Articles | Volume 12, issue 7
https://doi.org/10.5194/tc-12-2175-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-2175-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Glacio-hydrological melt and run-off modelling: application of a limits of acceptability framework for model comparison and selection
School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, NG12 5GG, UK
Nicholas E. Barrand
School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
David M. Hannah
School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Stefan Krause
School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Christopher R. Jackson
British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, NG12 5GG, UK
Jez Everest
British Geological Survey, Lyell Centre, Research Avenue South, Edinburgh, EH14 4AS, UK
Guðfinna Aðalgeirsdóttir
Institute of Earth Sciences, University of Iceland, 101 Reykjavík, Iceland
Related authors
Rodrigo Aguayo, Fabien Maussion, Lilian Schuster, Marius Schaefer, Alexis Caro, Patrick Schmitt, Jonathan Mackay, Lizz Ultee, Jorge Leon-Muñoz, and Mauricio Aguayo
The Cryosphere, 18, 5383–5406, https://doi.org/10.5194/tc-18-5383-2024, https://doi.org/10.5194/tc-18-5383-2024, 2024
Short summary
Short summary
Predicting how much water will come from glaciers in the future is a complex task, and there are many factors that make it uncertain. Using a glacier model, we explored 1920 scenarios for each glacier in the Patagonian Andes. We found that the choice of the historical climate data was the most important factor, while other factors such as different data sources, climate models and emission scenarios played a smaller role.
Finn Wimberly, Lizz Ultee, Lilian Schuster, Matthias Huss, David R. Rounce, Fabien Maussion, Sloan Coats, Jonathan Mackay, and Erik Holmgren
EGUsphere, https://doi.org/10.5194/egusphere-2024-1778, https://doi.org/10.5194/egusphere-2024-1778, 2024
Short summary
Short summary
Glacier models have historically been used to understand glacier melt’s contribution to sea level rise. The capacity to project seasonal glacier runoff is a relatively recent development for these models. In this study we provide the first model intercomparison of runoff projections for the glacier evolution models capable of simulating future runoff globally. We compare model projections from 2000 to 2100 for all major river basins larger than 3000 km2 with over 1 % of initial glacier cover.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
EGUsphere, https://doi.org/10.5194/egusphere-2024-863, https://doi.org/10.5194/egusphere-2024-863, 2024
Short summary
Short summary
Glaciers in the tropics are poorly-observed, making it difficult to predict how they will retreat in the future. Most computer models neglect important processes that control tropical glacier retreat. We combine two existing models to remedy this limitation. Our model replicates observed changes in glacier retreat and shows us where our process understanding limits the accuracy of predictions and which processes are less important than we previously thought, helping to direct future research.
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024, https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Short summary
We studied drought in a dataset of possible future river flows and groundwater levels in the UK and found different outcomes for these two sources of water. Throughout the UK, river flows are likely to be lower in future, with droughts more prolonged and severe. However, whilst these changes are also found in some boreholes, in others, higher levels and less severe drought are indicated for the future. This has implications for the future balance between surface water and groundwater below.
Jamie Hannaford, Jonathan D. Mackay, Matthew Ascott, Victoria A. Bell, Thomas Chitson, Steven Cole, Christian Counsell, Mason Durant, Christopher R. Jackson, Alison L. Kay, Rosanna A. Lane, Majdi Mansour, Robert Moore, Simon Parry, Alison C. Rudd, Michael Simpson, Katie Facer-Childs, Stephen Turner, John R. Wallbank, Steven Wells, and Amy Wilcox
Earth Syst. Sci. Data, 15, 2391–2415, https://doi.org/10.5194/essd-15-2391-2023, https://doi.org/10.5194/essd-15-2391-2023, 2023
Short summary
Short summary
The eFLaG dataset is a nationally consistent set of projections of future climate change impacts on hydrology. eFLaG uses the latest available UK climate projections (UKCP18) run through a series of computer simulation models which enable us to produce future projections of river flows, groundwater levels and groundwater recharge. These simulations are designed for use by water resource planners and managers but could also be used for a wide range of other purposes.
Lizz Ultee, Sloan Coats, and Jonathan Mackay
Earth Syst. Dynam., 13, 935–959, https://doi.org/10.5194/esd-13-935-2022, https://doi.org/10.5194/esd-13-935-2022, 2022
Short summary
Short summary
Global climate models suggest that droughts could worsen over the coming century. In mountain basins with glaciers, glacial runoff can ease droughts, but glaciers are retreating worldwide. We analyzed how one measure of drought conditions changes when accounting for glacial runoff that changes over time. Surprisingly, we found that glacial runoff can continue to buffer drought throughout the 21st century in most cases, even as the total amount of runoff declines.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, Guðfinna Aðalgeirsdóttir, and Andrew R. Black
Hydrol. Earth Syst. Sci., 23, 1833–1865, https://doi.org/10.5194/hess-23-1833-2019, https://doi.org/10.5194/hess-23-1833-2019, 2019
Short summary
Short summary
We project 21st century change and uncertainty in 25 river flow regime metrics (signatures) for a deglaciating river basin. The results show that glacier-fed river flow magnitude, timing and variability are sensitive to climate change and that projection uncertainty stems from incomplete understanding of future climate and glacier-hydrology processes. These findings indicate how impact studies can be better designed to provide more robust projections of river flow regime in glaciated basins.
N. A. L. Archer, B. R. Rawlins, B. P. Machant, J. D. Mackay, and P. I. Meldrum
SOIL Discuss., https://doi.org/10.5194/soil-2016-40, https://doi.org/10.5194/soil-2016-40, 2016
Preprint withdrawn
Short summary
Short summary
This study investigates the importance of using techniques, such as soil water release curves, soil shrinkage measurements and field observations to create reference points to determine the best-fit calibrations for estimating volumetric water content (VWC). We also show that calibrating soil moisture sensors in disturbed clay soils over-estimates VWC and we suggest that undisturbed soil cores provide better calibrations to estimate VWC in clay soils.
Rodrigo Aguayo, Fabien Maussion, Lilian Schuster, Marius Schaefer, Alexis Caro, Patrick Schmitt, Jonathan Mackay, Lizz Ultee, Jorge Leon-Muñoz, and Mauricio Aguayo
The Cryosphere, 18, 5383–5406, https://doi.org/10.5194/tc-18-5383-2024, https://doi.org/10.5194/tc-18-5383-2024, 2024
Short summary
Short summary
Predicting how much water will come from glaciers in the future is a complex task, and there are many factors that make it uncertain. Using a glacier model, we explored 1920 scenarios for each glacier in the Patagonian Andes. We found that the choice of the historical climate data was the most important factor, while other factors such as different data sources, climate models and emission scenarios played a smaller role.
Greta Hoe Wells, Þorsteinn Sæmundsson, Finnur Pálsson, Guðfinna Aðalgeirsdóttir, Eyjólfur Magnússon, Reginald L. Hermanns, and Snævarr Guðmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2002, https://doi.org/10.5194/egusphere-2024-2002, 2024
Short summary
Short summary
Glacier retreat elevates the risk of landslides released into proglacial lakes, which can trigger glacial lake outburst floods (GLOFs). This study maps proglacial lake evolution and GLOF hazard scenarios at Fjallsjökull glacier, Iceland. Lake volume increased from 1945–2021 and is estimated to triple over the next century. Three slopes are prone to landslides that may trigger GLOFs. Results will mitigate flood hazard at this popular tourism site and advance GLOF research in Iceland and globally.
Aude Vincent, Clémence Daigre, Ophélie Fischer, Guðfinna Aðalgeirsdóttir, Sophie Violette, Jane Hart, Snævarr Guðmundsson, and Finnur Pálsson
Hydrol. Earth Syst. Sci., 28, 3475–3494, https://doi.org/10.5194/hess-28-3475-2024, https://doi.org/10.5194/hess-28-3475-2024, 2024
Short summary
Short summary
We studied groundwater near outlet glaciers of the main Icelandic ice cap. We acquired new data in the field. Two distinct groundwater compartments and their characteristics are identified. We demonstrate the glacial melt recharge impact on the groundwater dynamic. Knowing groundwater systems in a glacial context is crucial to forecast the evolution under climate change of water resources and of potential flood and landslide hazards.
Mikkel Langgaard Lauritzen, Anne Munck Solgaard, Nicholas Mossor Rathmann, Bo Møllesøe Vinther, Aslak Grindsted, Brice Noël, Guðfinna Aðalgeirsdóttir, and Christine Schøtt Hvidberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-2223, https://doi.org/10.5194/egusphere-2024-2223, 2024
Short summary
Short summary
We study the Holocene period, which started about 11,700 years ago, through 841 computer simulations to better understand the history of the Greenland Ice Sheet. We accurately match historical surface elevation records, verifying our model. The simulations show that an ice bridge that used to connect the Greenland ice sheet to Canada collapsed around 4,900 years ago and still influences the ice sheet. Over the past 500 years, the Greenland ice sheet has contributed 12 millimeters to sea levels.
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
EGUsphere, https://doi.org/10.5194/egusphere-2024-1742, https://doi.org/10.5194/egusphere-2024-1742, 2024
Short summary
Short summary
Extreme rainfall comprises a major hydro-hazard for New Zealand, and is commonly associated with atmospheric rivers – narrow plumes of very high atmospheric moisture transport. Here, we focus on improved forecasting of these events by testing a forecasting tool previously applied to similar situations in western Europe. However, our results for New Zealand suggest the performance of this forecasting tool may vary depending on geographic setting.
Finn Wimberly, Lizz Ultee, Lilian Schuster, Matthias Huss, David R. Rounce, Fabien Maussion, Sloan Coats, Jonathan Mackay, and Erik Holmgren
EGUsphere, https://doi.org/10.5194/egusphere-2024-1778, https://doi.org/10.5194/egusphere-2024-1778, 2024
Short summary
Short summary
Glacier models have historically been used to understand glacier melt’s contribution to sea level rise. The capacity to project seasonal glacier runoff is a relatively recent development for these models. In this study we provide the first model intercomparison of runoff projections for the glacier evolution models capable of simulating future runoff globally. We compare model projections from 2000 to 2100 for all major river basins larger than 3000 km2 with over 1 % of initial glacier cover.
Yiming Li, Uwe Schneidewind, Zhang Wen, Stefan Krause, and Hui Liu
Hydrol. Earth Syst. Sci., 28, 1751–1769, https://doi.org/10.5194/hess-28-1751-2024, https://doi.org/10.5194/hess-28-1751-2024, 2024
Short summary
Short summary
Meandering rivers are an integral part of many landscapes around the world. Here we used a new modeling approach to look at how the slope of riverbanks influences water flow and solute transport from a meandering river channel through its bank and into/out of the connected groundwater compartment (aquifer). We found that the bank slope can be a significant factor to be considered, especially when bank slope angles are small, and riverbank and aquifer conditions only allow for slow water flow.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
EGUsphere, https://doi.org/10.5194/egusphere-2024-863, https://doi.org/10.5194/egusphere-2024-863, 2024
Short summary
Short summary
Glaciers in the tropics are poorly-observed, making it difficult to predict how they will retreat in the future. Most computer models neglect important processes that control tropical glacier retreat. We combine two existing models to remedy this limitation. Our model replicates observed changes in glacier retreat and shows us where our process understanding limits the accuracy of predictions and which processes are less important than we previously thought, helping to direct future research.
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024, https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Short summary
The transport of dissolved organic carbon (DOC) from land into streams is changing due to climate change. We used a multi-year dataset of DOC and predictors of DOC in a subarctic stream to find out how transport of DOC varied between seasons and between years. We found that the way DOC is transported varied strongly seasonally, but year-to-year differences were less apparent. We conclude that the mechanisms of transport show a higher degree of interannual consistency than previously thought.
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024, https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Short summary
We studied drought in a dataset of possible future river flows and groundwater levels in the UK and found different outcomes for these two sources of water. Throughout the UK, river flows are likely to be lower in future, with droughts more prolonged and severe. However, whilst these changes are also found in some boreholes, in others, higher levels and less severe drought are indicated for the future. This has implications for the future balance between surface water and groundwater below.
Susan Elizabeth Quick, Giulio Curioni, Nicholas J. Harper, Stefan Krause, and Angus Rob MacKenzie
EGUsphere, https://doi.org/10.5194/egusphere-2023-1522, https://doi.org/10.5194/egusphere-2023-1522, 2023
Short summary
Short summary
To study the effects of rising carbon dioxide levels on water usage of old growth temperate oak forest, we monitored trees in an open-air elevated CO2 experiment for five years. We found no significant changes in water usage for ~34 % increase in atmospheric CO2. Stresses under this experiment may take longer to show their effect. Tree water usage depends on tree size, i.e. stem size and the canopy area, across all treatments. Experimental infrastructure changed the water demand of the trees.
Jamie Hannaford, Jonathan D. Mackay, Matthew Ascott, Victoria A. Bell, Thomas Chitson, Steven Cole, Christian Counsell, Mason Durant, Christopher R. Jackson, Alison L. Kay, Rosanna A. Lane, Majdi Mansour, Robert Moore, Simon Parry, Alison C. Rudd, Michael Simpson, Katie Facer-Childs, Stephen Turner, John R. Wallbank, Steven Wells, and Amy Wilcox
Earth Syst. Sci. Data, 15, 2391–2415, https://doi.org/10.5194/essd-15-2391-2023, https://doi.org/10.5194/essd-15-2391-2023, 2023
Short summary
Short summary
The eFLaG dataset is a nationally consistent set of projections of future climate change impacts on hydrology. eFLaG uses the latest available UK climate projections (UKCP18) run through a series of computer simulation models which enable us to produce future projections of river flows, groundwater levels and groundwater recharge. These simulations are designed for use by water resource planners and managers but could also be used for a wide range of other purposes.
Tahmina Yasmin, Kieran Khamis, Anthony Ross, Subir Sen, Anita Sharma, Debashish Sen, Sumit Sen, Wouter Buytaert, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 23, 667–674, https://doi.org/10.5194/nhess-23-667-2023, https://doi.org/10.5194/nhess-23-667-2023, 2023
Short summary
Short summary
Floods continue to be a wicked problem that require developing early warning systems with plausible assumptions of risk behaviour, with more targeted conversations with the community at risk. Through this paper we advocate the use of a SMART approach to encourage bottom-up initiatives to develop inclusive and purposeful early warning systems that benefit the community at risk by engaging them at every step of the way along with including other stakeholders at multiple scales of operations.
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
Hydrol. Earth Syst. Sci., 27, 761–781, https://doi.org/10.5194/hess-27-761-2023, https://doi.org/10.5194/hess-27-761-2023, 2023
Short summary
Short summary
Water can move between river catchments via the subsurface, termed intercatchment groundwater flow (IGF). We show how a perceptual model of IGF can be developed with relatively simple geological interpretation and data requirements. We find that IGF dynamics vary in space, correlated to the dominant underlying geology. We recommend that IGF
loss functionsmay be used in conceptual rainfall–runoff models but should be supported by perceptualisation of IGF processes and connectivities.
Lizz Ultee, Sloan Coats, and Jonathan Mackay
Earth Syst. Dynam., 13, 935–959, https://doi.org/10.5194/esd-13-935-2022, https://doi.org/10.5194/esd-13-935-2022, 2022
Short summary
Short summary
Global climate models suggest that droughts could worsen over the coming century. In mountain basins with glaciers, glacial runoff can ease droughts, but glaciers are retreating worldwide. We analyzed how one measure of drought conditions changes when accounting for glacial runoff that changes over time. Surprisingly, we found that glacial runoff can continue to buffer drought throughout the 21st century in most cases, even as the total amount of runoff declines.
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Short summary
Managing water demand and supply during droughts is complex, as highly pressured human–water systems can overuse water sources to maintain water supply. We evaluated the impact of drought policies on water resources using a socio-hydrological model. For a range of hydrogeological conditions, we found that integrated drought policies reduce baseflow and groundwater droughts most if extra surface water is imported, reducing the pressure on water resources during droughts.
Liwen Wu, Jesus D. Gomez-Velez, Stefan Krause, Anders Wörman, Tanu Singh, Gunnar Nützmann, and Jörg Lewandowski
Hydrol. Earth Syst. Sci., 25, 1905–1921, https://doi.org/10.5194/hess-25-1905-2021, https://doi.org/10.5194/hess-25-1905-2021, 2021
Short summary
Short summary
With a physically based model that couples flow and heat transport in hyporheic zones, the present study provides the first insights into the dynamics of hyporheic responses to the impacts of daily groundwater withdrawal and river temperature fluctuations, allowing for a better understanding of transient hyporheic exchange processes and hence an improved pumping operational scheme.
Kate E. Ashley, Robert McKay, Johan Etourneau, Francisco J. Jimenez-Espejo, Alan Condron, Anna Albot, Xavier Crosta, Christina Riesselman, Osamu Seki, Guillaume Massé, Nicholas R. Golledge, Edward Gasson, Daniel P. Lowry, Nicholas E. Barrand, Katelyn Johnson, Nancy Bertler, Carlota Escutia, Robert Dunbar, and James A. Bendle
Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021, https://doi.org/10.5194/cp-17-1-2021, 2021
Short summary
Short summary
We present a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability off East Antarctica. Our record shows that a rapid Antarctic sea-ice increase during the mid-Holocene (~ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth, which slowed basal ice shelf melting.
Doris E. Wendt, Anne F. Van Loon, John P. Bloomfield, and David M. Hannah
Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, https://doi.org/10.5194/hess-24-4853-2020, 2020
Short summary
Short summary
Groundwater use changes the availability of groundwater, especially during droughts. This study investigates the impact of groundwater use on groundwater droughts. A methodological framework is presented that was developed and applied to the UK. We identified an asymmetric impact of groundwater use on droughts, which highlights the relation between short-term and long-term strategies for sustainable groundwater use.
Nicolas Massei, Daniel G. Kingston, David M. Hannah, Jean-Philippe Vidal, Bastien Dieppois, Manuel Fossa, Andreas Hartmann, David A. Lavers, and Benoit Laignel
Proc. IAHS, 383, 141–149, https://doi.org/10.5194/piahs-383-141-2020, https://doi.org/10.5194/piahs-383-141-2020, 2020
Short summary
Short summary
This paper presents recent thoughts by members of EURO-FRIEND Water project 3 “Large-scale-variations in hydrological characteristics” about research needed to characterize and understand large-scale hydrology under global changes. Emphasis is put on the necessary efforts to better understand 1 – the impact of low-frequency climate variability on hydrological trends and extremes, 2 – the role of basin properties on modulating the climate signal producing hydrological responses on the basin scale.
Bentje Brauns, Daniela Cuba, John P. Bloomfield, David M. Hannah, Christopher Jackson, Ben P. Marchant, Benedikt Heudorfer, Anne F. Van Loon, Hélène Bessière, Bo Thunholm, and Gerhard Schubert
Proc. IAHS, 383, 297–305, https://doi.org/10.5194/piahs-383-297-2020, https://doi.org/10.5194/piahs-383-297-2020, 2020
Short summary
Short summary
In Europe, ca. 65% of drinking water is groundwater. Its replenishment depends on rainfall, but droughts may cause groundwater levels to fall below normal. These
groundwater droughtscan limit supply, making it crucial to understand their regional connection. The Groundwater Drought Initiative (GDI) assesses spatial patterns in historic—recent groundwater droughts across Europe for the first time. Using an example dataset, we describe the background to the GDI and its methodological approach.
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019, https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary
Short summary
The movement of water and solutes between streams and their shallow, connected subsurface is important to many ecosystem functions. These exchanges are widely expected to vary with stream flow across space and time, but these assumptions are seldom tested across basin scales. We completed more than 60 experiments across a 5th-order river basin to document these changes, finding patterns in space but not time. We conclude space-for-time and time-for-space substitutions are not good assumptions.
Brighid É. Ó Dochartaigh, Alan M. MacDonald, Andrew R. Black, Jez Everest, Paul Wilson, W. George Darling, Lee Jones, and Mike Raines
Hydrol. Earth Syst. Sci., 23, 4527–4539, https://doi.org/10.5194/hess-23-4527-2019, https://doi.org/10.5194/hess-23-4527-2019, 2019
Short summary
Short summary
We provide evidence of high groundwater storage and flow in catchments with active glaciers. Groundwater is found within gravels at the front of glaciers and replenished by both ice melt and precipitation. We studied a glacier in Iceland for 3 years, characterising the aquifer properties and measuring groundwater, river flow and precipitation. The results are important for accurately measuring meltwater and show that groundwater can provide strategic water supplies in de-glaciating catchments.
Adam S. Ward, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Skuyler Herzog, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Noah M. Schmadel, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, Nathan I. Wisnoski, and Steven M. Wondzell
Earth Syst. Sci. Data, 11, 1567–1581, https://doi.org/10.5194/essd-11-1567-2019, https://doi.org/10.5194/essd-11-1567-2019, 2019
Short summary
Short summary
Studies of river corridor exchange commonly focus on characterization of the physical, chemical, or biological system. As a result, complimentary systems and context are often lacking, which may limit interpretation. Here, we present a characterization of all three systems at 62 sites in a 5th-order river basin, including samples of surface water, hyporheic water, and sediment. These data will allow assessment of interacting processes in the river corridor.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, Guðfinna Aðalgeirsdóttir, and Andrew R. Black
Hydrol. Earth Syst. Sci., 23, 1833–1865, https://doi.org/10.5194/hess-23-1833-2019, https://doi.org/10.5194/hess-23-1833-2019, 2019
Short summary
Short summary
We project 21st century change and uncertainty in 25 river flow regime metrics (signatures) for a deglaciating river basin. The results show that glacier-fed river flow magnitude, timing and variability are sensitive to climate change and that projection uncertainty stems from incomplete understanding of future climate and glacier-hydrology processes. These findings indicate how impact studies can be better designed to provide more robust projections of river flow regime in glaciated basins.
Chiara Magliozzi, Robert C. Grabowski, Aaron I. Packman, and Stefan Krause
Hydrol. Earth Syst. Sci., 22, 6163–6185, https://doi.org/10.5194/hess-22-6163-2018, https://doi.org/10.5194/hess-22-6163-2018, 2018
Short summary
Short summary
The hyporheic zone is the area below riverbeds where surfacewater and groundwater mix. Hyporheic flow is linked to river processes and functions, but research to date has not sufficiently addressed how factors operating at different scales in time and space drive hyporheic flow variations at reach and larger scales. This review presents the scale-specific processes and interactions that control hyporheic flow, and a case study showing how valley factors affect its expression at the reach scale.
Clemens Schannwell, Stephen Cornford, David Pollard, and Nicholas E. Barrand
The Cryosphere, 12, 2307–2326, https://doi.org/10.5194/tc-12-2307-2018, https://doi.org/10.5194/tc-12-2307-2018, 2018
Short summary
Short summary
Despite the speculation on the state and fate of Larsen C Ice Shelf, a key unknown factor remains: what would be the effects of ice-shelf collapse on upstream drainage basins and thus global sea levels? In our paper three state-of-the-art numerical ice-sheet models were used to simulate the volume evolution of the inland ice sheet to ice-shelf collapse at Larsen C and George VI ice shelves. Our results suggest sea-level rise of up to ~ 4 mm for Larsen C ice shelf and ~ 22 for George VI ice shelf.
Giri Gopalan, Birgir Hrafnkelsson, Guðfinna Aðalgeirsdóttir, Alexander H. Jarosch, and Finnur Pálsson
The Cryosphere, 12, 2229–2248, https://doi.org/10.5194/tc-12-2229-2018, https://doi.org/10.5194/tc-12-2229-2018, 2018
Short summary
Short summary
Geophysical systems can often contain scientific parameters whose values are uncertain, complex underlying dynamics, and field measurements with errors. These components are naturally modeled together within what is known as a Bayesian hierarchical model (BHM). This paper constructs such a model for shallow glaciers based on an approximation of the underlying dynamics. The evaluation of this model is aided by the use of exact analytical solutions from the literature.
Faye L. Jackson, Robert J. Fryer, David M. Hannah, and Iain A. Malcolm
Hydrol. Earth Syst. Sci., 21, 4727–4745, https://doi.org/10.5194/hess-21-4727-2017, https://doi.org/10.5194/hess-21-4727-2017, 2017
Short summary
Short summary
River temperature (Tw) is important to fish populations, but one cannot monitor everywhere. Thus, models are used to predict Tw, sometimes in rivers with no data. To date, the accuracy of these predictions has not been determined. We found that models including landscape predictors (e.g. altitude, tree cover) could describe spatial patterns in Tw in other rivers better than those including air temperature. Such findings are critical for developing Tw models that have management application.
Feng Mao, Julian Clark, Timothy Karpouzoglou, Art Dewulf, Wouter Buytaert, and David Hannah
Hydrol. Earth Syst. Sci., 21, 3655–3670, https://doi.org/10.5194/hess-21-3655-2017, https://doi.org/10.5194/hess-21-3655-2017, 2017
Short summary
Short summary
The paper aims to propose a conceptual framework that supports nuanced understanding and analytical assessment of resilience in socio-hydrological contexts. We identify three framings of resilience for different human–water couplings, which have distinct application fields and are used for different water management challenges. To assess and improve socio-hydrological resilience in each type, we introduce a
resilience canvasas a heuristic tool to design bespoke management strategies.
Louise Steffensen Schmidt, Guðfinna Aðalgeirsdóttir, Sverrir Guðmundsson, Peter L. Langen, Finnur Pálsson, Ruth Mottram, Simon Gascoin, and Helgi Björnsson
The Cryosphere, 11, 1665–1684, https://doi.org/10.5194/tc-11-1665-2017, https://doi.org/10.5194/tc-11-1665-2017, 2017
Short summary
Short summary
The regional climate model HIRHAM5 is evaluated over Vatnajökull, Iceland, using automatic weather stations and mass balance observations from 1995 to 2014. From this we asses whether the model can be used to reconstruct the mass balance of the glacier. We find that the simulated energy balance is underestimated overall, but it has been improved by using a new albedo scheme. The specific mass balance is reconstructed back to 1980, thus expanding on the observational records of the mass balance.
Cédric L. R. Laizé, Cristian Bruna Meredith, Michael J. Dunbar, and David M. Hannah
Hydrol. Earth Syst. Sci., 21, 3231–3247, https://doi.org/10.5194/hess-21-3231-2017, https://doi.org/10.5194/hess-21-3231-2017, 2017
Short summary
Short summary
Stream temperature controls many river processes, making it vital to know how climate affects it. Climate and stream temperatures at 35 British sites and associated basin properties were used to model climate–water temperature associations and to assess how they are influenced by basins. Associations vary with season and water temperature range. Basin permeability, size, and elevation have the main influence; smaller upland or impermeable basins are the most sensitive to climate.
Joaquín M. C. Belart, Etienne Berthier, Eyjólfur Magnússon, Leif S. Anderson, Finnur Pálsson, Thorsteinn Thorsteinsson, Ian M. Howat, Guðfinna Aðalgeirsdóttir, Tómas Jóhannesson, and Alexander H. Jarosch
The Cryosphere, 11, 1501–1517, https://doi.org/10.5194/tc-11-1501-2017, https://doi.org/10.5194/tc-11-1501-2017, 2017
Short summary
Short summary
Sub-meter satellite stereo images (Pléiades and WorldView2) are used to accurately measure snow accumulation and winter mass balance of Drangajökull ice cap. This is done by creating and comparing accurate digital elevation models. A glacier-wide geodetic mass balance of 3.33 ± 0.23 m w.e. is derived between October 2014 and May 2015. This method could be easily transposable to remote glaciated areas where seasonal mass balance measurements (especially winter accumulation) are lacking.
Nicholas E. Barrand, Robert G. Way, Trevor Bell, and Martin J. Sharp
The Cryosphere, 11, 157–168, https://doi.org/10.5194/tc-11-157-2017, https://doi.org/10.5194/tc-11-157-2017, 2017
Short summary
Short summary
This paper provides a comprehensive assessment of the state of small glaciers in the Canadian province of Labrador. These glaciers, the last in continental northeast North America, exist in heavily shaded locations within the remote Torngat Mountains National Park. Fieldwork, and airborne and spaceborne remote-sensing analyses were used to measure regional glacier area changes and individual glacier thinning rates. These results were then linked to trends in prevailing climatic conditions.
Chiara Magliozzi, Robert Grabowski, Aaron I. Packman, and Stefan Krause
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-683, https://doi.org/10.5194/hess-2016-683, 2017
Manuscript not accepted for further review
Short summary
Short summary
A critical review of recent literature details how drivers operating at catchment, valley and reach scales are responsible of variations in space and time in the hyporheic exchange. It is based on cross-disciplinary understanding of environmental topics from published reviews and field studies placed within a hierarchical framework. The outcomes will benefit hyporheic research and catchment managers by providing an integrated approach of the drivers of hyporheic exchange in space and time.
Sally Rangecroft, Anne F. Van Loon, Héctor Maureira, Koen Verbist, and David M. Hannah
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2016-57, https://doi.org/10.5194/esd-2016-57, 2016
Preprint withdrawn
Short summary
Short summary
This paper on anthropogenic droughts looks at the interactions of human activity and "natural" processes. Using a case study of the introduction of a reservoir in a Chilean river basin and a new methodology, we established the most effective way forward for quantifying human activities on hydrological drought: the "threshold level" method with an "undisturbed" time period as the threshold. This will increase our understanding on how human activities are impacting the hydrological system.
Anne F. Van Loon, Kerstin Stahl, Giuliano Di Baldassarre, Julian Clark, Sally Rangecroft, Niko Wanders, Tom Gleeson, Albert I. J. M. Van Dijk, Lena M. Tallaksen, Jamie Hannaford, Remko Uijlenhoet, Adriaan J. Teuling, David M. Hannah, Justin Sheffield, Mark Svoboda, Boud Verbeiren, Thorsten Wagener, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, https://doi.org/10.5194/hess-20-3631-2016, 2016
Short summary
Short summary
In the Anthropocene, drought cannot be viewed as a natural hazard independent of people. Drought can be alleviated or made worse by human activities and drought impacts are dependent on a myriad of factors. In this paper, we identify research gaps and suggest a framework that will allow us to adequately analyse and manage drought in the Anthropocene. We need to focus on attribution of drought to different drivers, linking drought to its impacts, and feedbacks between drought and society.
N. A. L. Archer, B. R. Rawlins, B. P. Machant, J. D. Mackay, and P. I. Meldrum
SOIL Discuss., https://doi.org/10.5194/soil-2016-40, https://doi.org/10.5194/soil-2016-40, 2016
Preprint withdrawn
Short summary
Short summary
This study investigates the importance of using techniques, such as soil water release curves, soil shrinkage measurements and field observations to create reference points to determine the best-fit calibrations for estimating volumetric water content (VWC). We also show that calibrating soil moisture sensors in disturbed clay soils over-estimates VWC and we suggest that undisturbed soil cores provide better calibrations to estimate VWC in clay soils.
J. M. van Wessem, S. R. M. Ligtenberg, C. H. Reijmer, W. J. van de Berg, M. R. van den Broeke, N. E. Barrand, E. R. Thomas, J. Turner, J. Wuite, T. A. Scambos, and E. van Meijgaard
The Cryosphere, 10, 271–285, https://doi.org/10.5194/tc-10-271-2016, https://doi.org/10.5194/tc-10-271-2016, 2016
Short summary
Short summary
This study presents the first high-resolution (5.5 km) modelled estimate of surface mass balance (SMB) over the period 1979–2014 for the Antarctic Peninsula (AP). Precipitation (snowfall and rain) largely determines the SMB, and is exceptionally high over the western mountain slopes, with annual values > 4 m water equivalent. Snowmelt is widespread over the AP, but only runs off into the ocean at some locations: the Larsen B,C, and Wilkins ice shelves, and along the north-western mountains.
N. Le Vine, A. Butler, N. McIntyre, and C. Jackson
Hydrol. Earth Syst. Sci., 20, 143–159, https://doi.org/10.5194/hess-20-143-2016, https://doi.org/10.5194/hess-20-143-2016, 2016
Short summary
Short summary
– A strategy to diagnose hydrological limitations of a Land Surface Model
– Land Surface Model adaptation for hydrological applications
– Highlights challenges faced while moving towards high resolution modelling
I. Giuntoli, J.-P. Vidal, C. Prudhomme, and D. M. Hannah
Earth Syst. Dynam., 6, 267–285, https://doi.org/10.5194/esd-6-267-2015, https://doi.org/10.5194/esd-6-267-2015, 2015
Short summary
Short summary
We assessed future changes in high and low flows globally using runoff projections from global hydrological models (GHMs) driven by global climate models (GCMs) under the RCP8.5 scenario. Further, we quantified the relative size of uncertainty from GHMs and from GCMs using ANOVA. We show that GCMs are the major contributors to uncertainty overall, but GHMs increase their contribution for low flows and can equal or outweigh GCM uncertainty in snow-dominated areas for both high and low flows.
H. Hannesdóttir, H. Björnsson, F. Pálsson, G. Aðalgeirsdóttir, and Sv. Guðmundsson
The Cryosphere, 9, 565–585, https://doi.org/10.5194/tc-9-565-2015, https://doi.org/10.5194/tc-9-565-2015, 2015
G. Garner, I. A. Malcolm, J. P. Sadler, and D. M. Hannah
Hydrol. Earth Syst. Sci., 18, 5361–5376, https://doi.org/10.5194/hess-18-5361-2014, https://doi.org/10.5194/hess-18-5361-2014, 2014
Short summary
Short summary
This study demonstrates the processes by which instantaneous longitudinal water temperature gradients may be generated in a stream reach that transitions from moorland to semi-natural forest in the absence of substantial groundwater inflows. Water did not cool as it flowed downstream. Instead, temperature gradients were generated by a combination of reduced rates of heating in the forested reach and advection of cooler (overnight and early morning) water from the upstream moorland catchment.
C. Prudhomme, T. Haxton, S. Crooks, C. Jackson, A. Barkwith, J. Williamson, J. Kelvin, J. Mackay, L. Wang, A. Young, and G. Watts
Earth Syst. Sci. Data, 5, 101–107, https://doi.org/10.5194/essd-5-101-2013, https://doi.org/10.5194/essd-5-101-2013, 2013
P. Fretwell, H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C. Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, A. J. Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim, P. Gogineni, J. A. Griggs, R. C. A. Hindmarsh, P. Holmlund, J. W. Holt, R. W. Jacobel, A. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. A. Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J. Mouginot, F. O. Nitsche, Y. Nogi, O. A. Nost, S. V. Popov, E. Rignot, D. M. Rippin, A. Rivera, J. Roberts, N. Ross, M. J. Siegert, A. M. Smith, D. Steinhage, M. Studinger, B. Sun, B. K. Tinto, B. C. Welch, D. Wilson, D. A. Young, C. Xiangbin, and A. Zirizzotti
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, https://doi.org/10.5194/tc-7-375-2013, 2013
Related subject area
Discipline: Glaciers | Subject: Energy Balance Obs/Modelling
Brief Communication: Accurate and autonomous snow water equivalent measurements using a cosmic ray sensor on a Himalayan glacier
Surface heat fluxes at coarse blocky Murtèl rock glacier (Engadine, eastern Swiss Alps)
Evaluation of reanalysis data and dynamical downscaling for surface energy balance modeling at mountain glaciers in western Canada
Modeling of surface energy balance for Icelandic glaciers using remote-sensing albedo
Strategies for regional modeling of surface mass balance at the Monte Sarmiento Massif, Tierra del Fuego
Long-term firn and mass balance modelling for Abramov Glacier in the data-scarce Pamir Alay
The surface energy balance during foehn events at Joyce Glacier, McMurdo Dry Valleys, Antarctica
Sub-seasonal variability of supraglacial ice cliff melt rates and associated processes from time-lapse photogrammetry
Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments
Modelling glacier mass balance and climate sensitivity in the context of sparse observations: application to Saskatchewan Glacier, western Canada
Understanding monsoon controls on the energy and mass balance of glaciers in the Central and Eastern Himalaya
SNICAR-ADv4: a physically based radiative transfer model to represent the spectral albedo of glacier ice
Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach
Seasonal and interannual variability of melt-season albedo at Haig Glacier, Canadian Rocky Mountains
Surface energy fluxes on Chilean glaciers: measurements and models
Using 3D turbulence-resolving simulations to understand the impact of surface properties on the energy balance of a debris-covered glacier
Incorporating moisture content in surface energy balance modeling of a debris-covered glacier
Surface melt and the importance of water flow – an analysis based on high-resolution unmanned aerial vehicle (UAV) data for an Arctic glacier
Navaraj Pokhrel, Patrick Wagnon, Fanny Brun, Arbindra Khadka, Tom Matthews, Audrey Goutard, Dibas Shrestha, Baker Perry, and Marion Réveillet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1760, https://doi.org/10.5194/egusphere-2024-1760, 2024
Short summary
Short summary
We studied snow processes in the accumulation area of Mera Glacier (Central Himalaya, Nepal) by deploying a cosmic ray counting sensor that allows to track the evolution of the snow water equivalent. We suspect significant surface melting, water percolation and refreezing within the snowpack, that might be missed by traditional mass balance surveys.
Dominik Amschwand, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
The Cryosphere, 18, 2103–2139, https://doi.org/10.5194/tc-18-2103-2024, https://doi.org/10.5194/tc-18-2103-2024, 2024
Short summary
Short summary
Rock glaciers are coarse-debris permafrost landforms that are comparatively climate resilient. We estimate the surface energy balance of rock glacier Murtèl (Swiss Alps) based on a large surface and sub-surface sensor array. During the thaw seasons 2021 and 2022, 90 % of the net radiation was exported via turbulent heat fluxes and only 10 % was transmitted towards the ground ice table. However, early snowmelt and droughts make these permafrost landforms vulnerable to climate warming.
Christina Draeger, Valentina Radić, Rachel H. White, and Mekdes Ayalew Tessema
The Cryosphere, 18, 17–42, https://doi.org/10.5194/tc-18-17-2024, https://doi.org/10.5194/tc-18-17-2024, 2024
Short summary
Short summary
Our study increases our confidence in using reanalysis data for reconstructions of past glacier melt and in using dynamical downscaling for long-term simulations from global climate models to project glacier melt. We find that the surface energy balance model, forced with reanalysis and dynamically downscaled reanalysis data, yields <10 % difference in the modeled total melt energy when compared to the same model being forced with observations at our glacier sites in western Canada.
Andri Gunnarsson, Sigurdur M. Gardarsson, and Finnur Pálsson
The Cryosphere, 17, 3955–3986, https://doi.org/10.5194/tc-17-3955-2023, https://doi.org/10.5194/tc-17-3955-2023, 2023
Short summary
Short summary
A model was developed with the possibility of utilizing satellite-derived daily surface albedo driven by high-resolution climate data to estimate the surface energy balance (SEB) for all Icelandic glaciers for the period 2000–2021.
Franziska Temme, David Farías-Barahona, Thorsten Seehaus, Ricardo Jaña, Jorge Arigony-Neto, Inti Gonzalez, Anselm Arndt, Tobias Sauter, Christoph Schneider, and Johannes J. Fürst
The Cryosphere, 17, 2343–2365, https://doi.org/10.5194/tc-17-2343-2023, https://doi.org/10.5194/tc-17-2343-2023, 2023
Short summary
Short summary
Calibration of surface mass balance (SMB) models on regional scales is challenging. We investigate different calibration strategies with the goal of achieving realistic simulations of the SMB in the Monte Sarmiento Massif, Tierra del Fuego. Our results show that the use of regional observations from satellite data can improve the model performance. Furthermore, we compare four melt models of different complexity to understand the benefit of increasing the processes considered in the model.
Marlene Kronenberg, Ward van Pelt, Horst Machguth, Joel Fiddes, Martin Hoelzle, and Felix Pertziger
The Cryosphere, 16, 5001–5022, https://doi.org/10.5194/tc-16-5001-2022, https://doi.org/10.5194/tc-16-5001-2022, 2022
Short summary
Short summary
The Pamir Alay is located at the edge of regions with anomalous glacier mass changes. Unique long-term in situ data are available for Abramov Glacier, located in the Pamir Alay. In this study, we use this extraordinary data set in combination with reanalysis data and a coupled surface energy balance–multilayer subsurface model to compute and analyse the distributed climatic mass balance and firn evolution from 1968 to 2020.
Marte G. Hofsteenge, Nicolas J. Cullen, Carleen H. Reijmer, Michiel van den Broeke, Marwan Katurji, and John F. Orwin
The Cryosphere, 16, 5041–5059, https://doi.org/10.5194/tc-16-5041-2022, https://doi.org/10.5194/tc-16-5041-2022, 2022
Short summary
Short summary
In the McMurdo Dry Valleys (MDV), foehn winds can impact glacial meltwater production and the fragile ecosystem that depends on it. We study these dry and warm winds at Joyce Glacier and show they are caused by a different mechanism than that found for nearby valleys, demonstrating the complex interaction of large-scale winds with the mountains in the MDV. We find that foehn winds increase sublimation of ice, increase heating from the atmosphere, and increase the occurrence and rates of melt.
Marin Kneib, Evan S. Miles, Pascal Buri, Stefan Fugger, Michael McCarthy, Thomas E. Shaw, Zhao Chuanxi, Martin Truffer, Matthew J. Westoby, Wei Yang, and Francesca Pellicciotti
The Cryosphere, 16, 4701–4725, https://doi.org/10.5194/tc-16-4701-2022, https://doi.org/10.5194/tc-16-4701-2022, 2022
Short summary
Short summary
Ice cliffs are believed to be important contributors to the melt of debris-covered glaciers, but this has rarely been quantified as the cliffs can disappear or rapidly expand within a few weeks. We used photogrammetry techniques to quantify the weekly evolution and melt of four cliffs. We found that their behaviour and melt during the monsoon is strongly controlled by supraglacial debris, streams and ponds, thus providing valuable insights on the melt and evolution of debris-covered glaciers.
Jonathan P. Conway, Jakob Abermann, Liss M. Andreassen, Mohd Farooq Azam, Nicolas J. Cullen, Noel Fitzpatrick, Rianne H. Giesen, Kirsty Langley, Shelley MacDonell, Thomas Mölg, Valentina Radić, Carleen H. Reijmer, and Jean-Emmanuel Sicart
The Cryosphere, 16, 3331–3356, https://doi.org/10.5194/tc-16-3331-2022, https://doi.org/10.5194/tc-16-3331-2022, 2022
Short summary
Short summary
We used data from automatic weather stations on 16 glaciers to show how clouds influence glacier melt in different climates around the world. We found surface melt was always more frequent when it was cloudy but was not universally faster or slower than under clear-sky conditions. Also, air temperature was related to clouds in opposite ways in different climates – warmer with clouds in cold climates and vice versa. These results will help us improve how we model past and future glacier melt.
Christophe Kinnard, Olivier Larouche, Michael N. Demuth, and Brian Menounos
The Cryosphere, 16, 3071–3099, https://doi.org/10.5194/tc-16-3071-2022, https://doi.org/10.5194/tc-16-3071-2022, 2022
Short summary
Short summary
This study implements a physically based, distributed glacier mass balance model in a context of sparse direct observations. Carefully constraining model parameters with ancillary data allowed for accurately reconstructing the mass balance of Saskatchewan Glacier over a 37-year period. We show that the mass balance sensitivity to warming is dominated by increased melting and that changes in glacier albedo and air humidity are the leading causes of increased glacier melt under warming scenarios.
Stefan Fugger, Catriona L. Fyffe, Simone Fatichi, Evan Miles, Michael McCarthy, Thomas E. Shaw, Baohong Ding, Wei Yang, Patrick Wagnon, Walter Immerzeel, Qiao Liu, and Francesca Pellicciotti
The Cryosphere, 16, 1631–1652, https://doi.org/10.5194/tc-16-1631-2022, https://doi.org/10.5194/tc-16-1631-2022, 2022
Short summary
Short summary
The monsoon is important for the shrinking and growing of glaciers in the Himalaya during summer. We calculate the melt of seven glaciers in the region using a complex glacier melt model and weather data. We find that monsoonal weather affects glaciers that are covered with a layer of rocky debris and glaciers without such a layer in different ways. It is important to take so-called turbulent fluxes into account. This knowledge is vital for predicting the future of the Himalayan glaciers.
Chloe A. Whicker, Mark G. Flanner, Cheng Dang, Charles S. Zender, Joseph M. Cook, and Alex S. Gardner
The Cryosphere, 16, 1197–1220, https://doi.org/10.5194/tc-16-1197-2022, https://doi.org/10.5194/tc-16-1197-2022, 2022
Short summary
Short summary
Snow and ice surfaces are important to the global climate. Current climate models use measurements to determine the reflectivity of ice. This model uses physical properties to determine the reflectivity of snow, ice, and darkly pigmented impurities that reside within the snow and ice. Therefore, the modeled reflectivity is more accurate for snow/ice columns under varying climate conditions. This model paves the way for improvements in the portrayal of snow and ice within global climate models.
Enrico Mattea, Horst Machguth, Marlene Kronenberg, Ward van Pelt, Manuela Bassi, and Martin Hoelzle
The Cryosphere, 15, 3181–3205, https://doi.org/10.5194/tc-15-3181-2021, https://doi.org/10.5194/tc-15-3181-2021, 2021
Short summary
Short summary
In our study we find that climate change is affecting the high-alpine Colle Gnifetti glacier (Swiss–Italian Alps) with an increase in melt amounts and ice temperatures.
In the near future this trend could threaten the viability of the oldest ice core record in the Alps.
To reach our conclusions, for the first time we used the meteorological data of the highest permanent weather station in Europe (Capanna Margherita, 4560 m), together with an advanced numeric simulation of the glacier.
Shawn J. Marshall and Kristina Miller
The Cryosphere, 14, 3249–3267, https://doi.org/10.5194/tc-14-3249-2020, https://doi.org/10.5194/tc-14-3249-2020, 2020
Short summary
Short summary
Surface-albedo measurements from 2002 to 2017 from Haig Glacier in the Canadian Rockies provide no evidence of long-term trends (i.e., the glacier does not appear to be darkening), but there are large variations in albedo over the melt season and from year to year. The glacier ice is exceptionally dark in association with forest fire fallout but is effectively cleansed by meltwater or rainfall. Summer snowfall plays an important role in refreshing the glacier surface and reducing summer melt.
Marius Schaefer, Duilio Fonseca-Gallardo, David Farías-Barahona, and Gino Casassa
The Cryosphere, 14, 2545–2565, https://doi.org/10.5194/tc-14-2545-2020, https://doi.org/10.5194/tc-14-2545-2020, 2020
Short summary
Short summary
Chile hosts glaciers in a large range of latitudes and climates. To project future ice extent, a sound quantification of the energy exchange between atmosphere and glaciers is needed. We present new data for six Chilean glaciers belonging to three glaciological zones. In the Central Andes, the main energy source for glacier melt is the incoming solar radiation, while in southern Patagonia heat provided by the mild and humid air is also important. Total melt rates are higher in Patagonia.
Pleun N. J. Bonekamp, Chiel C. van Heerwaarden, Jakob F. Steiner, and Walter W. Immerzeel
The Cryosphere, 14, 1611–1632, https://doi.org/10.5194/tc-14-1611-2020, https://doi.org/10.5194/tc-14-1611-2020, 2020
Short summary
Short summary
Drivers controlling melt of debris-covered glaciers are largely unknown. With a 3D turbulence-resolving model the impact of surface properties of debris on micrometeorological variables and the conductive heat flux is shown. Also, we show ice cliffs are local melt hot spots and that turbulent fluxes and local heat advection amplify spatial heterogeneity on the surface.This work is important for glacier mass balance modelling and for the understanding of the evolution of debris-covered glaciers.
Alexandra Giese, Aaron Boone, Patrick Wagnon, and Robert Hawley
The Cryosphere, 14, 1555–1577, https://doi.org/10.5194/tc-14-1555-2020, https://doi.org/10.5194/tc-14-1555-2020, 2020
Short summary
Short summary
Rocky debris on glacier surfaces is known to affect the melt of mountain glaciers. Debris can be dry or filled to varying extents with liquid water and ice; whether debris is dry, wet, and/or icy affects how efficiently heat is conducted through debris from its surface to the ice interface. Our paper presents a new energy balance model that simulates moisture phase, evolution, and location in debris. ISBA-DEB is applied to West Changri Nup glacier in Nepal to reveal important physical processes.
Eleanor A. Bash and Brian J. Moorman
The Cryosphere, 14, 549–563, https://doi.org/10.5194/tc-14-549-2020, https://doi.org/10.5194/tc-14-549-2020, 2020
Short summary
Short summary
High-resolution measurements from unmanned aerial vehicle (UAV) imagery allowed for examination of glacier melt model performance in detail at Fountain Glacier. This work capitalized on distributed measurements at 10 cm resolution to look at the spatial distribution of model errors in the ablation zone. Although the model agreed with measurements on average, strong correlation was found with surface water. The results highlight the contribution of surface water flow to melt at this location.
Cited articles
Aðalgeirsdóttir, G., Guðmundsson, S., Björnsson, H., Pálsson, F.,
Jóhannesson, T., Hannesdóttir, H., Sigurðsson, S. Þ, and Berthier, E.:
Modelling the 20th and 21st century evolution of Hoffellsjökull glacier,
SE-Vatnajökull, Iceland, The Cryosphere, 5, 961–975,
https://doi.org/10.5194/tc-5-961-2011, 2011. a
Arnold, N. S., Rees, W. G., Hodson, A. J., and Kohler, J.: Topographic
controls on the surface energy balance of a high Arctic valley glacier,
J. Geophys. Res.-Earth Surf., 111, F02011,
https://doi.org/10.1029/2005JF000426, 2006. a
Barrand, N. E., Murray, T., James, T. D., Barr, S. L., and Mills, J. P.:
Optimizing photogrammetric DEMs for glacier volume change assessment using
laser-scanning derived ground-control points, J. Glaciol., 55,
106–116, https://doi.org/10.3189/002214309788609001, 2009. a
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol.,
320, 18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006. a
Beven, K.: Facets of uncertainty: epistemic uncertainty, non-stationarity,
likelihood, hypothesis testing, and communication, Hydrol. Sci.
J., 61, 1652–1665, https://doi.org/10.1080/02626667.2015.1031761, 2016. a
Blaney, H. F. and Morin, K. V.: Evaporation and consumptive use of water
empirical formulas, Eos, Transactions American Geophysical Union, 23,
76–83, https://doi.org/10.1029/TR023i001p00076, 1942. a, b
Blazkova, S. and Beven, K.: A limits of acceptability approach to model
evaluation and uncertainty estimation in flood frequency estimation by
continuous simulation: Skalka catchment, Czech Republic, Water Resour.
Res., 45, W00B16, https://doi.org/10.1029/2007WR006726, 2009. a
Boscarello, L., Ravazzani, G., Rabuffetti, D., and Mancini, M.: Integrating
glaciers raster-based modelling in large catchments hydrological balance: The
Rhone case study, Hydrol. Process., 28, 496–508,
https://doi.org/10.1002/hyp.9588, 2014. a, b, c
Bradwell, T., Sigurdsson, O., and Everest, J.: Recent, very rapid retreat of a
temperate glacier in SE Iceland, Boreas, 42, 959–973,
https://doi.org/10.1111/bor.12014, 2013. a
Brately, P. and Fox, B. L.: Algorithm 659: Implementing Sobol's quasirandom
sequence generator, ACM Trans. Mathe. Softw., 14, 88–100,
1988. a
Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and
parameterisation of albedo variations at Haut Glacier d'Arolla,
Switzerland, J. Glaciol., 46, 675–688,
https://doi.org/10.3189/172756500781832675, 2000. a
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias correction of GCM
precipitation by quantile mapping: How well do methods preserve changes in
quantiles and extremes?, J. Climate, 28, 6938–6959,
https://doi.org/10.1175/JCLI-D-14-00754.1, 2015. a
Carenzo, M., Pellicciotti, F., Mabillard, J., Reid, T., and Brock, B. W.: An
enhanced temperature index model for debris-covered glaciers accounting for
thickness effect, Adv. Water Resour., 94, 457–469,
https://doi.org/10.1016/j.advwatres.2016.05.001, 2016. a, b
Ciarapica, L. and Todini, E.: TOPKAPI: A model for the representation of the
rainfall-runoff process at different scales, Hydrol. Process., 16,
207–229, https://doi.org/10.1002/hyp.342, 2002. a
Coxon, G., Freer, J., Wagener, T., Odoni, N. A., and Clark, M.: Diagnostic
evaluation of multiple hypotheses of hydrological behaviour in a
limits-of-acceptability framework for 24 UK catchments, Hydrol.
Process., 28, 6135–6150, https://doi.org/10.1002/hyp.10096, 2014. a
Coxon, G., Freer, J., Westerberg, I. K., Wagener, T., Woods, R., and Smith,
P. J.: A novel framework for discharge uncertainty quantification applied to
500 UK gauging stations, Water Resour. Res., 51, 5531–5546,
https://doi.org/10.1002/2014WR016532, 2015. a
de Woul, M., Hock, R., Braun, M., Thorsteinsson, T., Jóhannesson, T., and
Halldórsdóttir, S.: Firn layer impact on glacial runoff: A case
study at Hofsjökull, Iceland, Hydrol. Process., 20, 2171–2185,
https://doi.org/10.1002/hyp.6201, 2006. a
Einarsson, M. Á.: Evaporation and potential evapotranspiration in
Iceland, Veðurstofa Íslands, Reykjavík, 1972. a
Euser, T., Winsemius, H. C., Hrachowitz, M., Fenicia, F., Uhlenbrook, S., and
Savenije, H. H. G.: A framework to assess the realism of model structures
using hydrological signatures, Hydrol. Earth Syst. Sci., 17, 1893–1912,
https://doi.org/10.5194/hess-17-1893-2013, 2013. a
Farinotti, D., Usselmann, S., Huss, M., Bauder, A., and Funk, M.: Runoff
evolution in the Swiss Alps: projections for selected high-alpine catchments
based on ENSEMBLES scenarios, Hydrol. Process., 26, 1909–1924,
https://doi.org/10.1002/hyp.8276, 2012. a
Finger, D., Pellicciotti, F., Konz, M., Rimkus, S., and Burlando, P.: The
value of glacier mass balance, satellite snow cover images, and hourly
discharge for improving the performance of a physically based distributed
hydrological model, Water Resour. Res., 47, W07519,
https://doi.org/10.1029/2010WR009824, 2011. a
Finger, D., Vis, M., Huss, M., and Seibert, J.: The value of multiple data set
calibration versus model complexity for improving the performance of
hydrological models in mountain catchments, Water Resour. Res., 51,
1939–1958, https://doi.org/10.1002/2014WR015712, 2015. a, b, c
Gabbi, J., Carenzo, M., Pellicciotti, F., Bauder, A., and Funk, M.: A
comparison of empirical and physically based glacier surface melt models for
long-term simulations of glacier response, J. Glaciol., 60,
1140–1154, https://doi.org/10.3189/2014JoG14J011, 2014. a, b, c, d
Gao, H., Ding, Y., Zhao, Q., Hrachowitz, M., and Savenije, H. H.: The
importance of aspect for modelling the hydrological response in a glacier
catchment in Central Asia, Hydrol. Process., 31, 2842–2859,
https://doi.org/10.1002/hyp.11224, 2017. a, b
Gardner, A. S. and Sharp, M.: Sensitivity of net mass-balance estimates to
near-surface temperature lapse rates when employing the degree-day method to
estimate glacier melt, Ann. Glaciol., 50, 80–86,
https://doi.org/10.3189/172756409787769663, 2009. a
Gardner, A. S., Sharp, M. J., Koerner, R. M., Labine, C., Boon, S., Marshall,
S. J., Burgess, D. O., and Lewis, D.: Near-surface temperature lapse rates
over arctic glaciers and their implications for temperature downscaling,
J. Climate, 22, 4281–4298, https://doi.org/10.1175/2009JCLI2845.1, 2009. a
Guðmundsson, S., Björnsson, H., Jóhannesson, T.,
Aðalgeirsdóttir, G., Pálsson, F., and Sigurðsson, O.:
Similarities and differences in the response to climate warming of two ice
caps in Iceland, Hydrol. Res., 40, 495–502,
https://doi.org/10.2166/nh.2009.210, 2009. a
Gupta, H. V., Wagener, T., and Liu, Y.: Reconciling theory with observations:
elements of a diagnostic approach to model evaluation, Hydrol.
Process., 22, 3802–3813, https://doi.org/10.1002/hyp.6989, 2008. a
Hannah, D. M. and Gurnell, A. M.: A conceptual, linear reservoir runoff model
to investigate melt season changes in cirque glacier hydrology, J.
Hydrol., 246, 123–141, https://doi.org/10.1016/S0022-1694(01)00364-X, 2001. a, b, c
Hannesdóttir, H., Björnsson, H., Pálsson, F.,
Aðalgeirsdóttir, G., and Guðmundsson, S.: Changes in the southeast
Vatnajökull ice cap, Iceland, between ∼ 1890 and 2010, The
Cryosphere, 9, 565–585, https://doi.org/10.5194/tc-9-565-2015, 2015. a
Hanzer, F., Helfricht, K., Marke, T., and Strasser, U.: Multilevel
spatiotemporal validation of snow/ice mass balance and runoff modeling in
glacierized catchments, The Cryosphere, 10, 1859–1881,
https://doi.org/10.5194/tc-10-1859-2016, 2016. a, b, c, d
Heynen, M., Pellicciotti, F., and Carenzo, M.: Parameter sensitivity of a
distributed enhanced temperature-index melt model, Ann. Glaciol., 54,
311–321, https://doi.org/10.3189/2013AoG63A537, 2013. a
Hopkinson, C., Chasmer, L., Munro, S., and Demuth, M. N.: The influence of DEM
resolution on simulated solar radiation-induced glacier melt, Hydrol.
Process., 24, 775–788, https://doi.org/10.1002/hyp.7531, 2010. a
Hrachowitz, M., Fovet, O., Ruiz, L., Euser, T., Gharari, S., Nijzink, R.,
Freer, J., Savenije, H., and Gascuel-Odoux, C.: Process consistency in
models: The importance of system signatures, expert knowledge, and process
complexity, Water Resour. Res., 50, 7445–7469, 2014. a
Huss, M., Bauder, A., Funk, M., and Hock, R.: Determination of the seasonal
mass balance of four Alpine glaciers since 1865, J. Geophys.
Res.-Earth Surf., 113, F01015, https://doi.org/10.1029/2007JF000803,
2008a. a
Huss, M., Farinotti, D., Bauder, A., and Funk, M.: Modelling runoff from
highly glacierized alpine drainage basins in a changing climate,
Hydrol. Process., 22, 3888–3902, https://doi.org/10.1002/hyp.7055,
2008b. a
Huss, M., Jouvet, G., Farinotti, D., and Bauder, A.: Future high-mountain
hydrology: a new parameterization of glacier retreat, Hydrol. Earth
Syst. Sci., 14, 815–829, https://doi.org/10.5194/hess-14-815-2010, 2010. a, b, c, d
Huss, M., Zemp, M., Joerg, P. C., and Salzmann, N.: High uncertainty in 21st
century runoff projections from glacierized basins, J. Hydrol.,
510, 35–48, https://doi.org/10.1016/j.jhydrol.2013.12.017, 2014. a
IGS: Icelandic Glaciological Society Terminus monitoring, available at:
http://spordakost.jorfi.is, last access: 1 October 2017. a
Immerzeel, W. W., Petersen, L., Ragettli, S., and Pellicciotti, F.: The
importance of observed gradients of air temperature and precipitation for
modeling runoff from a glacierized watershed in the Nepalese Himalayas,
Water Resour. Res., 50, 2212–2226,
https://doi.org/10.1002/2013WR014506, 2014. a
IMO: Icelandic Meteorological Office and Institute of Earth Sciences,
University of Iceland: DEMs of Icelandic glaciers (data set), 2013. a
Irvine-Fynn, T. D. L., Hanna, E., Barrand, N. E., Porter, P. R., Kohler, J.,
and Hodson, A. J.: Examination of a physically based , high-resolution ,
distributed Arctic temperature-index melt model, on Midtre Lovénbreen,
Svalbard, Hydrol. Process., 28, 134–149, https://doi.org/10.1002/hyp.9526, 2014. a
Jansson, P., Hock, R., and Schneider, T.: The concept of glacier storage: a
review, J. Hydrol., 282, 116–129,
https://doi.org/10.1016/S0022-1694(03)00258-0, 2003. a
Johannesson, T., Sigurdsson, O., Laumann, T., and Kennett, M.: Degree-day
glacier mass-balance modelling with applications to glaciers in Iceland,
Norway and Greenland, J. Glaciol., 41, 345–358, 1995. a
Jost, G., Moore, R. D., Menounos, B., and Wheate, R.: Quantifying the
contribution of glacier runoff to streamflow in the upper Columbia River
Basin, Canada, Hydrol. Earth Syst. Sci., 16, 849–860,
https://doi.org/10.5194/hess-16-849-2012, 2012. a
Konya, K., Matsumoto, T., and Naruse, R.: Surface heat balance and spatially
distributed ablation modelling at Koryto Glacier, Kamchatka peninsula,
Russia, Geogr. Annal., 86 A, 337–348, 2004. a
Li, H., Sheffield, J., and Wood, E. F.: Bias correction of monthly
precipitation and temperature fields from Intergovernmental Panel on Climate
Change AR4 models using equidistant quantile matching, J.
Geophys. Res.-Atmos., 115, D10101, https://doi.org/10.1029/2009JD012882,
2010. a
Lindström, G., Johansson, B., Persson, M., Gardelin, M., and
Bergström, S.: Development and test of the distributed HBV-96
hydrological model, J. Hydrol., 201, 272–288,
https://doi.org/10.1016/S0022-1694(97)00041-3, 1997. a
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.:
Consistent increase in High Asia's runoff due to increasing glacier melt and
precipitation, Nat. Clim. Change, 4, 587–592,
https://doi.org/10.1038/nclimate2237, 2014. a
MacDougall, A. H., Wheler, B. A., and Flowers, G. E.: A preliminary assessment
of glacier melt-model parameter sensitivity and transferability in a dry
subarctic environment, The Cryosphere, 5, 1011–1028,
https://doi.org/10.5194/tc-5-1011-2011, 2011. a, b
Mackay, J., Jackson, C., and Wang, L.: A lumped conceptual model to simulate
groundwater level time-series, Environ. Modell. Softw., 61,
229–245, https://doi.org/10.1016/j.envsoft.2014.06.003, 2014. a, b
Magnússon, E., Belart, J. M.-c., Pálsson, F.,
Ágústsson, H., and Crochet, P.: Geodetic mass balance record
with rigorous uncertainty estimates deduced from aerial photographs and lidar
data – Case study from Drangajökull ice cap , NW Iceland, The
Cryosphere, 10, 159–177, https://doi.org/10.5194/tc-10-159-2016, 2016. a
Matthews, T., Hodgkins, R., Wilby, R. L., Gumundsson, S., Pálsson, F.,
Björnsson, H., and Carr, S.: Conditioning temperature-index model
parameters on synoptic weather types for glacier melt simulations,
Hydrol. Process., 29, 1027–1045, https://doi.org/10.1002/hyp.10217, 2015. a
Matthews, T. O. M. and Hodgkins, R.: Interdecadal variability of degree-day
factors on Vestari Hagafellsjökull (Langjökull, Iceland) and the
importance of threshold air temperatures, J. Glaciol., 62,
310–322, https://doi.org/10.1017/jog.2016.21, 2016. a
Mayr, E., Hagg, W., Mayer, C., and Braun, L.: Calibrating a spatially
distributed conceptual hydrological model using runoff, annual mass balance
and winter mass balance, J. Hydrol., 478, 40–49,
https://doi.org/10.1016/j.jhydrol.2012.11.035, 2013. a
McMillan, H. K. and Westerberg, I. K.: Rating curve estimation under epistemic
uncertainty, Hydrol. Process., 29, 1873–1882,
https://doi.org/10.1002/hyp.10419, 2015. a, b, c
Minder, J. R., Mote, P. W., and Lundquist, J. D.: Surface temperature lapse
rates over complex terrain: Lessons from the Cascade Mountains, J.
Geophys. Res.-Atmos., 115, D14122, https://doi.org/10.1029/2009JD013493,
2010. a
Mosier, T. M., Hill, D. F., and Sharp, K. V.: How much cryosphere model
complexity is just right? Exploration using the conceptual cryosphere
hydrology framework, The Cryosphere, 10, 2147–2171,
https://doi.org/10.5194/tc-10-2147-2016, 2016. a
Nawri, N., Pálmason, B., Petersen, G. N., Björnsson, H., and
Þorsteinsson, S.: The ICRA atmospheric reanalysis project for Iceland,
Tech. rep., Icelandic Meteorological Office, Reykjavík, Iceland, 2017. a
Nepal, S., Flügel, W.-A., Krause, P., Fink, M., and Fischer, C.:
Assessment of Spatial Transferability of Process-Based Hydrological Model
Parameters in Two Neighboring Catchments in the Himalayan Region,
Hydrol. Process., 31, 2812–2826, https://doi.org/10.1002/hyp.11199, 2017. a
Oerlemans, J.: Glaciers and Climate Change, A. A. Balkema Publishers,
Rotterdam, Netherlands, 2001. a
Ohmura, A.: Physical Basis for the Temperature-Based Melt-Index Method,
J. Appl. Meteorol., 40, 753–761,
https://doi.org/10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2, 2001. a
Pappenberger, F., Matgen, P., Beven, K. J., Henry, J. B., Pfister, L., and
Fraipont, P.: Influence of uncertain boundary conditions and model structure
on flood inundation predictions, Adv. Water Resour., 29,
1430–1449, https://doi.org/10.1016/j.advwatres.2005.11.012, 2006. a
Pellicciotti, F., Helbing, J., Rivera, A., Favier, V., Corripio, J., Araos, J.,
Sicart, J.-E., and Carenzo, M.: A study of the energy balance and melt
regime on Juncal Norte Glacier, semi-arid Andes of central Chile, using melt
models of different complexity, Hydrol. Process., 22, 3980–3997,
2008. a
Pellicciotti, F., Buergi, C., Immerzeel, W. W., Konz, M., and Shrestha, A. B.:
Challenges and Uncertainties in Hydrological Modeling of Remote Hindu
Kush-Karakoram-Himalayan (HKH) Basins: Suggestions for Calibration
Strategies, Mountain Res. Develop., 32, 39–50,
https://doi.org/10.1659/MRD-JOURNAL-D-11-00092.1, 2012. a
Petersen, L. and Pellicciotti, F.: Spatial and temporal variability of air
temperature on a melting glacier: Atmospheric controls, extrapolation methods
and their effect on melt modeling, Juncal Norte Glacier, Chile, J.
Geophys. Res.-Atmos., 116, D23109, https://doi.org/10.1029/2011JD015842,
2011. a, b, c, d
Phillips, E., Finlayson, A., Bradwell, T., Everest, J., and Jones, L.:
Structural evolution triggers a dynamic reduction in active glacier length
during rapid retreat: Evidence from Falljökull, SE Iceland, J.
Geophys. Res.-Earth Surf., 119, 2194–2208,
https://doi.org/10.1002/2014JF003165, 2014. a
Ponce, V. M.: Engineering hydrology: Principles and practices,
available at: http://ponce.sdsu.edu/enghydro/ (last access: 1 June 2016), 2014. a
Radić, V. and Hock, R.: Glaciers in the Earth's Hydrological Cycle:
Assessments of Glacier Mass and Runoff Changes on Global and Regional
Scales, Surv. Geophys., 35, 813–837,
https://doi.org/10.1007/s10712-013-9262-y, 2014. a
Ragettli, S., Cortés, G., Mcphee, J., and Pellicciotti, F.: An
evaluation of approaches for modelling hydrological processes in
high-elevation, glacierized Andean watersheds, Hydrol. Process., 28,
5674–5695, https://doi.org/10.1002/hyp.10055, 2014. a, b
Ragettli, S., Immerzeel, W. W., and Pellicciotti, F.: Contrasting climate
change impact on river flows from high-altitude catchments in the Himalayan
and Andes Mountains., P. Natl. Acad. Sci.
USA, 113, 9222–9227, https://doi.org/10.1073/pnas.1606526113,
2016. a, b
Reda, I. and Andreas, A.: Solar Position Algorithm for Solar Radiation
Applications, Tech. Rep. NREL/TP-560-34302, National Renewable Energy
Laboratory, Colorado, USA, 2008. a
Reveillet, M., Vincent, C., Six, D., and Rabatel, A.: Which empirical model is
best suited to simulate glacier mass balances?, J. Glaciol., 63,
39–54, https://doi.org/10.1017/jog.2016.110, 2017. a, b, c, d
Riggs, G. and Hall, D.: MODIS Snow Products Collection 6 User Guide, Tech.
rep., 2015. a
Rye, C. J., Willis, I. C., Arnold, N. S., and Kohler, J.: On the need for
automated multiobjective optimization and uncertainty estimation of glacier
mass balance models, J. Geophys. Res.-Earth Surf., 117,
1–21, https://doi.org/10.1029/2011JF002184, 2012. a
Sachindra, D. A., Huang, F., Barton, A., and Perera, B. J. C.: Statistical
downscaling of general circulation model outputs to precipitation-part 2:
Bias-correction and future projections, Int. J.
Climatol., 34, 3282–3303, https://doi.org/10.1002/joc.3915, 2014. a
Salomonson, V. V. and Appel, I.: Estimating fractional snow cover from MODIS
using the normalized difference snow index, Remote Sens. Environ.,
89, 351–360, https://doi.org/10.1016/j.rse.2003.10.016, 2004. a
Schaefli, B.: Snow hydrology signatures for model identification within a
limits-of-acceptability approach, Hydrol. Process., 30, 4019–4035,
https://doi.org/10.1002/hyp.10972, 2016. a, b, c, d
Schaefli, B., Nicótina, L., Imfeld, C., Da Ronco, P., Bertuzzo, E., and
Rinaldo, A.: SEHR-ECHO v1.0: a Spatially Explicit Hydrologic Response model
for ecohydrologic applications, Geosci. Model Dev., 7, 2733–2746,
https://doi.org/10.5194/gmd-7-2733-2014, 2014. a
Schulla, J.: Model Description WaSiM. Technical report., Tech. rep.,
Hydrology Software Consulting, Zürich, 2015. a
Singh, S., Kumar, R., Bhardwaj, A., Sam, L., Shekhar, M., Singh, A., Kumar, R.,
and Gupta, A.: Changing climate and glacio-hydrology in Indian Himalayan
Region: A review, Wiley Interdisciplinary Reviews, Clim. Change, 7,
393–410, https://doi.org/10.1002/wcc.393, 2016. a
Sorensen, J. P. R., Finch, J. W., Ireson, A. M., and Jackson, C. R.:
Comparison of varied complexity models simulating recharge at the field
scale, Hydrol. Process., 28, 2091–2102, https://doi.org/10.1002/hyp.9752, 2014. a
Srivastav, R. K., Schardong, A., and Simonovic, S. P.: Equidistance Quantile
Matching Method for Updating IDF Curves under Climate Change, Water
Resour. Manage., 28, 2539–2562, https://doi.org/10.1007/s11269-014-0626-y, 2014. a
Switanek, M. B., Troch, P. A., Castro, C. L., Leuprecht, A., Chang, H.-I.,
Mukherjee, R., and Demaria, E. M. C.: Scaled distribution mapping: a bias
correction method that preserves raw climate model projected changes,
Hydrol. Earth Syst. Sci., 21, 2649–2017, 2017. a
Teutschbein, C., Grabs, T., Karlsen, R. H., Laudon, H., and Bishop, K.:
Hydrological response to changing climate conditions: Spatial streamflow
variability in the boreal region, Water Resour. Res., 51, 9425–9446,
https://doi.org/10.1002/2015WR017337, 2015. a
Westerberg, I. K., Wagener, T., Coxon, G., McMillan, H. K., Castellarin, A.,
Montanari, A., and Freer, J.: Uncertainty in hydrological signatures for
gauged and ungauged catchments, Water Resour. Res., 52, 1847–1865,
https://doi.org/10.1002/2015WR017635, 2016. a
Yadav, M., Wagener, T., and Gupta, H.: Regionalization of constraints on
expected watershed response behavior for improved predictions in ungauged
basins, Adv. Water Resour., 30, 1756–1774,
https://doi.org/10.1016/j.advwatres.2007.01.005, 2007. a
Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based diagnostic
approach to model evaluation: Application to the NWS distributed hydrologic
model, Water Resour. Res., 44, W09417, https://doi.org/10.1029/2007WR006716,
2008. a
Zhang, Y., Hirabayashi, Y., Liu, Q., and Liu, S.: Glacier runoff and its
impact in a highly glacierized catchment in the southeastern Tibetan Plateau:
past and future trends, J. Glaciol., 61, 713–730,
https://doi.org/10.3189/2015JoG14J188, 2015. a
Short summary
We apply a framework to compare and objectively accept or reject competing melt and run-off process models. We found no acceptable models. Furthermore, increasing model complexity does not guarantee better predictions. The results highlight model selection uncertainty and the need for rigorous frameworks to identify deficiencies in competing models. The application of this approach in the future will help to better quantify model prediction uncertainty and develop improved process models.
We apply a framework to compare and objectively accept or reject competing melt and run-off...