 2022
Short summary
Short summary
We use a numerical model to simulate the flow of a simplified, buttressed Antarctic-type outlet glacier with an attached ice shelf. We find that after a few years of perturbation such a glacier responds much stronger to melting under the ice-shelf shear margins than to melting in the central fast streaming part of the ice shelf. This study explains the underlying physical mechanism which might gain importance in the future if melt rates under the Antarctic ice shelves continue to increase.
Anja Katzenberger, Jacob Schewe, Julia Pongratz, and Anders Levermann
Earth Syst. Dynam., 12, 367–386, https://doi.org/10.5194/esd-12-367-2021, https://doi.org/10.5194/esd-12-367-2021, 2021
Short summary
Short summary
All state-of-the-art global climate models that contributed to the latest Coupled Model Intercomparison Project (CMIP6) show a robust increase in Indian summer monsoon rainfall that is even stronger than in the previous intercomparison (CMIP5). Furthermore, they show an increase in the year-to-year variability of this seasonal rainfall that crucially influences the livelihood of more than 1 billion people in India.
Tanja Schlemm and Anders Levermann
The Cryosphere, 15, 531–545, https://doi.org/10.5194/tc-15-531-2021, https://doi.org/10.5194/tc-15-531-2021, 2021
Short summary
Short summary
Ice loss from Greenland and Antarctica is often cloaked by a mélange of icebergs and sea ice. Here we provide a simple method to parametrize the resulting back stress on the ice flow for large-scale projection models.
Maria Zeitz, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 14, 3537–3550, https://doi.org/10.5194/tc-14-3537-2020, https://doi.org/10.5194/tc-14-3537-2020, 2020
Short summary
Short summary
The flow of ice drives mass losses in the large ice sheets. Sea-level rise projections rely on ice-sheet models, solving the physics of ice flow and melt. Unfortunately the parameters in the physics of flow are uncertain. Here we show, in an idealized setup, that these uncertainties can double flow-driven mass losses within the possible range of parameters. It is possible that this uncertainty carries over to realistic sea-level rise projections.
Ronja Reese, Anders Levermann, Torsten Albrecht, Hélène Seroussi, and Ricarda Winkelmann
The Cryosphere, 14, 3097–3110, https://doi.org/10.5194/tc-14-3097-2020, https://doi.org/10.5194/tc-14-3097-2020, 2020
Short summary
Short summary
We compare 21st century projections of Antarctica's future sea-level contribution simulated with the Parallel Ice Sheet Model submitted to ISMIP6 with projections following the LARMIP-2 protocol based on the same model configuration. We find that (1) a preceding historic simulation increases mass loss by 5–50 % and that (2) the order of magnitude difference in the ice loss in our experiments following the two protocols can be explained by the translation of ocean forcing to sub-shelf melting.
Torsten Albrecht, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 14, 633–656, https://doi.org/10.5194/tc-14-633-2020, https://doi.org/10.5194/tc-14-633-2020, 2020
Short summary
Short summary
A large ensemble of glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) was analyzed in which four relevant model parameters were systematically varied. These parameters were selected in a companion study and are associated with uncertainties in ice dynamics, climatic forcing, basal sliding and solid Earth deformation. For each ensemble member a statistical score is computed, which enables calibrating the model against both modern and geologic data.
Torsten Albrecht, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 14, 599–632, https://doi.org/10.5194/tc-14-599-2020, https://doi.org/10.5194/tc-14-599-2020, 2020
Short summary
Short summary
During the last glacial cycles the Antarctic Ice Sheet experienced alternating climatic conditions and varying sea-level history. In response, changes in ice sheet volume and ice-covered area occurred, implying feedbacks on the global sea level. We ran model simulations of the ice sheet with the Parallel Ice Sheet Model (PISM) over the last two glacial cycles to evaluate the model's sensitivity to different choices of boundary conditions and parameters to gain confidence for future projections.
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Falko Ueckerdt, Katja Frieler, Stefan Lange, Leonie Wenz, Gunnar Luderer, and Anders Levermann
Earth Syst. Dynam., 10, 741–763, https://doi.org/10.5194/esd-10-741-2019, https://doi.org/10.5194/esd-10-741-2019, 2019
Short summary
Short summary
We compute the global mean temperature increase at which the costs from climate-change damages and climate-change mitigation are minimal. This temperature is computed robustly around 2 degrees of global warming across a wide range of normative assumptions on the valuation of future welfare and inequality aversion.
Tanja Schlemm and Anders Levermann
The Cryosphere, 13, 2475–2488, https://doi.org/10.5194/tc-13-2475-2019, https://doi.org/10.5194/tc-13-2475-2019, 2019
Short summary
Short summary
We provide a simple stress-based parameterization for cliff calving of ice sheets. According to the resulting increasing dependence of the calving rate on ice thickness, the parameterization might lead to a runaway ice loss in large parts of Greenland and Antarctica.
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-109, https://doi.org/10.5194/tc-2018-109, 2018
Revised manuscript not accepted
Johannes Feldmann and Anders Levermann
The Cryosphere, 11, 1913–1932, https://doi.org/10.5194/tc-11-1913-2017, https://doi.org/10.5194/tc-11-1913-2017, 2017
Jacob Schewe and Anders Levermann
Earth Syst. Dynam., 8, 495–505, https://doi.org/10.5194/esd-8-495-2017, https://doi.org/10.5194/esd-8-495-2017, 2017
Short summary
Short summary
Monsoon systems have undergone abrupt changes in past climates, and theoretical considerations show that threshold behavior can follow from the internal dynamics of monsoons. So far, however, the possibility of abrupt changes has not been explored for modern monsoon systems. We analyze state-of-the-art climate model simulations and show that some models project abrupt changes in Sahel rainfall in response to a dynamic shift in the West African monsoon under 21st century climate change.
Jan Wohland, Torsten Albrecht, and Anders Levermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-191, https://doi.org/10.5194/tc-2016-191, 2016
Preprint withdrawn
Anders Levermann and Ricarda Winkelmann
The Cryosphere, 10, 1799–1807, https://doi.org/10.5194/tc-10-1799-2016, https://doi.org/10.5194/tc-10-1799-2016, 2016
Short summary
Short summary
In recent decades, the Greenland Ice Sheet has been losing mass and has thereby contributed to global sea-level rise. Here we derive the basic equations for the melt elevation feedback that can lead to self-amplifying melt of the Greenland Ice Sheet and ice sheets in general. The theory unifies the results of complex models when the feedback dominates the dynamics and it allows us to estimate the melt time of ice sheets from data in cases where ice dynamic loss can be neglected.
Johannes Feldmann and Anders Levermann
The Cryosphere, 10, 1753–1769, https://doi.org/10.5194/tc-10-1753-2016, https://doi.org/10.5194/tc-10-1753-2016, 2016
K. Frieler, M. Mengel, and A. Levermann
Earth Syst. Dynam., 7, 203–210, https://doi.org/10.5194/esd-7-203-2016, https://doi.org/10.5194/esd-7-203-2016, 2016
Short summary
Short summary
Sea level will continue to rise for centuries. We investigate the option of delaying sea-level rise by pumping ocean water onto Antarctica. Due to wave propagation ice is discharged much faster back into the ocean than expected from pure advection. A millennium-scale storage of > 80 % of the additional ice requires a distance of > 700 km from the coastline. The pumping energy required to elevate ocean water to mitigate a sea-level rise of 3 mm yr−1 exceeds 7 % of current global primary energy supply.
K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, and H. J. Schellnhuber
Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, https://doi.org/10.5194/esd-6-447-2015, 2015
J. Feldmann and A. Levermann
The Cryosphere, 9, 631–645, https://doi.org/10.5194/tc-9-631-2015, https://doi.org/10.5194/tc-9-631-2015, 2015
M. A. Martin, A. Levermann, and R. Winkelmann
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-1705-2015, https://doi.org/10.5194/tcd-9-1705-2015, 2015
Preprint withdrawn
Short summary
Short summary
Numerical ice sheet modelling shows that idealized, step-function type ocean warming in the Weddell Sea, where the ice sheet is close to floatation, leads to more immediate ice discharge with a higher sensitivity to small warming levels than the same warming in the Amundsen Sea. While the cumulative ice loss in the Amundsen Sea Sector is of similar magnitude after five centuries of continued warming, ice loss increases at a slower pace and only for significantly higher warming levels.
D. Ehlert and A. Levermann
Earth Syst. Dynam., 5, 383–397, https://doi.org/10.5194/esd-5-383-2014, https://doi.org/10.5194/esd-5-383-2014, 2014
A. Levermann, R. Winkelmann, S. Nowicki, J. L. Fastook, K. Frieler, R. Greve, H. H. Hellmer, M. A. Martin, M. Meinshausen, M. Mengel, A. J. Payne, D. Pollard, T. Sato, R. Timmermann, W. L. Wang, and R. A. Bindschadler
Earth Syst. Dynam., 5, 271–293, https://doi.org/10.5194/esd-5-271-2014, https://doi.org/10.5194/esd-5-271-2014, 2014
T. Albrecht and A. Levermann
The Cryosphere, 8, 587–605, https://doi.org/10.5194/tc-8-587-2014, https://doi.org/10.5194/tc-8-587-2014, 2014
C. F. Schleussner, J. Runge, J. Lehmann, and A. Levermann
Earth Syst. Dynam., 5, 103–115, https://doi.org/10.5194/esd-5-103-2014, https://doi.org/10.5194/esd-5-103-2014, 2014
A. Menon, A. Levermann, J. Schewe, J. Lehmann, and K. Frieler
Earth Syst. Dynam., 4, 287–300, https://doi.org/10.5194/esd-4-287-2013, https://doi.org/10.5194/esd-4-287-2013, 2013
Johannes Feldmann, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 18, 4011–4028, https://doi.org/10.5194/tc-18-4011-2024, https://doi.org/10.5194/tc-18-4011-2024, 2024
Short summary
Short summary
Here we show in simplified simulations that the (ir)reversibility of the retreat of instability-prone, Antarctica-type glaciers can strongly depend on the depth of the bed depression they rest on. If it is sufficiently deep, then the destabilized glacier does not recover from its collapsed state. Our results suggest that glaciers resting on a wide and deep bed depression, such as Antarctica's Thwaites Glacier, are particularly susceptible to irreversible retreat.
Anja Katzenberger and Anders Levermann
Earth Syst. Dynam., 15, 1137–1151, https://doi.org/10.5194/esd-15-1137-2024, https://doi.org/10.5194/esd-15-1137-2024, 2024
Short summary
Short summary
A fifth of the world's population lives in eastern China, whose climate is dominated by the East Asian Summer Monsoon (EASM). Therefore, it is important to know how the EASM will change under global warming. Here, we use the data of 34 climate models of the latest generation to understand how the EASM will change throughout the 21st century. The models project that the EASM will intensify and that variability between years will increase associated with an increase in extremely wet seasons.
Robert E. Kopp, Gregory G. Garner, Tim H. J. Hermans, Shantenu Jha, Praveen Kumar, Alexander Reedy, Aimée B. A. Slangen, Matteo Turilli, Tamsin L. Edwards, Jonathan M. Gregory, George Koubbe, Anders Levermann, Andre Merzky, Sophie Nowicki, Matthew D. Palmer, and Chris Smith
Geosci. Model Dev., 16, 7461–7489, https://doi.org/10.5194/gmd-16-7461-2023, https://doi.org/10.5194/gmd-16-7461-2023, 2023
Short summary
Short summary
Future sea-level rise projections exhibit multiple forms of uncertainty, all of which must be considered by scientific assessments intended to inform decision-making. The Framework for Assessing Changes To Sea-level (FACTS) is a new software package intended to support assessments of global mean, regional, and extreme sea-level rise. An early version of FACTS supported the development of the IPCC Sixth Assessment Report sea-level projections.
Johannes Feldmann and Anders Levermann
The Cryosphere, 17, 327–348, https://doi.org/10.5194/tc-17-327-2023, https://doi.org/10.5194/tc-17-327-2023, 2023
Short summary
Short summary
Here we present a scaling relation that allows the comparison of the timescales of glaciers with geometric similarity. According to the relation, thicker and wider glaciers on a steeper bed slope have a much faster timescale than shallower, narrower glaciers on a flatter bed slope. The relation is supported by observations and simplified numerical simulations. We combine the scaling relation with a statistical analysis of the topography of 13 instability-prone Antarctic outlet glaciers.
Tanja Schlemm, Johannes Feldmann, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1979–1996, https://doi.org/10.5194/tc-16-1979-2022, https://doi.org/10.5194/tc-16-1979-2022, 2022
Short summary
Short summary
Marine cliff instability, if it exists, could dominate Antarctica's contribution to future sea-level rise. It is likely to speed up with ice thickness and thus would accelerate in most parts of Antarctica. Here, we investigate a possible mechanism that might stop cliff instability through cloaking by ice mélange. It is only a first step, but it shows that embayment geometry is, in principle, able to stop marine cliff instability in most parts of West Antarctica.
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1927–1940, https://doi.org/10.5194/tc-16-1927-2022, https://doi.org/10.5194/tc-16-1927-2022, 2022
Short summary
Short summary
We use a numerical model to simulate the flow of a simplified, buttressed Antarctic-type outlet glacier with an attached ice shelf. We find that after a few years of perturbation such a glacier responds much stronger to melting under the ice-shelf shear margins than to melting in the central fast streaming part of the ice shelf. This study explains the underlying physical mechanism which might gain importance in the future if melt rates under the Antarctic ice shelves continue to increase.
Anja Katzenberger, Jacob Schewe, Julia Pongratz, and Anders Levermann
Earth Syst. Dynam., 12, 367–386, https://doi.org/10.5194/esd-12-367-2021, https://doi.org/10.5194/esd-12-367-2021, 2021
Short summary
Short summary
All state-of-the-art global climate models that contributed to the latest Coupled Model Intercomparison Project (CMIP6) show a robust increase in Indian summer monsoon rainfall that is even stronger than in the previous intercomparison (CMIP5). Furthermore, they show an increase in the year-to-year variability of this seasonal rainfall that crucially influences the livelihood of more than 1 billion people in India.
Tanja Schlemm and Anders Levermann
The Cryosphere, 15, 531–545, https://doi.org/10.5194/tc-15-531-2021, https://doi.org/10.5194/tc-15-531-2021, 2021
Short summary
Short summary
Ice loss from Greenland and Antarctica is often cloaked by a mélange of icebergs and sea ice. Here we provide a simple method to parametrize the resulting back stress on the ice flow for large-scale projection models.
Maria Zeitz, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 14, 3537–3550, https://doi.org/10.5194/tc-14-3537-2020, https://doi.org/10.5194/tc-14-3537-2020, 2020
Short summary
Short summary
The flow of ice drives mass losses in the large ice sheets. Sea-level rise projections rely on ice-sheet models, solving the physics of ice flow and melt. Unfortunately the parameters in the physics of flow are uncertain. Here we show, in an idealized setup, that these uncertainties can double flow-driven mass losses within the possible range of parameters. It is possible that this uncertainty carries over to realistic sea-level rise projections.
Ronja Reese, Anders Levermann, Torsten Albrecht, Hélène Seroussi, and Ricarda Winkelmann
The Cryosphere, 14, 3097–3110, https://doi.org/10.5194/tc-14-3097-2020, https://doi.org/10.5194/tc-14-3097-2020, 2020
Short summary
Short summary
We compare 21st century projections of Antarctica's future sea-level contribution simulated with the Parallel Ice Sheet Model submitted to ISMIP6 with projections following the LARMIP-2 protocol based on the same model configuration. We find that (1) a preceding historic simulation increases mass loss by 5–50 % and that (2) the order of magnitude difference in the ice loss in our experiments following the two protocols can be explained by the translation of ocean forcing to sub-shelf melting.
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020, https://doi.org/10.5194/tc-14-2283-2020, 2020
Short summary
Short summary
We present the results of the third Marine Ice Sheet Intercomparison Project (MISMIP+). MISMIP+ is one in a series of exercises that test numerical models of ice sheet flow in simple situations. This particular exercise concentrates on the response of ice sheet models to the thinning of their floating ice shelves, which is of interest because numerical models are currently used to model the response to contemporary and near-future thinning in Antarctic ice shelves.
Torsten Albrecht, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 14, 633–656, https://doi.org/10.5194/tc-14-633-2020, https://doi.org/10.5194/tc-14-633-2020, 2020
Short summary
Short summary
A large ensemble of glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) was analyzed in which four relevant model parameters were systematically varied. These parameters were selected in a companion study and are associated with uncertainties in ice dynamics, climatic forcing, basal sliding and solid Earth deformation. For each ensemble member a statistical score is computed, which enables calibrating the model against both modern and geologic data.
Torsten Albrecht, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 14, 599–632, https://doi.org/10.5194/tc-14-599-2020, https://doi.org/10.5194/tc-14-599-2020, 2020
Short summary
Short summary
During the last glacial cycles the Antarctic Ice Sheet experienced alternating climatic conditions and varying sea-level history. In response, changes in ice sheet volume and ice-covered area occurred, implying feedbacks on the global sea level. We ran model simulations of the ice sheet with the Parallel Ice Sheet Model (PISM) over the last two glacial cycles to evaluate the model's sensitivity to different choices of boundary conditions and parameters to gain confidence for future projections.
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Falko Ueckerdt, Katja Frieler, Stefan Lange, Leonie Wenz, Gunnar Luderer, and Anders Levermann
Earth Syst. Dynam., 10, 741–763, https://doi.org/10.5194/esd-10-741-2019, https://doi.org/10.5194/esd-10-741-2019, 2019
Short summary
Short summary
We compute the global mean temperature increase at which the costs from climate-change damages and climate-change mitigation are minimal. This temperature is computed robustly around 2 degrees of global warming across a wide range of normative assumptions on the valuation of future welfare and inequality aversion.
Tanja Schlemm and Anders Levermann
The Cryosphere, 13, 2475–2488, https://doi.org/10.5194/tc-13-2475-2019, https://doi.org/10.5194/tc-13-2475-2019, 2019
Short summary
Short summary
We provide a simple stress-based parameterization for cliff calving of ice sheets. According to the resulting increasing dependence of the calving rate on ice thickness, the parameterization might lead to a runaway ice loss in large parts of Greenland and Antarctica.
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-109, https://doi.org/10.5194/tc-2018-109, 2018
Revised manuscript not accepted
Johannes Feldmann and Anders Levermann
The Cryosphere, 11, 1913–1932, https://doi.org/10.5194/tc-11-1913-2017, https://doi.org/10.5194/tc-11-1913-2017, 2017
Jacob Schewe and Anders Levermann
Earth Syst. Dynam., 8, 495–505, https://doi.org/10.5194/esd-8-495-2017, https://doi.org/10.5194/esd-8-495-2017, 2017
Short summary
Short summary
Monsoon systems have undergone abrupt changes in past climates, and theoretical considerations show that threshold behavior can follow from the internal dynamics of monsoons. So far, however, the possibility of abrupt changes has not been explored for modern monsoon systems. We analyze state-of-the-art climate model simulations and show that some models project abrupt changes in Sahel rainfall in response to a dynamic shift in the West African monsoon under 21st century climate change.
Jan Wohland, Torsten Albrecht, and Anders Levermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-191, https://doi.org/10.5194/tc-2016-191, 2016
Preprint withdrawn
Anders Levermann and Ricarda Winkelmann
The Cryosphere, 10, 1799–1807, https://doi.org/10.5194/tc-10-1799-2016, https://doi.org/10.5194/tc-10-1799-2016, 2016
Short summary
Short summary
In recent decades, the Greenland Ice Sheet has been losing mass and has thereby contributed to global sea-level rise. Here we derive the basic equations for the melt elevation feedback that can lead to self-amplifying melt of the Greenland Ice Sheet and ice sheets in general. The theory unifies the results of complex models when the feedback dominates the dynamics and it allows us to estimate the melt time of ice sheets from data in cases where ice dynamic loss can be neglected.
Johannes Feldmann and Anders Levermann
The Cryosphere, 10, 1753–1769, https://doi.org/10.5194/tc-10-1753-2016, https://doi.org/10.5194/tc-10-1753-2016, 2016
K. Frieler, M. Mengel, and A. Levermann
Earth Syst. Dynam., 7, 203–210, https://doi.org/10.5194/esd-7-203-2016, https://doi.org/10.5194/esd-7-203-2016, 2016
Short summary
Short summary
Sea level will continue to rise for centuries. We investigate the option of delaying sea-level rise by pumping ocean water onto Antarctica. Due to wave propagation ice is discharged much faster back into the ocean than expected from pure advection. A millennium-scale storage of > 80 % of the additional ice requires a distance of > 700 km from the coastline. The pumping energy required to elevate ocean water to mitigate a sea-level rise of 3 mm yr−1 exceeds 7 % of current global primary energy supply.
K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, and H. J. Schellnhuber
Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, https://doi.org/10.5194/esd-6-447-2015, 2015
J. Feldmann and A. Levermann
The Cryosphere, 9, 631–645, https://doi.org/10.5194/tc-9-631-2015, https://doi.org/10.5194/tc-9-631-2015, 2015
M. A. Martin, A. Levermann, and R. Winkelmann
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-1705-2015, https://doi.org/10.5194/tcd-9-1705-2015, 2015
Preprint withdrawn
Short summary
Short summary
Numerical ice sheet modelling shows that idealized, step-function type ocean warming in the Weddell Sea, where the ice sheet is close to floatation, leads to more immediate ice discharge with a higher sensitivity to small warming levels than the same warming in the Amundsen Sea. While the cumulative ice loss in the Amundsen Sea Sector is of similar magnitude after five centuries of continued warming, ice loss increases at a slower pace and only for significantly higher warming levels.
D. Ehlert and A. Levermann
Earth Syst. Dynam., 5, 383–397, https://doi.org/10.5194/esd-5-383-2014, https://doi.org/10.5194/esd-5-383-2014, 2014
A. Levermann, R. Winkelmann, S. Nowicki, J. L. Fastook, K. Frieler, R. Greve, H. H. Hellmer, M. A. Martin, M. Meinshausen, M. Mengel, A. J. Payne, D. Pollard, T. Sato, R. Timmermann, W. L. Wang, and R. A. Bindschadler
Earth Syst. Dynam., 5, 271–293, https://doi.org/10.5194/esd-5-271-2014, https://doi.org/10.5194/esd-5-271-2014, 2014
T. Albrecht and A. Levermann
The Cryosphere, 8, 587–605, https://doi.org/10.5194/tc-8-587-2014, https://doi.org/10.5194/tc-8-587-2014, 2014
C. F. Schleussner, J. Runge, J. Lehmann, and A. Levermann
Earth Syst. Dynam., 5, 103–115, https://doi.org/10.5194/esd-5-103-2014, https://doi.org/10.5194/esd-5-103-2014, 2014
A. Menon, A. Levermann, J. Schewe, J. Lehmann, and K. Frieler
Earth Syst. Dynam., 4, 287–300, https://doi.org/10.5194/esd-4-287-2013, https://doi.org/10.5194/esd-4-287-2013, 2013
Related subject area
Discipline: Ice sheets | Subject: Ice Sheets
Probabilistic projections of the Amery Ice Shelf catchment, Antarctica, under high ice-shelf basal melt conditions
Reconstructing dynamics of the Baltic Ice Stream Complex during deglaciation of the Last Scandinavian Ice Sheet
The influence of firn-layer material properties on surface crevasse propagation in glaciers and ice shelves
Assessing the potential for ice flow piracy between the Totten and Vanderford glaciers, East Antarctica
Stagnant ice and age modelling in the Dome C region, Antarctica
Polar firn properties in Greenland and Antarctica and related effects on microwave brightness temperatures
A model of the weathering crust and microbial activity on an ice-sheet surface
PISM-LakeCC: Implementing an adaptive proglacial lake boundary in an ice sheet model
Remapping of Greenland ice sheet surface mass balance anomalies for large ensemble sea-level change projections
Brief communication: On calculating the sea-level contribution in marine ice-sheet models
A simple stress-based cliff-calving law
A statistical fracture model for Antarctic ice shelves and glaciers
Modelled fracture and calving on the Totten Ice Shelf
Sanket Jantre, Matthew J. Hoffman, Nathan M. Urban, Trevor Hillebrand, Mauro Perego, Stephen Price, and John D. Jakeman
EGUsphere, https://doi.org/10.5194/egusphere-2024-1677, https://doi.org/10.5194/egusphere-2024-1677, 2024
Short summary
Short summary
We investigate potential sea-level rise from Antarctica's Lambert Glacier, previously thought stable but now at risk from ocean warming by 2100. Combining statistical methods with limited supercomputer simulations, we calibrated our ice-sheet model using three observables. We find that under high greenhouse gas emissions, glacier retreat could raise sea levels by 46 to 133 mm by 2300. This study highlights the need to improve observations to reduce uncertainty in ice-sheet model projections.
Izabela Szuman, Jakub Z. Kalita, Christiaan R. Diemont, Stephen J. Livingstone, Chris D. Clark, and Martin Margold
The Cryosphere, 18, 2407–2428, https://doi.org/10.5194/tc-18-2407-2024, https://doi.org/10.5194/tc-18-2407-2024, 2024
Short summary
Short summary
A Baltic-wide glacial landform-based map is presented, filling in a geographical gap in the record that has been speculated about by palaeoglaciologists for over a century. Here we used newly available bathymetric data and provide landform evidence of corridors of fast ice flow that we interpret as ice streams. Where previous ice-sheet-scale investigations inferred a single ice source, our mapping identifies flow and ice margin geometries from both Swedish and Bothnian sources.
Theo Clayton, Ravindra Duddu, Tim Hageman, and Emilio Martinez-Paneda
EGUsphere, https://doi.org/10.5194/egusphere-2024-660, https://doi.org/10.5194/egusphere-2024-660, 2024
Short summary
Short summary
We develop and validate new analytical solutions that quantitatively consider how the properties of ice vary along the depth of ice shelves and can be readily used in existing ice sheet models. Depth-varying firn properties are found to have a profound impact on ice sheet fracture and calving events. Our results show that grounded glaciers are less vulnerable than previously anticipated while floating ice shelves are significantly more vulnerable to fracture and calving.
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023, https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Short summary
Changes in Antarctic surface elevation can cause changes in ice and basal water flow, impacting how much ice enters the ocean. We find that ice and basal water flow could divert from the Totten to the Vanderford Glacier, East Antarctica, under only small changes in the surface elevation, with implications for estimates of ice loss from this region. Further studies are needed to determine when this could occur and if similar diversions could occur elsewhere in Antarctica due to climate change.
Ailsa Chung, Frédéric Parrenin, Daniel Steinhage, Robert Mulvaney, Carlos Martín, Marie G. P. Cavitte, David A. Lilien, Veit Helm, Drew Taylor, Prasad Gogineni, Catherine Ritz, Massimo Frezzotti, Charles O'Neill, Heinrich Miller, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023, https://doi.org/10.5194/tc-17-3461-2023, 2023
Short summary
Short summary
We combined a numerical model with radar measurements in order to determine the age of ice in the Dome C region of Antarctica. Our results show that at the current ice core drilling sites on Little Dome C, the maximum age of the ice is almost 1.5 Ma. We also highlight a new potential drill site called North Patch with ice up to 2 Ma. Finally, we explore the nature of a stagnant ice layer at the base of the ice sheet which has been independently observed and modelled but is not well understood.
Haokui Xu, Brooke Medley, Leung Tsang, Joel T. Johnson, Kenneth C. Jezek, Macro Brogioni, and Lars Kaleschke
The Cryosphere, 17, 2793–2809, https://doi.org/10.5194/tc-17-2793-2023, https://doi.org/10.5194/tc-17-2793-2023, 2023
Short summary
Short summary
The density profile of polar ice sheets is a major unknown in estimating the mass loss using lidar tomography methods. In this paper, we show that combing the active radar data and passive radiometer data can provide an estimation of density properties using the new model we implemented in this paper. The new model includes the short and long timescale variations in the firn and also the refrozen layers which are not included in the previous modeling work.
Tilly Woods and Ian J. Hewitt
The Cryosphere, 17, 1967–1987, https://doi.org/10.5194/tc-17-1967-2023, https://doi.org/10.5194/tc-17-1967-2023, 2023
Short summary
Short summary
Solar radiation causes melting at and just below the surface of the Greenland ice sheet, forming a porous surface layer known as the weathering crust. The weathering crust is home to many microbes, and the growth of these microbes is linked to the melting of the weathering crust and vice versa. We use a mathematical model to investigate what controls the size and structure of the weathering crust, the number of microbes within it, and its sensitivity to climate change.
Sebastian Hinck, Evan J. Gowan, Xu Zhang, and Gerrit Lohmann
The Cryosphere, 16, 941–965, https://doi.org/10.5194/tc-16-941-2022, https://doi.org/10.5194/tc-16-941-2022, 2022
Short summary
Short summary
Proglacial lakes were pervasive along the retreating continental ice margins after the Last Glacial Maximum. Similarly to the marine ice boundary, interactions at the ice-lake interface impact ice sheet dynamics and mass balance. Previous numerical ice sheet modeling studies did not include a dynamical lake boundary. We describe the implementation of an adaptive lake boundary condition in PISM and apply the model to the glacial retreat of the Laurentide Ice Sheet.
Heiko Goelzer, Brice P. Y. Noël, Tamsin L. Edwards, Xavier Fettweis, Jonathan M. Gregory, William H. Lipscomb, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 14, 1747–1762, https://doi.org/10.5194/tc-14-1747-2020, https://doi.org/10.5194/tc-14-1747-2020, 2020
Short summary
Short summary
Future sea-level change projections with process-based ice sheet models are typically driven with surface mass balance forcing derived from climate models. In this work we address the problems arising from a mismatch of the modelled ice sheet geometry with the one used by the climate model. The proposed remapping method reproduces the original forcing data closely when applied to the original geometry and produces a physically meaningful forcing when applied to different modelled geometries.
Heiko Goelzer, Violaine Coulon, Frank Pattyn, Bas de Boer, and Roderik van de Wal
The Cryosphere, 14, 833–840, https://doi.org/10.5194/tc-14-833-2020, https://doi.org/10.5194/tc-14-833-2020, 2020
Short summary
Short summary
In our ice-sheet modelling experience and from exchange with colleagues in different groups, we found that it is not always clear how to calculate the sea-level contribution from a marine ice-sheet model. This goes hand in hand with a lack of documentation and transparency in the published literature on how the sea-level contribution is estimated in different models. With this brief communication, we hope to stimulate awareness and discussion in the community to improve on this situation.
Tanja Schlemm and Anders Levermann
The Cryosphere, 13, 2475–2488, https://doi.org/10.5194/tc-13-2475-2019, https://doi.org/10.5194/tc-13-2475-2019, 2019
Short summary
Short summary
We provide a simple stress-based parameterization for cliff calving of ice sheets. According to the resulting increasing dependence of the calving rate on ice thickness, the parameterization might lead to a runaway ice loss in large parts of Greenland and Antarctica.
Veronika Emetc, Paul Tregoning, Mathieu Morlighem, Chris Borstad, and Malcolm Sambridge
The Cryosphere, 12, 3187–3213, https://doi.org/10.5194/tc-12-3187-2018, https://doi.org/10.5194/tc-12-3187-2018, 2018
Short summary
Short summary
The paper includes a model that can be used to predict zones of fracture formation in both floating and grounded ice in Antarctica. We used observations and a statistics-based model to predict fractures in most ice shelves in Antarctica as an alternative to the damage-based approach. We can predict the location of observed fractures with an average success rate of 84% for grounded ice and 61% for floating ice and mean overestimation error of 26% and 20%, respectively.
Sue Cook, Jan Åström, Thomas Zwinger, Benjamin Keith Galton-Fenzi, Jamin Stevens Greenbaum, and Richard Coleman
The Cryosphere, 12, 2401–2411, https://doi.org/10.5194/tc-12-2401-2018, https://doi.org/10.5194/tc-12-2401-2018, 2018
Short summary
Short summary
The growth of fractures on Antarctic ice shelves is important because it controls the amount of ice lost as icebergs. We use a model constructed of multiple interconnected blocks to predict the locations where fractures will form on the Totten Ice Shelf in East Antarctica. The results show that iceberg calving is controlled not only by fractures forming near the front of the ice shelf but also by fractures which formed many kilometres upstream.
Cited articles
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a
Bamber, J. L., Riva, R. E. M., Vermeersen, B. L. A., and LeBrocq, A. M.:
Reassessment of the Potential Sea-Level Rise from a Collapse of
the West Antarctic Ice Sheet, Science, 324, 901–903,
https://doi.org/10.1126/science.1169335, 2009. a
Bentley, C. R., Crary, A. P., Ostenso, N. A., and Thiel, E. C.: Structure of
West Antarctica, Science, 131, 131–136,
https://doi.org/10.1126/science.131.3394.131, 1960. a
Buckingham, E.: On Physically Similar Systems; Illustrations of the
Use of Dimensional Equations, Phys. Rev., 4, 345–376,
https://doi.org/10.1103/PhysRev.4.345, 1914. a
Burton, J. C., Amundson, J. M., Abbot, D. S., Boghosian, A., Cathles, L. M.,
Correa-Legisos, S., Darnell, K. N., Guttenberg, N., Holland, D. M., and
MacAyeal, D. R.: Laboratory Investigations of Iceberg Capsize Dynamics,
Energy Dissipation and Tsunamigenesis: Iceberg capsize dynamics, J. Geophys. Res.-Earth, 117, F01007,
https://doi.org/10.1029/2011JF002055, 2012. a
Cook, S. J. and Swift, D. A.: Subglacial Basins: Their Origin and
Importance in Glacial Systems and Landscapes, Earth-Sci. Rev., 115,
332–372, https://doi.org/10.1016/j.earscirev.2012.09.009, 2012. a
Corti, G., Zeoli, A., and Iandelli, I.: Small-Scale Modeling of Ice Flow
Perturbations Induced by Sudden Ice Shelf Breakup, Global Planet.
Change, 119, 51–55, https://doi.org/10.1016/j.gloplacha.2014.05.002, 2014. a
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to Past and
Future Sea-Level Rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145,
2016. a
Dupont, T. K. and Alley, R. B.: Assessment of the Importance of Ice-Shelf
Buttressing to Ice-Sheet Flow: buttressing sensitivity, Geophys.
Res. Lett., 32, L04503, https://doi.org/10.1029/2004GL022024, 2005. a, b, c
Favier, L., Gagliardini, O., Durand, G., and Zwinger, T.: A three-dimensional full Stokes model of the grounding line dynamics: effect of a pinning point beneath the ice shelf, The Cryosphere, 6, 101–112, https://doi.org/10.5194/tc-6-101-2012, 2012. a
Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini, O.,
Gillet-Chaulet, F., Zwinger, T., Payne, A. J., and Le Brocq, A. M.: Retreat
of Pine Island Glacier Controlled by Marine Ice-Sheet Instability, Nat.
Clim. Change, 4, 117–121, https://doi.org/10.1038/nclimate2094, 2014. a, b, c
Feldmann, J. and Levermann, A.: Collapse of the West Antarctic Ice Sheet
after Local Destabilization of the Amundsen Basin, P.
Natl. Acad. Sci. USA, 112, 14191–14196,
https://doi.org/10.1073/pnas.1512482112, 2015. a, b
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N.
E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G.,
Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske,
D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni,
P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel,
R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill,
W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk,
B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A.,
Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N.,
Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto,
B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti,
A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica,
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a, b, c, d, e, f
Goldberg, D., Holland, D. M., and Schoof, C.: Grounding Line Movement and Ice
Shelf Buttressing in Marine Ice Sheets, J. Geophys. Res., 114, F04026,
https://doi.org/10.1029/2008JF001227, 2009. a, b
Golledge, N. R., Kowalewski, D. E., Naish, T. R., Levy, R. H., Fogwill, C. J.,
and Gasson, E. G. W.: The Multi-Millennial Antarctic Commitment to Future
Sea-Level Rise, Nature, 526, 421–425, https://doi.org/10.1038/nature15706, 2015. a
Gong, Y., Cornford, S. L., and Payne, A. J.: Modelling the response of the Lambert Glacier–Amery Ice Shelf system, East Antarctica, to uncertain climate forcing over the 21st and 22nd centuries, The Cryosphere, 8, 1057–1068, https://doi.org/10.5194/tc-8-1057-2014, 2014. a
Greenbaum, J. S., Blankenship, D. D., Young, D. A., Richter, T. G., Roberts,
J. L., Aitken, A. R. A., Legresy, B., Schroeder, D. M., Warner, R. C., van
Ommen, T. D., and Siegert, M. J.: Ocean Access to a Cavity beneath Totten
Glacier in East Antarctica, Nat. Geosci., 8, 294–298,
https://doi.org/10.1038/ngeo2388, 2015. a
Greene, C. A., Blankenship, D. D., Gwyther, D. E., Silvano, A., and van Wijk,
E.: Wind Causes Totten Ice Shelf Melt and Acceleration, Science Advances,
3, e1701681, https://doi.org/10.1126/sciadv.1701681, 2017. a
Greve, R. and Blatter, H.: Dynamics of Ice Sheets and Glaciers,
Advances in Geophysical and Environmental Mechanics and
Mathematics, Springer Berlin Heidelberg, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-642-03415-2, 2009. a, b
Gudmundsson, G. H.: Ice-shelf buttressing and the stability of marine ice sheets, The Cryosphere, 7, 647–655, https://doi.org/10.5194/tc-7-647-2013, 2013. a
Gudmundsson, G. H., Krug, J., Durand, G., Favier, L., and Gagliardini, O.: The stability of grounding lines on retrograde slopes, The Cryosphere, 6, 1497–1505, https://doi.org/10.5194/tc-6-1497-2012, 2012. a, b
Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J., and Rae, J.:
Twenty-First-Century Warming of a Large Antarctic Ice-Shelf Cavity by a
Redirected Coastal Current, Nature, 485, 225–228, https://doi.org/10.1038/nature11064,
2012. a
Hillenbrand, C.-D., Smith, J. A., Hodell, D. A., Greaves, M., Poole, C. R.,
Kender, S., Williams, M., Andersen, T. J., Jernas, P. E., Elderfield, H.,
Klages, J. P., Roberts, S. J., Gohl, K., Larter, R. D., and Kuhn, G.: West
Antarctic Ice Sheet Retreat Driven by Holocene Warm Water Incursions,
Nature, 547, 43–48, https://doi.org/10.1038/nature22995, 2017. a
Huybrechts, P., Goelzer, H., Janssens, I., Driesschaert, E., Fichefet, T.,
Goosse, H., and Loutre, M.-F.: Response of the Greenland and Antarctic
Ice Sheets to Multi-Millennial Greenhouse Warming in the Earth
System Model of Intermediate Complexity LOVECLIM, Surv.
Geophys., 32, 397–416, https://doi.org/10.1007/s10712-011-9131-5, 2011. a
The IMBIE team: Mass Balance of the Antarctic Ice Sheet from 1992 to
2017, Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018. a
IPCC, WG I: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change, Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a
IPCC, WG II: Climate Change 2014: Impacts, Adaptation, and
Vulnerability, Part A: Global and Sectoral Aspects,
Contribution of Working Group II to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Field,
C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E.,
Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N.,
MacCracken, S., Mastrandrea, P. R., and
White, L. L., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 2014. a
Jenkins, A., Dutrieux, P., Jacobs, S. S., McPhail, S. D., Perrett, J. R., Webb,
A. T., and White, D.: Observations beneath Pine Island Glacier in West
Antarctica and Implications for Its Retreat, Nat. Geosci., 3,
468–472, https://doi.org/10.1038/ngeo890, 2010. a
Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., Lee, S. H.,
Ha, H. K., and Stammerjohn, S.: West Antarctic Ice Sheet Retreat in the
Amundsen Sea Driven by Decadal Oceanic Variability, Nat. Geosci.,
11, 733–738, https://doi.org/10.1038/s41561-018-0207-4, 2018. a
Joughin, I. and Alley, R. B.: Stability of the West Antarctic Ice Sheet in
a Warming World, Nat. Geosci., 4, 506–513, https://doi.org/10.1038/ngeo1194,
2011. a
Joughin, I., Tulaczyk, S., Bamber, J. L., Blankenship, D., Holt, J. W.,
Scambos, T., and Vaughan, D. G.: Basal Conditions for Pine Island and
Thwaites Glaciers, West Antarctica, Determined Using Satellite and
Airborne Data, J. Glaciol., 55, 245–257,
https://doi.org/10.3189/002214309788608705, 2009. a, b
Joughin, I., Smith, B. E., and Medley, B.: Marine Ice Sheet Collapse
Potentially Under Way for the Thwaites Glacier Basin, West
Antarctica, Science, 344, 735–738, https://doi.org/10.1126/science.1249055, 2014. a, b, c
Konrad, H., Shepherd, A., Gilbert, L., Hogg, A. E., McMillan, M., Muir, A., and
Slater, T.: Net Retreat of Antarctic Glacier Grounding Lines, Nat.
Geosci., 11, 258–262, https://doi.org/10.1038/s41561-018-0082-z, 2018. a, b
Kundu, P., Cohen, I., and Hu, H.: Fluid Mechanics, Academic
Press, New Delhi, 2012. a
Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental Scale,
High Order, High Spatial Resolution, Ice Sheet Modeling Using the Ice Sheet
System Model (ISSM): ice sheet system model, J. Geophys.
Res.-Earth, 117, F01022, https://doi.org/10.1029/2011JF002140, 2012. a
Li, Y., Wu, M., Chen, X., Wang, T., and Liao, H.: Wind-Tunnel Study of Wake
Galloping of Parallel Cables on Cable-Stayed Bridges and Its Suppression,
Wind Struct., 16, 249–261,
https://doi.org/10.12989/was.2013.16.3.249, 2013. a
Macagno, E. O.: Historico-Critical Review of Dimensional Analysis, J.
Franklin I., 292, 391–402, https://doi.org/10.1016/0016-0032(71)90160-8,
1971. a
MacAyeal, D. R.: Large-Scale Ice Flow over a Viscous Basal Sediment: Theory
and Application to Ice Stream B, Antarctica, J. Geophys.
Res.-Sol. Ea., 94, 4071–4087, https://doi.org/10.1029/JB094iB04p04071, 1989. a
Medley, B., Joughin, I., Smith, B. E., Das, S. B., Steig, E. J., Conway, H., Gogineni, S., Lewis, C., Criscitiello, A. S., McConnell, J. R., van den Broeke, M. R., Lenaerts, J. T. M., Bromwich, D. H., Nicolas, J. P., and Leuschen, C.: Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation, The Cryosphere, 8, 1375–1392, https://doi.org/10.5194/tc-8-1375-2014, 2014. a
Mengel, M. and Levermann, A.: Ice Plug Prevents Irreversible Discharge from
East Antarctica, Nat. Clim. Change, 4, 451–455,
https://doi.org/10.1038/nclimate2226, 2014. a, b
Mengel, M., Feldmann, J., and Levermann, A.: Linear Sea-Level Response to
Abrupt Ocean Warming of Major West Antarctic Ice Basin, Nat. Clim.
Change, 6, 71–74, https://doi.org/10.1038/nclimate2808, 2016. a, b
Mercer, J. H.: West Antarctic Ice Sheet and CO2 Greenhouse Effect: A
Threat of Disaster, Nature, 271, 321–325, https://doi.org/10.1038/271321a0, 1978.
a
Morland, L. W.: Unconfined Ice-Shelf Flow, in: Dynamics of the West
Antarctic Ice Sheet, edited by: Van der Veen, C. J. and Oerlemans, J.,
Glaciology and Quaternary Geology, Springer Netherlands, 99–116,
1987. a
Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., and Aubry,
D.: Spatial Patterns of Basal Drag Inferred Using Control Methods from a
Full-Stokes and Simpler Models for Pine Island Glacier, West
Antarctica: spatial patterns of basal drag, Geophys. Res.
Lett., 37, L14502, https://doi.org/10.1029/2010GL043853, 2010. a
Morlighem, M., Seroussi, H., Larour, E., and Rignot, E.: Inversion of Basal
Friction in Antarctica Using Exact and Incomplete Adjoints of a
Higher-Order Model: Antarctic basal friction inversion, J.
Geophys. Res.-Earth, 118, 1746–1753,
https://doi.org/10.1002/jgrf.20125, 2013. a, b, c
Mouginot, J., Rignot, E., and Scheuchl, B.: Sustained Increase in Ice Discharge
from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013,
Geophys. Res. Lett., 41, 1576–1584, https://doi.org/10.1002/2013GL059069,
2014. a, b, c
Paolo, F. S., Fricker, H. A., and Padman, L.: Volume Loss from Antarctic
Ice Shelves Is Accelerating, Science, 348, 327–331,
https://doi.org/10.1126/science.aaa0940, 2015. a
Pattyn, F.: The Paradigm Shift in Antarctic Ice Sheet Modelling, Nat.
Commun., 9, 2728, https://doi.org/10.1038/s41467-018-05003-z, 2018. a
Pattyn, F., Ritz, C., Hanna, E., Asay-Davis, X., DeConto, R., Durand, G.,
Favier, L., Fettweis, X., Goelzer, H., Golledge, N. R., Munneke, P. K.,
Lenaerts, J. T. M., Nowicki, S., Payne, A. J., Robinson, A., Seroussi, H.,
Trusel, L. D., and van den Broeke, M.: The Greenland and Antarctic
Ice Sheets under 1.5 ∘C Global Warming, Nat. Clim. Change, 8, 1053–1061,
https://doi.org/10.1038/s41558-018-0305-8, 2018. a
Pollard, D. and DeConto, R. M.: A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to Antarctica, The Cryosphere, 6, 953–971, https://doi.org/10.5194/tc-6-953-2012, 2012. a
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van
den Broeke, M. R., and Padman, L.: Antarctic Ice-Sheet Loss Driven by Basal
Melting of Ice Shelves, Nature, 484, 502–505, https://doi.org/10.1038/nature10968,
2012. a
Rayleigh: The Principle of Similitude, Nature, 95, 66–68,
https://doi.org/10.1038/095066c0, 1915. a
Reynolds, O.: An Experimental Investigation of the Circumstances Which
Determine Whether the Motion of Water Shall Be Direct or Sinuous, and of the
Law of Resistance in Parallel Channels, Philos. T.
R. Soc. Lond., 174, 935–982, https://doi.org/10.1098/rstl.1883.0029, 1883. a, b
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice Flow of the Antarctic Ice
Sheet, Science, 333, 1427–1430, https://doi.org/10.1126/science.1208336, 2011. a, b
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, Rapid Grounding Line Retreat of Pine Island, Thwaites,
Smith, and Kohler Glaciers, West Antarctica, from 1992 to 2011,
Geophys. Res. Lett., 41, 3502–3509, https://doi.org/10.1002/2014GL060140,
2014. a, b, c, d
Ritz, C., Edwards, T. L., Durand, G., Payne, A. J., Peyaud, V., and Hindmarsh,
R. C. A.: Potential Sea-Level Rise from Antarctic Ice-Sheet Instability
Constrained by Observations, Nature, 528, 115–118, https://doi.org/10.1038/nature16147, 2015. a, b, c
Ross, N., Bingham, R. G., Corr, H. F. J., Ferraccioli, F., Jordan, T. A.,
Le Brocq, A., Rippin, D. M., Young, D., Blankenship, D. D., and Siegert,
M. J.: Steep Reverse Bed Slope at the Grounding Line of the Weddell Sea
Sector in West Antarctica, Nat. Geosci., 5, 393–396,
https://doi.org/10.1038/ngeo1468, 2012. a
Schoof, C.: Ice Sheet Grounding Line Dynamics: Steady States, Stability,
and Hysteresis, J. Geophys. Res., 112, F03S28,
https://doi.org/10.1029/2006JF000664, 2007. a, b
Scruton, C.: Wind Tunnels and Flow Visualization, Nature, 189,
108–110, https://doi.org/10.1038/189108a0, 1961. a
Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M., Rignot,
E., and Khazendar, A.: Continued Retreat of Thwaites Glacier, West
Antarctica, Controlled by Bed Topography and Ocean Circulation:
Ice-ocean modeling of thwaites glacier, Geophys. Res. Lett.,
44, 6191–6199, https://doi.org/10.1002/2017GL072910, 2017. a, b
Shean, D. E., Joughin, I. R., Dutrieux, P., Smith, B. E., and Berthier, E.: Ice shelf basal melt rates from a high-resolution DEM record for Pine Island Glacier, Antarctica, The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-209, in review, 2018. a
Smith, J. A., Andersen, T. J., Shortt, M., Gaffney, A. M., Truffer, M.,
Stanton, T. P., Bindschadler, R., Dutrieux, P., Jenkins, A., Hillenbrand,
C.-D., Ehrmann, W., Corr, H. F. J., Farley, N., Crowhurst, S., and Vaughan,
D. G.: Sub-Ice-Shelf Sediments Record History of Twentieth-Century Retreat of
Pine Island Glacier, Nature, 541, 77–80, https://doi.org/10.1038/nature20136,
2017. a
Szücs, E.: Fundamental Studies in Engineering II, Similitude and
Modeling, Elsevier Scientific Publishing Co., Amsterdam, Netherlands, 1980. a
Thoma, M., Determann, J., Grosfeld, K., Goeller, S., and Hellmer, H. H.: Future
Sea-Level Rise Due to Projected Ocean Warming beneath the Filchner Ronne
Ice Shelf: A Coupled Model Study, Earth Planet. Sc. Lett.,
431, 217–224, https://doi.org/10.1016/j.epsl.2015.09.013, 2015. a, b
Timmermann, R. and Hellmer, H. H.: Southern Ocean Warming and Increased Ice
Shelf Basal Melting in the Twenty-First and Twenty-Second Centuries Based on
Coupled Ice-Ocean Finite-Element Modelling, Ocean Dynam., 63, 1011–1026,
https://doi.org/10.1007/s10236-013-0642-0, 2013. a
van de Berg, W. J., van den Broeke, M. R., Reijmer, C. H., and van
Meijgaard, E.: Reassessment of the Antarctic Surface Mass Balance Using
Calibrated Output of a Regional Atmospheric Climate Model, J.
Geophys. Res., 111, D11104, https://doi.org/10.1029/2005JD006495, 2006. a
van Wessem, J. M., Reijmer, C. H., Lenaerts, J. T. M., van de Berg, W. J., van den Broeke, M. R., and van Meijgaard, E.: Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica, The Cryosphere, 8, 125–135, https://doi.org/10.5194/tc-8-125-2014, 2014. a, b, c
Weertman, J.: Stability of the Junction of an Ice Sheet and an Ice
Shelf, J. Glaciol., 13, 3–11, https://doi.org/10.3189/S0022143000023327,
1974. a
Winkelmann, R., Levermann, A., Ridgwell, A., and Caldeira, K.: Combustion of
Available Fossil Fuel Resources Sufficient to Eliminate the Antarctic Ice
Sheet, Science Advances, 1, e1500589,
https://doi.org/10.1126/sciadv.1500589, 2015.
a
Wright, A. P., Le Brocq, A. M., Cornford, S. L., Bingham, R. G., Corr, H. F. J., Ferraccioli, F., Jordan, T. A., Payne, A. J., Rippin, D. M., Ross, N., and Siegert, M. J.: Sensitivity of the Weddell Sea sector ice streams to sub-shelf melting and surface accumulation, The Cryosphere, 8, 2119–2134, https://doi.org/10.5194/tc-8-2119-2014, 2014.
a, b
Short summary
Using scaling analysis we propose that the currently observed marine ice-sheet instability in the Amundsen Sea sector might be faster than all other potential instabilities in Antarctica.
Using scaling analysis we propose that the currently observed marine ice-sheet instability in...