Articles | Volume 12, issue 9
https://doi.org/10.5194/tc-12-3067-2018
https://doi.org/10.5194/tc-12-3067-2018
Research article
 | 
27 Sep 2018
Research article |  | 27 Sep 2018

The physical properties of coarse-fragment soils and their effects on permafrost dynamics: a case study on the central Qinghai–Tibetan Plateau

Shuhua Yi, Yujie He, Xinlei Guo, Jianjun Chen, Qingbai Wu, Yu Qin, and Yongjian Ding

Related authors

A 250 m annual alpine grassland AGB dataset over the Qinghai–Tibet Plateau (2000–2019) in China based on in situ measurements, UAV photos, and MODIS data
Huifang Zhang, Zhonggang Tang, Binyao Wang, Hongcheng Kan, Yi Sun, Yu Qin, Baoping Meng, Meng Li, Jianjun Chen, Yanyan Lv, Jianguo Zhang, Shuli Niu, and Shuhua Yi
Earth Syst. Sci. Data, 15, 821–846, https://doi.org/10.5194/essd-15-821-2023,https://doi.org/10.5194/essd-15-821-2023, 2023
Short summary
Effect of plateau pika disturbance and patchiness on ecosystem carbon emissions in alpine meadow in the northeastern part of Qinghai–Tibetan Plateau
Yu Qin, Shuhua Yi, Yongjian Ding, Wei Zhang, Yan Qin, Jianjun Chen, and Zhiwei Wang
Biogeosciences, 16, 1097–1109, https://doi.org/10.5194/bg-16-1097-2019,https://doi.org/10.5194/bg-16-1097-2019, 2019
PIC v1.3: comprehensive R package for computing permafrost indices with daily weather observations and atmospheric forcing over the Qinghai–Tibet Plateau
Lihui Luo, Zhongqiong Zhang, Wei Ma, Shuhua Yi, and Yanli Zhuang
Geosci. Model Dev., 11, 2475–2491, https://doi.org/10.5194/gmd-11-2475-2018,https://doi.org/10.5194/gmd-11-2475-2018, 2018
Short summary
The burying and grazing effects of plateau pika on alpine grassland are small: a pilot study in a semiarid basin on the Qinghai-Tibet Plateau
Shuhua Yi, Jianjun Chen, Yu Qin, and Gaowei Xu
Biogeosciences, 13, 6273–6284, https://doi.org/10.5194/bg-13-6273-2016,https://doi.org/10.5194/bg-13-6273-2016, 2016
Short summary
Freeze/thaw processes in complex permafrost landscapes of northern Siberia simulated using the TEM ecosystem model: impact of thermokarst ponds and lakes
S. Yi, K. Wischnewski, M. Langer, S. Muster, and J. Boike
Geosci. Model Dev., 7, 1671–1689, https://doi.org/10.5194/gmd-7-1671-2014,https://doi.org/10.5194/gmd-7-1671-2014, 2014

Related subject area

Discipline: Frozen ground | Subject: Numerical Modelling
Modelling the effect of free convection on permafrost melting rates in frozen rock clefts
Amir Sedaghatkish, Frédéric Doumenc, Pierre-Yves Jeannin, and Marc Luetscher
The Cryosphere, 18, 4531–4546, https://doi.org/10.5194/tc-18-4531-2024,https://doi.org/10.5194/tc-18-4531-2024, 2024
Short summary
Coupled thermo–geophysical inversion for permafrost monitoring
Soňa Tomaškovičová and Thomas Ingeman-Nielsen
The Cryosphere, 18, 321–340, https://doi.org/10.5194/tc-18-321-2024,https://doi.org/10.5194/tc-18-321-2024, 2024
Short summary
Simulating ice segregation and thaw consolidation in permafrost environments with the CryoGrid community model
Juditha Aga, Julia Boike, Moritz Langer, Thomas Ingeman-Nielsen, and Sebastian Westermann
The Cryosphere, 17, 4179–4206, https://doi.org/10.5194/tc-17-4179-2023,https://doi.org/10.5194/tc-17-4179-2023, 2023
Short summary
Investigating the thermal state of permafrost with Bayesian inverse modeling of heat transfer
Brian Groenke, Moritz Langer, Jan Nitzbon, Sebastian Westermann, Guillermo Gallego, and Julia Boike
The Cryosphere, 17, 3505–3533, https://doi.org/10.5194/tc-17-3505-2023,https://doi.org/10.5194/tc-17-3505-2023, 2023
Short summary
Representation of soil hydrology in permafrost regions may explain large part of inter-model spread in simulated Arctic and subarctic climate
Philipp de Vrese, Goran Georgievski, Jesus Fidel Gonzalez Rouco, Dirk Notz, Tobias Stacke, Norman Julius Steinert, Stiig Wilkenskjeld, and Victor Brovkin
The Cryosphere, 17, 2095–2118, https://doi.org/10.5194/tc-17-2095-2023,https://doi.org/10.5194/tc-17-2095-2023, 2023
Short summary

Cited articles

Anisimov, O. A.: Potential feedback of thawing permafrost to the global climate system through methan emission, Environ. Res. Lett., 2, 045016, https://doi.org/10.1088/1748-9326/2/4/045016, 2007. 
Arocena, J., Hall, K., and Zhu, L. P.: Soil formation in high elevation and permafrost areas in the Qinghai Plateau (China), Span. J. Soil Sci., 2, 34–49, 2012. 
Azam, G., Grant, C. D., Murray, R. S., Nuberg, I. K., and Misra, R. K. : Comparison of the penetration of primary and lateral roots of pea and different tree seedlings growing in hard soils, Soil Res., 52, 87–96, 2014. 
Boike, J., Kattenstroth, B., Abramova, K., Bornemann, N., Chetverova, A., Fedorova, I., Fröb, K., Grigoriev, M., Grüber, M., Kutzbach, L., Langer, M., Minke, M., Muster, S., Piel, K., Pfeiffer, E.-M., Stoof, G., Westermann, S., Wischnewski, K., Wille, C., and Hubberten, H.-W.: Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998–2011), Biogeosciences, 10, 2105–2128, https://doi.org/10.5194/bg-10-2105-2013, 2013. 
Chen, H., Nan, Z., Zhao, L., Ding, Y., Chen, J., and Pang, Q.: Noah Modelling of the Permafrost Distribution and Characteristics in the West Kunlun Area, Qinghai-Tibet Plateau, China, Permafr. Periglac., 26, 160–174, 2015. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Coarse-fragment soil on the Qinghai–Tibetan Plateau has different thermal and hydrological properties to soils commonly used in modeling studies. We took soil samples and measured their physical properties in a laboratory, which were used in a model to simulate their effects on permafrost dynamics. Model errors were reduced using the measured properties, in which porosity played an dominant role.