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Abstract. Glacio-hydrological models (GHMs) allow us to
develop an understanding of how future climate change will
affect river flow regimes in glaciated watersheds. A variety of
simplified GHM structures and parameterisations exist, yet
the performance of these are rarely quantified at the process
level or with metrics beyond global summary statistics. A
fuller understanding of the deficiencies in competing model
structures and parameterisations and the ability of models to
simulate physical processes require performance metrics util-
ising the full range of uncertainty information within input
observations. Here, the glacio-hydrological characteristics of
the Virkisá River basin in southern Iceland are characterised
using 33 signatures derived from observations of ice melt,
snow coverage and river discharge. The uncertainty of each
set of observations is harnessed to define the limits of accept-
ability (LOA), a set of criteria used to objectively evaluate
the acceptability of different GHM structures and parameter-
isations. This framework is used to compare and diagnose
deficiencies in three melt and three run-off-routing model
structures. Increased model complexity is shown to improve
acceptability when evaluated against specific signatures but
does not always result in better consistency across all sig-
natures, emphasising the difficulty in appropriate model se-
lection and the need for multi-model prediction approaches
to account for model selection uncertainty. Melt and run-
off-routing structures demonstrate a hierarchy of influence
on river discharge signatures with melt model structure hav-
ing the most influence on discharge hydrograph seasonality

and run-off-routing structure on shorter-timescale discharge
events. None of the tested GHM structural configurations re-
turned acceptable simulations across the full population of
signatures. The framework outlined here provides a com-
prehensive and rigorous assessment tool for evaluating the
acceptability of different GHM process hypotheses. Future
melt and run-off model forecasts should seek to diagnose
structural model deficiencies and evaluate diagnostic signa-
tures of system behaviour using a LOA framework.

1 Introduction

Computational GHMs allow us to develop an understanding
of how future climate change will affect river flow regimes
in glaciated watersheds (Lutz et al., 2014; Radić and Hock,
2014; Teutschbein et al., 2015; Ragettli et al., 2016; Singh
et al., 2016). A variety of GHM codes exist (e.g. Lindström
et al., 1997; Ciarapica and Todini, 2002; Huss et al., 2008b;
Boscarello et al., 2014; Schaefli et al., 2014; Schulla, 2015),
each of which includes a number of model components that
represent two broad groups of processes: (i) glaciological
mass balance, the accumulation and ablation of snow and
ice; and (ii) hydrological water balance, the storage and re-
lease of melt and rainfall through snow, ice, overland and
the subsurface. The exact form that these model compo-
nents should take, both in terms of their governing equations

Published by Copernicus Publications on behalf of the European Geosciences Union.



2176 J. D. Mackay et al.: Glacio-hydrological melt and run-off modelling

(structure) and numerical constants (parameterisation) is not
known. Physically based models which solve equations de-
rived from first principles, typically over a distributed grid,
are our closest approximation of the “true” structure. How-
ever, limited parameterisation data and computer resources
often preclude the use of such complex models, particularly
in remote mountainous regions where data are scarce and
where the inclusion of extra complexity does not guarantee
better predictions (e.g. Gabbi et al., 2014).

Simplified process models offer an alternative. They are
faster to run and employ fewer parameters, which are typi-
cally calibrated to available observation data. They are based
on, but do not necessarily adhere to, physical laws and as
such their mathematical structure is somewhat unconstrained
and may be biased towards a particular scientist’s own per-
ceptions and understanding of environmental processes. This
has led to the development of a variety of competing model
structures which purport to simulate the same process, but
which have been derived from different process hypotheses.
For example, a number of simplified index model structures
of snowmelt and ice melt exist. The classical temperature in-
dex model (TIM) simulates melt as a linear piecewise func-
tion of temperature only (Braithwaite, 1995), a hypothesis
that can be justified because of the influence temperature
has on the total energy balance of ice and snow, particularly
in temperate climates (Ohmura, 2001; Guðmundsson et al.,
2009; Aðalgeirsdóttir et al., 2011). So-called “enhanced”
TIM structures have also been proposed, which include
added levels of complexity with the purpose of providing
more accurate estimates of melt. These have accounted for
perturbations in melt caused by topographic shading (Hock,
1999), surface albedo characteristics (Oerlemans, 2001; Pel-
licciotti et al., 2005) and debris cover (Carenzo et al., 2016).

Similarly a number of simplified representations of pro-
cesses governing the hydrological water balance have been
used in GHMs. Arguably, the equations that govern the rout-
ing (transport) of run-off are most important in relation to
river flow predictions in glaciated river basins, as storage
characteristics of ice and snow strongly influence river flow
regimes over a range of timescales (Jansson et al., 2003).
The concept of linear reservoirs is the most widely adopted
simplified approach for run-off-routing in glaciated basins
(Zhang et al., 2015; Hanzer et al., 2016; Gao et al., 2017).
A linear reservoir lumps all of the interacting, non-linear
and non-stationary components of water transmission within
a predefined area (e.g. a watershed) into a single “leaky
bucket”. Despite its simplicity, the linear reservoir has been
shown to be remarkably versatile at capturing the storage–
discharge characteristics of glaciated river basins around
the world (Hock and Jansson, 2005; de Woul et al., 2006;
Farinotti et al., 2012). This is partly because the concept
lends itself to structural modifications that can represent dif-
ferent glacio-hydrological systems. Hanzer et al. (2016) hy-
pothesised that the snowpack, firn layer, glacier ice and the
region free from ice all exhibit unique run-off-discharge re-

sponses and advocate the use of four linear reservoirs in
parallel to distinguish between these units. However, sim-
pler structural configurations use only two linear reservoirs
in parallel to route meltwater through the snowpack and ice
separately (Hannah and Gurnell, 2001) or even a single lin-
ear reservoir to route all rainfall and melt run-off simultane-
ously (Boscarello et al., 2014), which can accurately repro-
duce river discharge time series.

The availability of multiple, presumably plausible, sim-
plified model structures presents somewhat of a dilemma
to glaciologists and hydrologists as they are left with some
uncertainty about how processes should be represented in
their models. For the purpose of river discharge predictions,
this problem is particularly pertinent, as there are competing
structures for two fundamental controls on these predictions:
snowmelt and ice melt and run-off-routing. One approach
to mitigate this is to determine the optimum structure that
best captures the observation data. Structural optimisation
of simplified run-off-routing routines has largely been ig-
nored in glacio-hydrological contexts (see Hannah and Gur-
nell, 2001, for one notable exception), but more studies have
sought to optimise and compare simplified models of melt.
Gabbi et al. (2014) applied four different TIMs to Rhone-
gletscher, Switzerland. They found that all achieved a similar
goodness-of-fit to 6 years of ablation stake data, but that the
inclusion of a solar radiation term provided the most accurate
predictions of multi-decadal measurements of ice volume
change. Irvine-Fynn et al. (2014) applied six different TIMs
to the high-Arctic Midtre Lovénbreen glacier but only found
minor improvements in capturing seasonal ablation stake
data when various levels of complexity were introduced to
the classical (temperature-only) TIM. More recently, a com-
parison of four TIMs applied to four glaciers in the French
Alps by Reveillet et al. (2017) found no clear evidence that
using an enhanced TIM over the classical temperature-only
approach provided better simulations when compared to a
17-year data set of ablation stake measurements. Mosier et al.
(2016) used a multi-criterion evaluation approach to compare
the performance of different conceptual melt model struc-
tures. They compared seven competing melt model structures
in two glaciated catchments in Alaska to ablation stake, river
discharge and remotely sensed snow coverage data. They
found that no single model was best across all of the obser-
vation data sets, but the inclusion of a cold-content represen-
tation of snow consistently produced the best goodness-of-fit
scores over the evaluation data.

Clearly, while some studies have provided useful insight
into the comparative behaviour between competing concep-
tual process hypotheses (particularly for melt), none provide
any definitive reasoning for adopting (or not) a particular
model structure. Of course, discriminating between compet-
ing model structures in this way is made difficult by the
fact that observation data used to drive and evaluate mod-
els are uncertain and therefore we cannot be sure whether
model deficiencies represent inadequacies in the model or
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the data (Beven, 2016). Beven (2006) argues that, because
of this uncertainty and because of the fact that all models
are by definition imperfect, no one optimum model struc-
ture (or parameterisation) exists. Instead, there is an equi-
finality of behavioural models that make predictions within
some predefined acceptability bounds around the observa-
tion data that take various sources of modelling uncertainty
into account. Indeed, parameter equifinality is a well recog-
nised phenomenon in conceptual models of snowmelt and ice
melt (Jost et al., 2012; Pellicciotti et al., 2012; Gabbi et al.,
2014; Finger et al., 2015; Reveillet et al., 2017). If we accept
this, then the priority within the glacio-hydrological mod-
elling community should be to establish frameworks that al-
low us to robustly evaluate model appropriateness and distin-
guish between behavioural (acceptable) and non-behavioural
(unacceptable) structures and parameterisations. Constrain-
ing the range of acceptable models is particularly important
for glacio-hydrological modelling, as it has been shown that
model uncertainty can lead to high uncertainty in 21st cen-
tury predictions of river flows in glaciated basins (Huss et al.,
2014).

One potential source of inspiration is the hydrological
rainfall-run-off modelling community. Their heavy reliance
on an ever-expanding choice of conceptual hydrological pro-
cess models to predict river flow prompted Gupta et al.
(2008) to discuss the need for a better framework with which
to discriminate between these competing process hypotheses.
They focussed on the evaluation metrics and noted that there
was an overreliance on metrics that quantify the average per-
formance of a model (e.g. root mean squared error and Nash–
Sutcliffe efficiency), which reduces information held in ob-
servation data down to a single summary statistic. They argue
for a multi-criterion, diagnostic approach for which more of
the relevant information from observation data is extracted so
that inadequacies in model structures and parameterisations
can be better identified. Rye et al. (2012) applied such an ap-
proach to optimise a distributed surface mass balance model
of two glaciers in Svalbard. They used ablation stake data to
define three different features of the observations including
mass balance at the stake locations, long-term mass balance
trend and mass balance gradient. Using a multi-objective op-
timisation procedure, they identified structural inadequacies
relating to how the mass balance gradient was simulated.

Hydrologists are now moving away from traditional met-
rics of model performance in favour of more diagnostic sig-
natures of hydrological behaviour. These have typically been
derived from river flow time series and may be as simple
as the mean flow (an indicator of water balance) or they
can be used to characterise the distribution (e.g. flow per-
centiles) and the timing (e.g. autocorrelation) of flows. They
have shown to have more discrimination power than tradi-
tional error metrics (Euser et al., 2013; Hrachowitz et al.,
2014; Shafii and Tolson, 2015; Schaefli, 2016) and, impor-
tantly, it is also possible to take into account their informa-
tion content (i.e. their uncertainty) so that decisions about

model appropriateness can be made within the uncertainties
of observation data used to evaluate the model. Here, obser-
vation data uncertainty can be used to define quantitative lim-
its of acceptability (LOA) around each signature. Different
model structures and parameterisations can then be system-
atically evaluated for their ability to capture the signatures
within their LOA, allowing the modeller to objectively di-
agnose model deficiencies and make decisions about model
appropriateness. The LOA framework has been used to con-
strain the parameters of a distributed hydrological model for
flood prediction (Blazkova and Beven, 2009), evaluate the
appropriateness of different hydrological model structures
across contrasting geological settings (Coxon et al., 2014)
and, most recently, to diagnose deficiencies in a hydrological
model based on its ability to capture a range of river dis-
charge signatures for an alpine catchment (Schaefli, 2016).

A signature-based approach within a LOA framework
could also be used to compare and diagnose deficiencies
in different simplified melt and run-off-routing model struc-
tures and parameterisations employed in GHMs. For this pur-
pose, signatures need not be derived just from river discharge
data but should also be taken from other observation sources
such as ice melt and snow coverage, as these have shown to
be useful for evaluating the consistency of GHMs across dif-
ferent aspects of glacio-hydrological systems (Finger et al.,
2011, 2015; Mayr et al., 2013; Hanzer et al., 2016). By do-
ing this, the framework could facilitate better predictions of
river flow regime changes in glaciated river basins, firstly by
helping to diagnose deficiencies in GHM structures that re-
quire improvement, and secondly, by objectively selecting
the range of acceptable model structures and parameterisa-
tions so that prediction uncertainty can be better constrained.

This study is the first of its kind to apply a signature-
based LOA framework for a multi-GHM-structure evalua-
tion. The framework is used to evaluate three different melt
model structures and three different run-off-routing model
structures with the aim of investigating its utility for (i) diag-
nosing deficiencies in different model structures, indicating
the framework’s usefulness for aiding future improvement
of simplified process models; and (ii) constraining a prior
population of model structures and parameterisations down
to a smaller population of acceptable models, indicating the
framework’s usefulness for reducing prediction uncertainty.
To do this, the models were applied to the glaciated Virkisá
River basin in southern Iceland where observation data were
used to derive 33 signatures of ice melt, snow coverage and
river discharge against which the models were calibrated and
evaluated. LOA were defined around each signature so that
acceptable and unacceptable model structures and parameter-
isations could be defined. The results were first used to evalu-
ate the capacity of the different signatures for discriminating
between acceptable and unacceptable model structures and
parameterisations when used individually. They were then
used to compare the acceptability of the different melt and
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run-off-routing model structures across the range of signa-
tures.

2 Methodology

2.1 Study site

The Virkisá River basin covers an area of 22 km2 on the
western side of the ice-capped Öræfajökull stratovolcano in
south-eastern Iceland (Fig. 1). It rises from near sea level to
the west, where it is bounded by steep cliffs, up to an ice-
filled caldera at the summit of Öræfajökull (∼ 2000 m a.s.l.),
the edge of which forms the basin’s uppermost boundary. The
basin forms a major drainage channel for accumulated ice
which flows in a south-westerly direction down the steeply
sloped Öræfajökull (average slope of 0.25). It flows along
two distinct glacier arms (Virkisjökull and Falljökull, here-
after referred to as Virkisjökull), around a bedrock ridge
before meeting again at the terminus (∼ 150 m a.s.l.). Virk-
isjökull has a high mass balance gradient with a net an-
nual accumulation of more than 7 m w.e. yr−1 at the sum-
mit (Guðmundsson, 2000) and net annual ice melt of more
than 8 m w.e. yr−1 in the main ablation zone (Flett, 2016). It
has been in a phase of retreat since 1990 due to warming of
the climate over this period (Hannesdóttir et al., 2015). Since
2005 the rate of retreat has accelerated to> 30 m yr−1 as a re-
sult of the detachment of the ice front from the active part of
the glacier, resulting in rapid downwasting (Bradwell et al.,
2013; Phillips et al., 2014; IGS, 2017). This recent rapid re-
treat has resulted in the formation of a small proglacial lake at
the terminus which forms the headwater of the Virkisá River.
The Virkisá River flows in a south-westerly direction, firstly
through a 800 m bedrock-controlled section flanked on either
side by push moraines from previous glacial advances. From
here it continues to flow over an extensive and gently slop-
ing sandur floodplain. The steep-sided valley walls and the
relatively recent glacial maximum at the end of the Little Ice
Age, circa 1890, mean that there is limited soil development
in and around the Virkisá River basin. Where thin soils have
developed, vegetation is dominated by mosses, sparse grass
and shrubs such as dwarf willow and birch.

Long-term meteorological records from two weather sta-
tions operated by the Icelandic Meteorological Office 10 km
east and west of the study site show that the region ex-
periences a maritime climate characterised by cool sum-
mers (∼ 10 ◦C on average) and mild winters (∼ 1 ◦C on av-
erage) with year-round precipitation (see inset in Fig. 1b).
The prevailing north-easterly wind and orographic lift over
Öræfajökull induces a strong lateral precipitation gradi-
ent where more than 2 times the precipitation falls to the
east (3500 mm yr−1) of the river basin than to the west
(1500 mm yr−1). Near-surface air temperature is mainly con-
trolled by the altitudinal variations over Öræfajökull where

Figure 1. Location of Virkisá River basin on Öræfajökull (a) and
detailed topographical map of the basin including major land sur-
face types and observation data with inset showing mean monthly
climate (b).

the average temperature lapse rate is −0.44 ◦C 100 m−1

(Flett, 2016).

2.2 Observation data

2.2.1 Climate

Several different sources of climate data are available for
the study site. Measurements within the catchment are avail-
able from three automatic weather stations (AWSs) in-
stalled by the British Geological Survey (BGS) between
2009 and 2011 as part of their investigation into the re-
treat of the Virkisjökull glacier. These are situated at 156,
444 and 805 m a.s.l. (Fig. 1b) and they measure tempera-
ture, air pressure, humidity, wind speed and rainfall every
15 min. The lowest weather station (AWS1) is also equipped
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with a cosine-corrected pyranometer which measures inci-
dent short-wave radiation. None of the weather stations are
designed to measure snowfall and therefore precipitation
measurements during freezing temperatures are not avail-
able.

Two additional sources of climate data are available.
Firstly, the Fagurhólsmýri weather station operated by the
Icelandic Meteorological Office (IMO) approximately 12 km
south of the study site has daily measurements of temperature
dating back to 1949 and therefore provides long-term varia-
tions in temperature around the study region. The IMO has
also recently produced a 2.5 km gridded data set of total pre-
cipitation as part of the ICRA atmospheric reanalysis project
(Nawri et al., 2017). These data provide the best estimate of
long-term precipitation at the study site and, given the lim-
ited availability of precipitation measurements at higher ele-
vations around Öræfajökull, they also provide the best esti-
mate of spatial variations in precipitation across the region.

2.2.2 Ice melt

An array of 17 ablation stakes installed by Flett (2016) in the
main ablation zone of the glacier between 2012 and 2014 at
elevations ranging from 142 to 462 m a.s.l. provide measure-
ments of ice melt on the glacier tongue (Fig. 1b). The BGS
have also undertaken annual high-resolution (sub-metre) ter-
restrial lidar scans of the proglacial region including ice at
the front of the glacier (see red dashed box in Fig. 1b) which,
given that ice flow is negligible here, provides an additional
indication of ice melt.

Two digital elevation models of the ice also exist for the
years 1988 and 2011, which indicate the historical retreat
of Virkisjökull. A 5 m 2011 DEM was constructed using
high-resolution airborne lidar scans of the ice surface (IMO,
2013) and is considered the most accurate measurement of
the ice geometry and surrounding topography in the study
region currently available. A 20 m 1988 DEM was derived
from aerial photographs of the glacier (Landmælingar Ís-
lands: https://www.lmi.is/, last access: 1 October 2017) using
photogrammetric methods (Magnússon et al., 2016). Pho-
togrammetry may suffer from errors due to image rectifica-
tion and stereo-image mismatches (e.g. Barrand et al., 2009)
and therefore the accuracy of this data set is expected to be
less certain, particularly over higher-elevation snow-covered
terrain.

2.2.3 Snow coverage

No direct observations of snow accumulation or melt exist
for the Virkisá River basin and so, instead, satellite snow
cover data (MOD10A1 product) from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) (Riggs and Hall,
2015) were used. These data have been archived since 2000
and consist of daily 500 m gridded maps of snow cover ex-
tent with values ranging between 0 and 1 which relate to the

proportion of the ground that is snow covered. While they
do not provide a direct measurement of snow mass balance,
they have shown to be a useful data source for evaluating
the performance of GHMs (Finger et al., 2015; Hanzer et al.,
2016). The quality of the data in high-latitude regions such
as Iceland are variable due to the need for good light and lit-
tle or no cloud cover. As part of the MOD10A1 product, a
basic estimate of the data quality is calculated as a means to
avoid measurements affected by cloud cover and poor light
conditions. For this study, only those data that achieved a QA
score of “good” or “best” were used. This precluded the use
of data collected between September and February, presum-
ably because of reduced daylight hours and increased cloud
cover during these months.

2.2.4 River discharge

Hourly river discharge data collected since 2012 are avail-
able from an automatic stream gauge installed by the BGS
2 km downstream of the lake outlet on the Virkisá River (see
ASG1 in Fig. 1). The gauge consists of two stilling wells with
submerged pressure transducers which measure river stage
and water temperature every 15 min. The stage data are sub-
sequently converted into units of flow using a rating curve
constructed from periodic river flow gaugings.

In conjunction with the river stage and water temperature
measurements, a camera is mounted next to the river and
takes photos of the channel 3 times a day. Given that the river
is prone to freezing over the winter months, the photographic
archive and temperature data were used to remove these pe-
riods from the river flow time series. The river bed consists
of large boulders (approximate diameter of 50 cm) which can
become mobile during high flows, causing shifts in the rating
curve. For this study, river discharge data for the years 2013
and 2014 were used because gaugings for these years cover
a wide range of flow magnitudes and rating shifts are limited
and well constrained by observations.

2.3 Glacio-hydrological model

A distributed GHM, which can incorporate different concep-
tual representations of melt and run-off-routing processes,
was used for all model experiments. The code was written
in the object-oriented C++ programming language, making
it computationally efficient and ideally suited for incorporat-
ing different model structures. The GHM consists of a 2-D
Cartesian grid of equally spaced model nodes. For this study,
a spatial resolution of 50 m was selected as the best balance
between simulation detail and model performance. Hourly
observations of precipitation, temperature and incident solar
radiation were used to simulate the accumulation of snowfall
and the melt of snow, firn and ice across the model domain.
The snow redistribution algorithm developed by Huss et al.
(2008a) was used to account for snow drift and avalanches
based on the curvature and slope of the surface. A soil infil-
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tration and evapotranspiration model developed by Griffiths
et al. (2006) solves the water balance for the non-glaciated
regions of the study catchment. Excess soil moisture, rainfall
and melt are then routed to the catchment outlet via a semi-
distributed network of linear-reservoir cascades which repre-
sent the water storage and release characteristics of the major
hydrological pathways in the watershed. The GHM also sim-
ulates the evolution of the glacier geometry under periods
of sustained negative mass balance using the 1h parametri-
sation of glacier retreat, which has been shown to closely
reproduce the evolution of alpine glaciers with results com-
parable to more complex 3-D finite-element ice flow models
(Huss et al., 2010). Details of this and the soil water balance
component of the GHM can be found in Appendix A. The
following text details the different melt and run-off-routing
structures adopted for this study.

2.3.1 Snowmelt and ice melt model structures

Melt of snow and ice is calculated at each model node sep-
arately. Snowmelt can occur at any node where a snow pack
has developed. Similarly, ice melt can only occur at ice-
covered nodes where the snow pack has completely melted.
The mass balance at a given node is the summation of snow-
fall minus snowmelt and ice melt. The GHM uses the mass
balance calculated at each node to determine the equilibrium
line altitude (ELA) which is updated each simulation year. A
rolling 3-year average ELA was used to determine the divid-
ing line between firn and ice on the glacier.

For this study, three different conceptual models of
snowmelt and ice melt with different levels of complexity
were compared. All have been used extensively to simulate
melt processes in glaciated regions around the world (e.g
Matthews and Hodgkins, 2016; Ragettli et al., 2016; Gao
et al., 2017; Nepal et al., 2017; Reveillet et al., 2017). The
first melt model structure (TIM1) employs a classic tem-
perature index model approach (Braithwaite, 1995) whereby
melt is assumed to increase linearly with temperature above
a given critical threshold:

Mi =

{
ai(T − T

∗

i ) T > T ∗i

0 T ≤ T ∗i

, (1)

where a (m w.e. ◦C−1 h−1) is the temperature factor calibra-
tion parameter that converts temperature into melt, T is the
near-surface air temperature and T ∗ is the critical threshold
above which melt occurs. To account for the different proper-
ties of snow, firn and ice that may bring about different values
of a and T ∗, these are defined separately so that i= (snow,
firn, ice).

The second melt model structure (TIM2) was originally
proposed by Hock (1999) and includes an additional incident
solar radiation term to account for topographic effects such
as slope, aspect and shading which can bring about spatio-
temporal variations in melt (Arnold et al., 2006; Pellicciotti

et al., 2008). Their enhanced TIM has the form

Mi =

{
(T − T ∗i )(ai + bi ·SW↓) T > T ∗i

0 T ≤ T ∗i

, (2)

where b (m3 w.e. W−1 ◦C−1 h−1) is an additional radiation
factor calibration parameter that converts the measured inci-
dent solar radiation, SW↓ (W m2) into a unit melt. For this
melt model structure the GHM accounts for shading using
the DEM and position of the sun in the sky, which is cal-
culated for each hourly time step using the SPA algorithm
(Reda and Andreas, 2008). Additional perturbations in solar
irradiance at the surface brought about by topographic effects
such as slope and aspect are accounted for by calculating the
incident angle of solar radiation to scale the measured incom-
ing radiation.

Konya et al. (2004) noted that the form of Eq. (2) is not
congruent with the full energy balance equation, as tempera-
ture is used to multiply the short-wave radiation term, which
can lead to overestimation of melt during peak temperatures.
Accordingly the melt model structure proposed by Pellic-
ciotti et al. (2005) was also used for this study (TIM3), which
is an enhanced TIM in additive form that also incorporates an
albedo parameter, α:

Mi =

{
ai(T − T

∗

i )+ bi ·SW↓(1−αi) T > T ∗i

0 T ≤ T ∗i

, (3)

where b has the units m3 w.e. W−1 h−1. Following Pellic-
ciotti et al. (2005), this melt model structure also includes
the dynamic snow albedo algorithm proposed by Brock et al.
(2000), which accounts for the drop in snow albedo as it ages
using a logarithmic function with the form:

αsnow = p1−p2 · log10 · Ta, (4)

where p1 is the albedo of fresh snow (set to 0.9), p2 is an em-
pirical calibration parameter and Ta is the accumulated daily
maximum temperature greater than 0 ◦C since snowfall.

For all melt model structures in the GHM, melt M is con-
verted into a volumetric melt Mv at each node:

Mv =M ·A, (5)

where A is the model node area. Following Hopkinson et al.
(2010) the area of each node is corrected for surface slope:

A=
L2

cosβ
, (6)

where L is the model node length and β is the node surface
slope.

2.3.2 Run-off-routing model structures

Run-off is generated by rainfall falling on snow and ice as
well as snowmelt, ice melt and excess soil moisture from
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those areas free of ice and snow. The concept of linear reser-
voirs was employed to route this run-off to the catchment
outlet. A linear reservoir receives a volumetric inflow and re-
leases it at a rate proportional to its internal water storage
following

q =
1
k
s, (7)

where q is the outflow (m3 h−1), s is the storage (m3) and k is
mean residence time of the reservoir (h), which accounts for
the diffusive effect of storage and release mechanisms within
the catchment. Increasing the value of k increases the diffu-
sion effect on the inflow hydrograph. Additional controls on
the diffusion and lag effects can be obtained by arranging a
cascade of multiple linear reservoirs in series (Ponce, 2014)
so that the outflow from the previous reservoir is the inflow
to the subsequent reservoir. With this set-up, the continuity
equation for the j th reservoir of n reservoirs in series, where
j = (1,2. . .n) can be written as

dsj
dt
=

{
i− qj j = 1

qj−1− qj j > 1
. (8)

The outflow hydrograph is then taken from qn.
For temperate glaciers, common practice is to subdivide

the catchment into one or more hydrological response units
(HRUs) which are thought to have different water storage
and release characteristics. For example, the firn, snow and
bare ice have generally been shown to respond over rela-
tively long, intermediate and short timescales respectively
(Hock and Jansson, 2005), and therefore these may be char-
acterised as separate HRUs, although as noted previously,
simpler and more complex definitions of HRUs have been de-
fined in the past. Subsequently, three run-off-routing model
structures were proposed with different levels of complexity
structured around these subdivisions (Fig. 2).

The first and simplest run-off-routing model structure
(ROR1) uses a single linear reservoir cascade (e.g. Boscarello
et al., 2014) to route the inflow from all run-off sources si-
multaneously. This structure makes no distinction between
the different run-off sources and flow pathways and assumes
that all conform to the same storage–discharge relationship.

The second model structure (ROR2), employs two lin-
ear reservoir cascades in parallel (e.g. Hannah and Gurnell,
2001). The first cascade represents the slow percolation of
water through the snow and firn HRUs, while the second cas-
cade represents a faster flow of water through the bare ice
and overland. This approach therefore makes some distinc-
tion between the different flow pathways and, by condition-
ing the parameters so that the snow and firn have a more dif-
fuse response function, it introduces a degree of non-linearity
in the discharge response to run-off.

The third run-off-routing model structure (ROR3) has not
been used previously. It employs separate linear reservoir
cascades to route water from the firn, snow, ice and soil

Figure 2. Three run-off-routing model structures which relate the
linear reservoir cascade configurations to idealised cross sections of
a temperate glacier.

HRUs. Here the parameters are conditioned so that the firn
is the most diffuse, slowly responding reservoir, followed by
the snow, and then the ice and soil zones are considered to be
relatively fast-responding HRUs. This approach also includes
some representation of linkages between these various units.
Here it is hypothesised that water that flows through the firn
must then flow through the downstream bare ice HRU before
it reaches the river. Similarly, water that percolates through
the snow pack must also flow via the HRU that it overlies be-
fore it reaches the river. There are therefore six different flow
pathways that run-off may take before reaching the river out-

www.the-cryosphere.net/12/2175/2018/ The Cryosphere, 12, 2175–2210, 2018



2182 J. D. Mackay et al.: Glacio-hydrological melt and run-off modelling

Figure 3. Continuous hourly time series of precipitation (a), temperature (b) and incident solar radiation (c) between 1988 and 2015 at AWS1.

let (see Fig. 2c) and this represents the most complex, non-
linear run-off-routing model structure.

2.4 Driving climate data

The GHM was configured to run from the initial ice geom-
etry of 1988 to 2015. It requires continuous measurements
of hourly precipitation, near-surface air temperature and in-
cident solar radiation to drive the various model components.

2.4.1 Precipitation

A new gridded precipitation time series was constructed for
the GHM, which incorporates the measurements of rainfall
from the weather stations in the Virkisá basin and the infor-
mation on spatial and long-term variations in precipitation
from the gridded ICRA reanalysis product. First, the weather
station rainfall data were used to correct the ICRA reanal-
ysis product for bias. Given that none of the weather sta-
tions are equipped with devices to measure snowfall, and that
freezing temperatures can induce erroneous measurements in
rainfall, only data with three consecutive preceding above-
freezing days were used. This is a major issue when using
AWS4, as the majority of days, particularly in the winter,

are below freezing at this elevation. Accordingly, the AWS4
rainfall data were not used for the bias-correction procedure.
Furthermore, because the AWS1 and AWS3 gauges overlap
the same ICRA data pixel, and because the AWS1 time se-
ries is the longest and most complete, it was decided that the
AWS1 data should be used to correct the overlapping ICRA
data pixel. Here, the equidistant quantile mapping (EQM)
approach (Li et al., 2010; Sachindra et al., 2014; Srivastav
et al., 2014) was employed to correct the ICRA precipitation
time series for bias. EQM is an adaptation of the original
quantile mapping method that accounts for non-stationarity
in the moments of the biased time series and helps to pre-
serve changes in the cumulative distribution function of the
precipitation data that may have occurred over time (Cannon
et al., 2015; Switanek et al., 2017). To evaluate the effective-
ness of the bias-correction procedure, a number of statistics
were calculated to compare the observed and ICRA precipi-
tation data before and after bias correction (Table 1). There
were a total of 30 460 hourly measurements of precipita-
tion available for above-freezing days at AWS1 of which the
majority were during the autumn months (September, Octo-
ber and November) and the least during the winter months
(December, January and February). Overall, the procedure
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Table 1. Statistics calculated from the observed (Obs) precipitation data at AWS1 and from the corresponding ICRA precipitation data
before and after bias correction. Statistics have been calculated at an hourly, daily and 3-daily time step and include n (total number of
above-freezing measurements available at AWS1), avg (mean), SD (standard deviation), Cv (coefficient of variation), skewness and R2

(coefficient of determination).

Time step Statistic
Overall Winter (DJF) Spring (MAM) Summer (JJA) Autumn (SON)

Obs Before After Obs Before After Obs Before After Obs Before After Obs Before After

Hourly

n 30460 4344 6290 8832 10994
Avg (mm) 0.33 0.43 0.33 0.65 0.67 0.54 0.20 0.29 0.21 0.17 0.33 0.24 0.41 0.50 0.39
SD (mm) 1.09 1.24 1.12 1.55 1.63 1.49 0.72 0.83 0.72 0.65 1.01 0.91 1.27 1.39 1.25
Cv 3.28 2.85 3.37 2.39 2.42 2.78 3.59 2.82 3.46 3.79 3.02 3.74 3.11 2.79 3.23
Skewness 5.81 5.40 6.01 3.84 4.38 4.83 5.91 4.82 5.43 7.45 6.41 7.51 5.43 4.93 5.35
R2 0.24 0.22 0.31 0.29 0.17 0.16 0.15 0.14 0.23 0.22

Daily

n 1264 181 260 368 455
Avg (mm) 7.95 10.4 7.93 15.6 16.2 12.9 4.84 7.02 5.00 4.13 7.99 5.86 9.78 11.9 9.31
SD (mm) 16.2 19.5 17.1 23.2 27.2 24.4 10.0 12.2 10.2 8.80 13.1 11.3 18.9 22.6 20.0
Cv 2.04 1.87 2.16 1.49 1.68 1.89 2.06 1.73 2.04 2.13 1.64 1.92 1.93 1.89 2.15
Skewness 4.37 4.67 5.07 2.78 4.50 4.66 3.71 3.38 3.92 4.39 2.64 2.92 4.19 4.02 4.36
R2 0.51 0.49 0.64 0.62 0.44 0.43 0.49 0.47 0.45 0.43

3-daily

n 385 47 75 123 140
Avg (mm) 23.5 31.0 23.6 48.6 50.1 40.0 13.7 19.8 14.0 12.4 23.8 17.4 30.0 36.8 28.7
SD (mm) 34.1 41.6 36.4 47.7 67.4 60.9 18.4 23.9 19.5 18.2 27.1 22.8 39.7 45.4 39.7
Cv 1.45 1.34 1.54 0.98 1.35 1.52 1.35 1.21 1.39 1.46 1.14 1.31 1.32 1.23 1.38
Skewness 2.94 3.44 3.78 1.86 3.36 3.45 1.96 1.92 2.22 2.82 1.84 1.98 2.58 2.28 2.53
R2 0.73 0.72 0.79 0.77 0.60 0.59 0.56 0.54 0.68 0.66

corrects for bias in the mean (Avg) and also improves the
spread (SD), relative variability (CV) and skewness of the
distribution of precipitation data at hourly, daily and 3-daily
time steps. On a seasonal scale, these improvements are no-
table for spring, summer and autumn. However, the bias-
correction procedure typically has a slightly negative impact
on the winter precipitation statistics, probably because of the
limited above-freezing data available for these months. In
particular, average hourly winter precipitation is underesti-
mated by 0.11 mm (16 %), while the positive bias in relative
variability and skewness are amplified after bias correction.
Given that EQM preserves the rank correlation of the time
series, it has little effect on the R2 correlation score, with
a typical reduction of 0.01–0.02 after bias correction. At an
hourly timescale, the bias-corrected data only captured 22 %
of the observed variance in the AWS1 rainfall record. How-
ever, when averaged to a daily time step the R2 score in-
creased to 0.49, and for a 3-daily time step the R2 increased
to 0.72. The limited correlation of the ICRA precipitation
data on an hourly timescale could hinder the acceptability of
the GHM across some of the signatures (e.g. the river dis-
charge signatures related to the timing of flows). However,
the AWS1 rainfall record is complete for the years 2013 and
2014 for which the GHM is compared against observed river
discharge signatures. As such, poor replication of the timing
of hourly rainfall events should have minimal influence on
the GHM’s ability to capture the river discharge signatures.
Rather, the role of the bias-corrected ICRA precipitation data
was primarily to drive the glacier mass balance component of

the GHM prior to 2009 for which a reliable 3-daily temporal
correlation with observations was deemed adequate.

2.4.2 Near-surface air temperature

The longest record of hourly temperature measurements in
the Virkisá River basin are from AWS1, which starts in 2009.
To generate a continuous time series of temperature back to
1988, daily measurements of temperature available from the
nearby Fagurhólsmýri weather station were used. A com-
parison of daily average temperatures showed there to be a
good linear relationship between the two stations with an R2

of 0.92. As such, this linear model was used to correct the
daily weather station data for bias so that it could be com-
bined with the AWS1 time series. To downscale the data to
an hourly resolution, 24 h temperature anomalies were ran-
domly sampled from the AWS1 record, thereby ensuring the
complete time series had a consistent subdaily variability. Of
course, diurnal cycles in temperature are dependent on the
time of year, in that increased incident solar radiation in the
summer enhances subdaily temperature variability. There-
fore, the sampling strategy was employed on a month-by-
month basis. The complete hourly time series of temperature
at AWS1 is shown in Fig. 3b.

As in many glaciated catchments topography controls spa-
tial temperature variations to a large extent. The impor-
tance of characterising temperature lapse rates for glacio-
hydrological modelling is well known because it strongly
controls spatial patterns of melt simulations (Gardner and
Sharp, 2009; MacDougall et al., 2011; Heynen et al., 2013).
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In fact, while many studies employ a fixed temperature lapse
rate, in reality seasonal variations in surface characteristics
(e.g. albedo and roughness) and atmospheric conditions can
bring about strong seasonal and diurnal variations in lapse
rates which control melt processes (Gardner et al., 2009;
Minder et al., 2010; Immerzeel et al., 2014). Furthermore,
local atmospheric phenomena associated with midlatitude
glaciers, such as katabatic winds which bring cool dense
air over the ice surface, can serve to reduce the tempera-
ture gradient (Petersen and Pellicciotti, 2011; Ragettli et al.,
2014). Having analysed near-surface air temperature varia-
tions both on and away from the Virkisjökull glacier, it was
deemed most appropriate to extrapolate temperature across
the study catchment using a seasonally variable hourly lapse
rate in conjunction with an on-ice temperature correction
function based on the work of Shea and Moore (2010) (see
Appendix B).

2.4.3 Incident solar radiation

The only source of incident solar radiation is the continu-
ous hourly time series from AWS1. To construct a continu-
ous time series back to 1988, a resampling strategy was em-
ployed to generate a complete time series that was statisti-
cally consistent with the data at AWS1. It was found that,
during the summer months, the daily range in incident so-
lar radiation and temperature are strongly correlated. There-
fore, when generating a continuous time series of hourly inci-
dent solar radiation from 1988, it was important to maintain
this dependence between intra-day solar radiation and tem-
perature variability. To do this, a coordinated (in time) sam-
pling strategy identical to that used for the near-surface air
temperature data was employed. More specifically, for each
random 24 h temperature anomaly sample from the AWS1
record used to build part of the temperature time series, the
corresponding 24 h solar cycle data were extracted and used
to build the same part of the incident solar radiation time se-
ries. Figure 3c shows the complete time series of incident
solar radiation used to drive the model.

2.5 Signatures and limits of acceptability

Observations of ice melt, snow coverage and river discharge
were used to derive 33 unique signatures with LOA to char-
acterise the glacio-hydrological behaviour of the Virkisá
River basin over different spatio-temporal scales and eval-
uate the acceptability of the different model structures (Ta-
ble 2). For convenience, the signatures have also been subdi-
vided into 11 attributes which encapsulate the main aspects
of model behaviour that were assessed.

2.5.1 Ice melt

The average winter (November 2012–April 2013) and sum-
mer (May 2013–September 2013) melt across the ablation
stake network were used to characterise the short-term, sea-

Figure 4. Histogram of deviation of 1 m melt from 50 m mean de-
rived from terrestrial lidar scans of static ice front between 2012 and
2014.

sonal ice melt on the glacier tongue. Of course, point mea-
surements of melt are not directly comparable to simulated
melt at the GHM nodes as these simulations represent the
average melt over the node area. Therefore, the GHM can
only be expected to get as close to the stake measurements
as the actual spread in melt over the equivalent model node
area. To calculate this spread, the high-resolution terrestrial
lidar scans taken during the ablation stake campaign were
used. The scans were used to estimate the spread of melt
deviations from the mean melt across 50 m square regions
(Fig. 4). The 95 % confidence bounds (±0.78 m yr−1) were
then used to define the LOA around the winter and summer
melt signatures where it was assumed that the spread should
be proportional to the total melt. This assumption leads to
much narrower LOA around the winter melt signature than
the summer melt signature.

A signature was also quantified to characterise the long-
term change in glacier volume by differencing two 3-D mod-
els of the ice from 1988 and 2011. These models were con-
structed using the two ice surface DEMs in combination
with a bedrock model of the Öræfajökull region (Magnússon
et al., 2012). Given the potential errors in the 1988 DEM,
this data set was assumed to be the main source of uncer-
tainty in the calculation of the ice volume change signature.
A comparison with the more accurate 2011 DEM shows that
the 1988 DEM captures the gridded elevation data across the
non-glaciated portion of the study area with reasonable ac-
curacy (Fig. 5a). The residuals are approximately normally
distributed with a mean error of zero (Fig. 5b) and they are
largest for those parts of the catchment that are steeply sloped
(scatter in Fig. 5c). To account for these errors in the calcula-
tion of the ice volume change signature, 1000 unique DEMs
of the 1988 ice surface were generated by randomly per-
turbing each pixel of the original data set with perturbations
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Table 2. Summary of signatures used to evaluate model acceptability. Units with an asterisk (*) are per section of flow duration curve.

Group Attribute Attribute ID Signature Limits of acceptability

Ic
e

m
el

t

Seasonal ice melt on tongue Seasonal melt
2013 summer ice melt 5.22–6.44 m we
2012–2013 winter ice melt 0.64–0.78 m we

Long-term glacier volume change Melt volume Change in ice volume (1988–2011) −0.36–0.28 km3

Sn
ow

co
ve

ra
ge

Snow coverage in lower catchment Low snow
Mean snow coverage in spring 0.32–0.45
Mean snow coverage in early summer 0.02–0.08
Mean snow coverage in late summer 0.00–0.03

Snow coverage in the middle catchment Middle snow
Mean snow coverage in spring 0.70–0.80
Mean snow coverage in early summer 0.17–0.27
Mean snow coverage in late summer 0.00–0.04

Snow coverage in the upper catchment Upper snow
Mean snow coverage in spring 0.81–0.90
Mean snow coverage in early summer 0.51–0.64
Mean snow coverage in late summer 0.02–0.09

R
iv

er
di

sc
ha

rg
e

Mean monthly river flow Monthly flow

Mean January river flow 1.16–1.86 m3 s−1

Mean February river flow 1.69–2.92 m3 s−1

Mean March river flow 0.85–1.58 m3 s−1

Mean April river flow 0.73–1.48 m3 s−1

Mean May river flow 1.50–2.16 m3 s−1

Mean June river flow 4.12–6.23 m3 s−1

Mean July river flow 6.33–10.30 m3 s−1

Mean August river flow 5.72–9.15 m3 s−1

Mean September river flow 4.55–7.38 m3 s−1

Mean October river flow 3.88–7.02 m3 s−1

Mean November river flow 3.90–7.40 m3 s−1

Quick release high flows High flows

Volume under highest-flow section of FDC 59.4–116.0 m3 s−1*
Slope of highest-flow section of FDC 2.67–9.88 m3 s−1*
Volume under high-flow section of FDC 70.6–111.0 m3 s−1*
Slope of high-flow section of FDC 0.38–0.79 m3 s−1*

Slow release low flows Low flows
Volume under low-flow section of FDC 20.9–46.1 m3 s−1*
Slope of low-flow section of FDC 0.03–0.05 m3 s−1*

Flow variability Flow variance Coefficient of variation 0.95–1.83

Melt run-off timing Melt timing Peak summer flow hour 17:00–18:00

Flashiness Flow flash
Integral scale 25–44 h
Rising limb density 0.13–0.20

drawn from a normal distribution with mean zero. Given that
the spread of the residuals increases for those areas of the
catchment that are steepest, the shape parameter of the er-
ror distribution (standard deviation) was varied according to
the slope of each pixel of the 1988 DEM (see dark-blue line
in Fig. 5c). From these, 1000 equally probable estimates of
ice volume change were calculated and the 95 % confidence
interval was used to define the LOA. The total change in ice
volume over 23 years from 1988 was estimated to be between
−0.36 and −0.28 km3.

2.5.2 Snow coverage

Having removed the MODIS data that did not pass the QA
test including all of the data between September and Febru-

ary, less than 5 % of the remaining data were usable, and
therefore, it was decided that these data should be combined
to derive three seasonal average snow coverage maps. From
these maps, three snow coverage curves were constructed
that define the mean catchment snow coverage over an eleva-
tion range for three different times of the year: spring (March
and April), early summer (May and June) and late summer
(July and August) (Fig. 6). The curves provide information
on both the spatial and temporal distributions of snowfall in
the study catchment. They were constructed by distributing
the seasonal average snow distribution maps across the 50 m
model grid DEM. For example, for a MODIS pixel value
of 0.5, 50 of the corresponding DEM pixels were assumed
to be snow covered. The MOD10A1 product cannot distin-
guish between snow and ice-covered regions, so only data
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Figure 5. Error model for estimating uncertainty in glacier vol-
ume change between 1988 and 2011 including 1988 vs. 2011 off-
ice DEM elevations (a), distribution of 1988 DEM errors calcu-
lated as the difference between 1988 and 2011 off-ice elevations
(b) and estimation of change in standard deviation of errors with
the DEM slope (c).

that covered ice-free parts of the catchment were used. This
limited the analysis up to a maximum elevation of just un-
der 1200 m a.s.l. While this does not cover the full elevation
range of the catchment, Fig. 6 shows that the three curves
capture a large amount of variability in seasonal snow cover.
From the three snow coverage curves, the mean snow cover-
age values from the lower, middle and upper terciles of the
curves were used as signatures of snow coverage.

There exists no definitive quantification of errors in the
MOD10A1 product that can be used to estimate LOA for
these signatures. Previous validation of the MODIS data us-
ing satellite imagery has shown the data to be relatively ro-
bust (Salomonson and Appel, 2004). Accordingly, it was
assumed that, as with the ablation stake data, the primary
source of uncertainty stems from scale differences between
the data and the model simulations. More specifically, be-
cause the MODIS data have a coarser resolution (500 m)
than the DEM over which the MODIS data were distributed
(50 m), a MODIS pixel value of 0.5 only indicates that 50

of the corresponding 100 DEM pixels are snow covered. The
construction of a snow distribution curve, therefore neces-
sitates some assumptions about where the snow actually lies
which will influence the shape of the snow distribution curve.
Accordingly, the LOA were quantified to account for this
uncertainty. Here, for each of the seasons, a mean MODIS
snow cover map over the study region was derived. Then,
for each 500 m pixel, snow was randomly distributed across
the corresponding DEM pixels 1000 times. From these, an
equal number of snow distribution curves and corresponding
snow distribution signatures could be derived, each of which
were assumed to be equally probable. The 95 % confidence
bounds from this distribution of snow cover signatures were
used to define the LOA which are indicated by blue error bars
in Fig. 6.

2.5.3 River discharge

The hourly river discharge data for the years 2013 and 2014
measured at ASG1 (Fig. 7a) were used to define 21 differ-
ent river discharge signatures that cover a range of temporal
scales and flow magnitudes. The majority of these signatures
were based on previous studies (e.g. Yadav et al., 2007; Yil-
maz et al., 2008; Shafii and Tolson, 2015; Schaefli, 2016).

Mean monthly river flows were calculated to characterise
the seasonal river flow regime. Signatures were also de-
rived from sections of the flow duration curve to characterise
quick-release high flows and slow-release low flows. These
include signatures that quantify the volume under the section
(flow magnitude) and the slope of section (flow variability)
for the low-flow section (99–66 % flow exceedance), high-
flow section (15–5 % flow exceedance) and highest-flow sec-
tion (5–0.5 % flow exceedance). An overall estimate of flow
variability, the coefficient of variation, was also calculated.
Related to this, two further signatures, the rising limb den-
sity and integral scale, provide a measure of flashiness. The
rising limb density is the ratio of the number of flow peaks to
the total time to peak where a higher number is more flashy.
The integral scale measures the lag time at which the au-
tocorrelation function of the flow time series falls below 1

e
(diurnal cycles in river flow were removed prior to this using
a moving average filter). A higher integral scale therefore in-
dicates a less flashy, slowly responding hydrological system.
Finally, the peak summer flow hour of the observed discharge
time series was calculated to characterise the intra-day river
discharge response to melt.

Estimates of river discharge are inherently uncertain (Pap-
penberger et al., 2006). McMillan and Westerberg (2015)
provide a useful definition of two important sources of un-
certainty which they distinguish as either aleatory (random)
or epistemic (of an unknown character). The first stems from
random measurement errors such as those from the instru-
ment used for periodic river gaugings. These cause gauging
points to vary around the “true rating curve”, typically ac-
cording to some formal statistical definition. Epistemic un-
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Figure 6. Snow coverage curves defined from the MOD10A1 snow cover product from 2000 to 2015 with 95 % confidence bounds.

Figure 7. River flow time series from ASG1 with quantified confidence intervals (a), rating curve uncertainty used to quantify confidence
intervals (b) and zoomed section of river flow time series (see yellow dashed box in top plot) with confidence intervals (c).

certainty stems from the assumptions hydrologists have to
make when constructing rating curves, such as assuming the
river bed profile and horizontal flow velocity distribution are
relatively stable over time. These errors make fitting a single
rating curve to all of the gauging data invalid. Accordingly,
McMillan and Westerberg (2015) propose a method to define
the rating curve uncertainty which accounts for both sources
of error and has been used to estimate uncertainty in river
discharge signatures (Westerberg et al., 2016). The random
error component was defined from analysis of 27 flow gaug-
ing stations in the UK with stable ratings and without obvious

epistemic errors (Coxon et al., 2015). They conclude that this
source of error is best approximated by a logistical distribu-
tion model. To account for the epistemic error, they reject the
assumption that the rating curve is fixed in time and instead
they fit an ensemble of rating curves to all of the gauging
data. Each curve is weighted by a “voting point” likelihood
function which scores it based on how many points of the pe-
riodic gaugings it is able to intersect (and at what location in
the logistical distribution of each measurement).

In this study, the methodology proposed by McMillan and
Westerberg (2015) was used to estimate rating curve uncer-
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tainty. Markov chain Monte Carlo sampling was used to de-
fine 667 unique rating curves which together define the rat-
ing curve uncertainty (Fig. 7b). From these an equivalent dis-
tribution of each river discharge signature was derived from
the ensemble of flow time series (Fig. 7c), from which the
95 % confidence bounds were used as the LOA. Because
the voting point method only accounts for uncertainty in
the flow magnitude and not the timing, it was not suitable
to apply this approach to the three signatures that charac-
terise melt run-off timing and flashiness. For these signa-
tures, Schaefli (2016) proposed that the LOA should be de-
rived by subsampling different periods of the flow time se-
ries. For this study a month-by-month subsampling strategy
was employed to do this.

2.6 Model calibration procedure

The GHM was configured to run from 1988 to 2015 so that
simulations could be compared against all observation sig-
natures. The initial ice surface was set to the 1988 DEM of
the ice, while the bedrock and land surface topography were
taken from the Öræfajökull bedrock map (Magnússon et al.,
2012). Initial snow coverage, soil moisture, linear reservoir
storages and ELA were determined by running the model for
3 consecutive years prior to the simulation period using cli-
mate data from 1985 to 1988.

In total there were nine possible structural configurations
of the GHM including all possible combinations of the three
melt and run-off-routing model structures. For each of the
nine configurations, the melt and run-off-routing model pa-
rameters were calibrated to achieve the closest fit to the ob-
served signatures. To do this, first a set of preliminary runs
were undertaken to assess the sensitivity of the simulations to
the parameters. Here, it was found that the simulations were
insensitive to the firn melt parameters across the range of 33
signatures. Accordingly, these were set to the same values as
for snow. Similarly, none of the signatures were sensitive to
the threshold above which melt occurs, T ∗, and accordingly,
this was set to 0 ◦C throughout the model experiments. Fi-
nally, it was also decided to fix the albedo parameter for ice
in TIM3 to 0.3. This was because this parameter directly in-
teracts with the b parameter and therefore provides no extra
control over model behaviour.

The remainder of the parameters were kept for calibration
(see Table C1). For each GHM configuration, 5000 Monte
Carlo simulations with random parameter sets sampled from
predefined uniform distributions were undertaken. The prior
parameter distributions were defined from a review of pre-
vious modelling studies and later refined during the prelim-
inary runs noted above. The quasi-random Sobol sampling
strategy (Brately and Fox, 1988) was employed to sample
the parameter space as efficiently as possible. The simulated
signatures from each model run (parameter set) were then
evaluated against the observed signatures using a continuous

acceptability score:

sj =


0 lowj ≤ simj ≤ uppj
simj−uppj
uppj−obsj

simj > uppj
simj−lowj
obsj−lowj

simj < lowj

, (9)

where obsj and simj are the observed and simulated values
for signature j and uppj and lowj are the upper and lower
LOA. Here, a score of zero indicates that the model captures
the observed signature within the LOA. An absolute score
greater than 0 is outside of the LOA and therefore unaccept-
able. The sign of the score indicates the direction of bias,
while its magnitude indicates the model’s performance rela-
tive to the LOA. A score of−3 would indicate that the model
underestimates the signature by 3 times the observation un-
certainty.

Given that there are 33 different signatures to calibrate
to simultaneously, it was important to define a weighting
scheme to achieve the best overall performance across the
range of signatures. It was decided that, for a given GHM
configuration, the 5000 runs should be ranked by a weighted
average score where each group, each attribute within each
group and each signature within each attribute were given
equal weighting so that the scores were not biased to a par-
ticular group or attribute. The top 1 % of model runs that
achieved the smallest weighted average acceptability scores
were then taken as the calibrated models for each GHM
configuration and the average acceptability scores of these
are reported. A bootstrapping with a replacement resampling
scheme was also used to assign 95 % confidence intervals
around all reported acceptability scores. While not a formal
test of statistical significance, these were used to avoid re-
porting differences between the GHM configurations where
issues such as undersampling of the parameter space would
make such conclusions unjustified. Where confidence in-
tervals do not overlap, differences are hereafter referred to
as substantial. The different GHM configurations were also
compared when calibrated to individual groups of signatures
(ice melt, snow coverage and river discharge). In this case the
same weighting procedure was applied to a single group only.

3 Results

3.1 Signature discrimination power

As a first step towards evaluating the LOA framework, the
discrimination power of the signatures was investigated to
determine their relative usefulness for discriminating be-
tween acceptable and unacceptable model structures and pa-
rameterisations when used individually. A total of 45 000
calibration runs, each with unique model structures and pa-
rameterisations (hereafter referred to as model compositions)
were undertaken in this study. The signatures with the high-
est discrimination powers were defined as those that best
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constrain the range of acceptable model compositions. Here,
the total number of acceptable model compositions were cal-
culated for each signature as an indicator of discrimination
power (bars in Fig. 8a). The results indicate that the ice melt
signatures are the best discriminators. Of these, the winter
melt signature from the ablation stake measurements is the
best discriminator, while the summer melt signature shows
the least discrimination power. The snow coverage signatures
generally are shown to be inferior discriminators when com-
pared to the ice melt signatures. The late-summer snow cov-
erage signature for the lower catchment is shown to be the
poorest discriminator, presumably because there is negligible
snow cover here at this time of the year: an observation that
almost all of the model compositions have no difficulty in
replicating. In contrast, no model compositions are deemed
acceptable for the signatures of the spring and early-summer
snow coverage in the upper catchment.

The discrimination power of the river discharge signatures
is shown to be highly variable, but there are several dis-
cernible patterns. Firstly, the mean monthly flow signatures
between January and June, when river discharge is low, are
shown to be better discriminators than the higher-flow sig-
natures from July to October. The mean monthly January
and May flows stand out as being particularly powerful at
discriminating between acceptable and unacceptable model
compositions, suggesting that these are likely to be focal
points for characterising model deficiencies. Those signa-
tures related to the variability of flows such as the coefficient
of variation and the flow duration curve slope signatures,
as well as peak flow hour (timing) and rising limb density
(flashiness) are also shown to be relatively good discrimina-
tors.

To determine the structural discrimination power of each
signature, the total number of GHM configurations that re-
turned at least one acceptable simulation have also been cal-
culated for each signature (scatter in Fig. 8a). They show that,
when used individually, most of the discrimination power
stems from constraining the parameter space rather than
constraining the structural space. Only the lower-catchment
spring snow coverage and mean January river flow signa-
tures discriminate between structures where only six of the
nine GHM configurations returned acceptable simulations.
In both cases it was the GHM configurations that employed
the TIM3 melt model structure that could not capture these
signatures within their LOA.

To indicate how each signature helps to reduce river flow
prediction uncertainty, a second measure of discrimination
power has also been calculated (Fig. 8b). Here, the mean
simulated range in river discharge from the population of ac-
ceptable models has been calculated as a percentage of the
simulated range using all of the 45 000 model compositions
for each signature. These results show that when used indi-
vidually, all of the signatures help to constrain the river flow
prediction uncertainty, although the effectiveness of each is
variable. The mean January and May river flow signatures

again exhibit good discrimination power, reducing the mean
river discharge uncertainty to 60–70 % of that from the full
population of model compositions. Similarly, the winter ice
melt and spring snow coverage in the lower catchment re-
main two of the best discriminators. However, some signa-
tures, such as the long-term volumetric change in the glacier,
which was a good discriminator of model acceptability, are
not as effective at reducing river discharge prediction uncer-
tainty.

3.2 Acceptability of melt model structures

While all signatures clearly demonstrate discrimination
power when used individually, it remains to be seen how ef-
fective the LOA framework is for discriminating between and
diagnosing deficiencies in different model structures when
using multiple evaluation criteria. Here, the acceptability
scores obtained after calibrating the GHM to the different
groups of signatures (ice melt, snow coverage and river dis-
charge) using the three different melt model structures have
been calculated (Fig. 9). The light-grey boxes indicate those
signatures that have been captured within the LOA, and the
dark-grey boxes and their corresponding acceptability scores
indicate those signatures which the structures were not able
to capture within the LOA. So that the river discharge ac-
ceptability scores can be compared fairly, they have all been
obtained using the ROR1 run-off-routing structure.

When calibrated against the ice melt signatures, the GHM
is not able to capture them within their LOA, regardless of
the melt model structure used. The different GHM configu-
rations show a tendency to overestimate the measured sum-
mer and winter melt from the ablation stake data, yet un-
derestimate the long-term change in total ice volume (note
underestimation here refers to the simulated loss in ice vol-
ume). This highlights a deficiency in the melt model struc-
tures as they are unable to reconcile the three melt signatures
simultaneously within the observation uncertainty. The win-
ter melt is by far the most unacceptable simulation, particu-
larly when using the TIM1 structure, which overestimates it
by more than 30 times the observation uncertainty.

Each of the GHM configurations using the three melt
model structures have been ranked from 1 to 3 in the top
left corner of each box where the acceptability scores are
substantially different (Fig. 9). While there are clearly dif-
ferences in the acceptability scores for the summer melt
and ice volume signatures, they are not substantially differ-
ent and therefore it is not possible to say that one structure
is more acceptable than another. Indeed, a comparison of
the simulated ice thickness change along the Falljökull and
Virkisjökull arms of the glacier reveal that all three config-
urations of the GHM produce almost identical simulations
which broadly capture the observed ice thickness change be-
tween 1988 and 2011 (Fig. 10).

For the winter melt signature, there is a substantial differ-
ence in acceptability when using the three melt model struc-
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Figure 8. Total number of acceptable model compositions (bars) and configurations (dots) for each signature (a) and mean simulated range
in river discharge from the population of acceptable models as a percentage of the simulated range using all of the 45 000 model composi-
tions (b).

tures. Here, the GHM configuration using the TIM3 structure
is the most acceptable, while using the TIM1 structure is least
acceptable, indicating that, while all configurations produce
simulations outside of the LOA, there is an improvement in
ice melt simulations when implementing the most sophisti-
cated TIM3 melt model structure.

For the snow coverage signatures, all three of the GHM
configurations capture the late-summer snow coverage in the
lower portion of the catchment within the LOA. When us-
ing the TIM2 and TIM3 structures, the mid-catchment spring
snow coverage is also captured. The remaining snow cov-
erage signatures are not captured within the LOA, where all
configurations show a tendency to underestimate snow cover-
age in the lower and middle parts of the catchment and over-
estimate snow coverage in the upper part of the catchment. To
investigate why this is, Fig. 11a shows the simulated early-

summer mid-catchment and upper-catchment snow coverage
signatures for the 5000 calibration parameter sets (blue dots)
used with the TIM1–ROR1 GHM configuration. Here it can
be seen that, regardless of the choice of melt model parame-
ters, this structure is not able to capture both of these signa-
tures within their LOA simultaneously (indicated by yellow
area). A similar inconsistency exists when comparing snow
coverage over different seasons where the GHM is not able
to capture the lower-catchment snow coverage in the early
summer and spring simultaneously (Fig. 11b). Indeed, this
inconsistency extends across all melt model structures.

A comparison of simulated snow distribution curves from
the calibrated models (Fig. 12) reveals that all return simi-
lar simulations. The simulation using TIM1 deviates slightly
from the curve produced by the GHM when using the TIM2
and TIM3 structures, but overall the choice of melt model
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Figure 9. Acceptability scores obtained after calibrating the GHM using the three melt model structures in combination with the ROR1
run-off-routing model structure. The three GHM configurations were calibrated against ice melt, snow coverage and river discharge signa-
tures separately. Light-grey boxes indicate acceptable simulations (s = 0) and numbered, dark-grey boxes indicate unacceptable simulations
coloured blue and red to indicate negative and positive biases respectively. Note that all acceptability scores are rounded to two decimal
places. Those non-zero scores that round to zero are accompanied by ± to indicate sign of score. White numbers in the top left of each box
indicate relative ranking where acceptability scores are substantially different between the GHM configurations.

structure has a limited influence on the simulated seasonal
snow coverage.

The acceptability scores for the river discharge signatures
in Fig. 9 show that, regardless of the choice of melt model
structure, when used in conjunction with the ROR1 run-
off-routing model structure, all are able to capture a range
of river discharge signatures. The simplest GHM configura-
tions using the TIM1 and TIM2 model structures capture 12
river discharge signatures simultaneously within the LOA,
while the inclusion of the dynamic snow albedo term and re-
arrangement of the melt equation in the TIM3 melt model

actually inhibits the GHM performance where only 10 of the
21 river discharge signatures are captured within the LOA.

The mean monthly flow signatures for January, February
and May show some of the highest absolute acceptability
scores, indicating the models are least efficient at capturing
these. For winter flows in January and February, the simu-
lation using the TIM2 model structure is substantially more
acceptable than when using the other melt model structures,
although it should be noted that, given that flows are very
low here, the absolute error is less than 0.2 m3 s−1. A com-
parison of the simulated ice melt during May 2013 reveals
that the TIM3 structure simulates the highest ice melt of all
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Figure 10. Observed and simulated ice thickness change as measured along the transects of the Falljökull and Virkisjökull glacier arms.
Insets show transect locations.

Figure 11. Simulated snow coverage signatures from the 5000 calibration runs (blue dots) for the TIM1-ROR1 GHM configuration includ-
ing early-summer mid-catchment and upper-catchment snow coverage signatures (a), and lower-catchment spring and early-summer snow
coverage signatures (b).

three melt model structures (Fig. 13a), which results in a pos-
itively biased river flow time series (see Fig. 13b). Note that
the full input/output time series over the observation period
can be found in Appendix D.

Furthermore, a comparison of the simulated ice melt
time series over 2013 with a monthly moving-average filter
demonstrates that the positive melt bias from TIM3 extends
between April and June (Fig. 14b), which corresponds to the
period in which temperatures are relatively low but incoming
solar radiation is relatively high (see Fig. 14a).

Of the remaining river discharge signatures, only a handful
show any substantial difference when switching between the
melt model structures including the mean April and August
discharge and the two flashiness signatures: the integral scale
and the rising limb density. However, the differences here are
very small. For the high-slope signature, which characterises

the variability of high-flow river flows, the simulation using
the TIM1 melt model structure is able to capture it within
the LOA, while the simulations using the TIM2 and TIM3
model structures both show a negative bias, suggesting they
underestimate high-flow variability.

3.3 Acceptability of run-off-routing model structures

To evaluate the run-off-routing model structures, acceptabil-
ity scores have been calculated for the river discharge signa-
tures only, as these structures do not influence ice melt or
snow coverage (Fig. 15). To ensure a fair comparison be-
tween the different structures, all scores have been obtained
using the simplest TIM1 melt model structure in the GHM.

It was noted previously that all melt model structures used
in combination with ROR1 resulted in positively biased Jan-
uary and February river flows. It could be that including a
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Figure 12. Simulated seasonal snow distribution curves when using the three melt model structure.

Figure 13. Mean simulated hourly ice melt (a) and river dis-
charge (b) during May 2013 using the top 1 % of models from the
three melt model structures in combination with the ROR1 run-off-
routing model structure.

more complex non-linear run-off-routing model structure in
the GHM could help to mitigate this bias. Indeed, the cali-
brated simulations do show a substantial reduction in posi-
tive bias for the mean February flows when using ROR2 and
ROR3; however the simulations are still unacceptable. Fur-
thermore, for the mean January river flow there is no sub-
stantial change in acceptability score.

This indicates that the run-off-routing representation is
also not the reason for the overestimation of flows at the be-
ginning of the year. To investigate this positive bias further,
Fig. 16c shows the simulated time series from the calibrated
models using TIM1 in combination with ROR1, ROR2 and
ROR3 for January and February 2013. Figure 16a shows that
input from melt is insignificant during these winter months

Figure 14. Normalised temperature and incident solar radiation
(a) and simulated ice melt from the three calibrated ice melt model
structures (b) for the year 2013. All time series use a monthly mov-
ing average filter.

(green line). Rather it is rainfall (black dash) that dominates
the run-off input and this results in two pronounced peaks
in the simulated river discharge time series. The different
behaviour of the simulations using the three run-off-routing
model structures is much more obvious during the rainfall-
run-off events. The simulation using the ROR1 structure is
noticeably more flashy in response to the rainfall and over-
estimates the peak flows, while the ROR2 and ROR3 simu-
lations, which include additional, more diffusive representa-
tions of the flow of water through snow and firn, result in
peak flows that are closer to the observations, but with a
recession that is too shallow. Regardless of these deficien-
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Figure 15. Acceptability scores obtained after calibrating the GHM using the three run-off-routing model structures in combination with the
TIM1 melt model structure. Light-grey boxes indicate acceptable simulations (s = 0) and numbered dark-grey boxes indicate unacceptable
simulations, coloured blue and red to indicate negative and positive biases respectively. Note that all acceptability scores are rounded to two
decimal places. Those non-zero scores that round to zero are accompanied by ± to indicate sign of score. White numbers in top left of each
box indicate relative ranking where acceptability scores are substantially different between the GHM configurations.

cies, however, all result in an almost identical positive bias
as shown by the cumulative flow in Fig. 16b.

There are, however, differences when assessing other as-
pects of the river discharge time series, particularly in the sig-
natures relating to high flows. In Fig. 15, it can be seen that,
while the simulation using the ROR1-routing model structure
is able to capture all of the high-flow signatures simultane-
ously, the ROR2 and ROR3 structures show an unacceptable
negative bias for these signatures, indicating underestimation
of high-flow magnitude and variability. To evaluate this in
more detail, Fig. 16f shows the simulated time series for the
highest recorded river flow event during October 2014. Here,
the flashier and more responsive ROR1 structure achieves the
closest fit to the observed peak flow and within the uncer-
tainty bounds, while the more diffusive, ROR2 and ROR3
structures underestimate the peak flow. Note they also under-
estimate the overall river flow variability as indicated by the
coefficient of variation signature.

3.4 Consistency of melt model structures

The results so far have highlighted some inconsistencies in
the GHM configurations using the melt and run-off-routing
model structures, which are unable to reconcile some com-

binations of signatures simultaneously. This is important as
those inconsistencies could help to further diagnose struc-
tural deficiencies in the different model structures. To inves-
tigate this, consistency scores have been calculated between
pairs of the 33 signatures for each GHM configuration. A
model can be deemed consistent across a pair of signatures
if it is able to capture them within their LOA simultaneously.
The consistency scores are therefore calculated as the mini-
mum sum of the two acceptability scores between a pair of
signatures across the 5000 calibration runs for each GHM
configuration.

Figure 17 shows the average consistency scores calculated
across the signatures for each attribute of ice melt, snow cov-
erage and river discharge using the three melt model struc-
tures in combination with the ROR1 run-off-routing struc-
ture. The top panel shows the consistency scores when us-
ing the simplest TIM1 melt model structure. The regions
in red highlight the areas where the GHM is inconsistent.
The first striking observation is the red band along the
upper-catchment snow coverage attribute. It has already been
demonstrated that the simulations using the TIM1 structure
cannot reconcile the upper-catchment snow coverage with
the remaining snow coverage signatures. This further demon-
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Figure 16. Simulation time series using the three different run-off-
routing model structures in combination with the TIM1 melt model
structure including simulated total melt and rainfall (a), cumula-
tive river discharge (middle) and river discharge time series (bot-
tom) for January and February 2013 (a, b, c) and the October 2014
flood (d, e, f).

strates that, when using the TIM1 structure, the GHM cannot
reconcile the upper-catchment snow coverage with any of the
other attributes.

The largest inconsistency score obtained was between the
short-term, seasonal melt on the glacier tongue and long-term
total glacier volume change. It should be noted that the sea-
sonal melt signatures show a small inconsistency with the
lower-catchment snow coverage and a larger inconsistency
with the upper-catchment snow coverage. The total glacier
volume change signature, however, is also inconsistent with
the monthly flow and low-flow signatures, indicating that it
is the long-term glacier wide mass balance that the model is
getting wrong.

The use of the TIM2 model structure, which includes
topographic effects, goes some way to reducing most of
the inconsistencies shown using the TIM1 model structure
(Fig. 17). However, all but one of the inconsistencies (be-
tween lower-catchment snow coverage and seasonal melt)
remain, indicating that the use of the TIM2 melt model struc-
ture only provides a small improvement in model consis-
tency.

Using the TIM3 model structure also helps to improve
model consistency, particularly for the upper snow cover-
age signatures, but surprisingly it also introduces new incon-
sistencies in relation to the lower-catchment snow coverage,
where the model is not able to reconcile these signatures with
any of the other attributes.

3.5 Consistency of run-off-routing model structures

Consistency scores have also been calculated for each pair
of river discharge signatures (Fig. 18) using the three run-
off-routing structures in combination with the TIM1 melt
model structure. The simulations using the ROR1 structure
(top panel) and next simplest ROR2 structure (middle panel)
show very similar patterns of model inconsistency. Firstly,
both sets of simulations do not capture the relatively low
flows in February and the relatively high flows in July and
August simultaneously. This corroborates the findings from
the acceptability analysis which revealed a tendency for the
model structures to overestimate low flows in the winter and
underestimate high flows in the summer and autumn, partic-
ularly with relation to rainfall-induced high flows. Interest-
ingly though, the seasonal flow inconsistency is centred on
February and there are not inconsistencies for the other low-
flow months from January to April. This provides further evi-
dence that it is particularly the rainfall-induced flows that the
model is not able to capture effectively. In fact, February has
some of the highest flows in the record of winter flows in-
duced by large rainfall events (see average flow signatures in
Table 2). This suggests that this could be the reason that the
inconsistencies between winter and summer flows are cen-
tred around these months. The inclusion of additional flow
pathways in the routing routine only enhances these incon-
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Figure 17. Average consistency scores between attributes using the
three melt model structures in combination with the ROR1 run-off-
routing structure. Scores of < 0.1 have not been reported.

sistencies, particularly when using the ROR3 model structure
where the inconsistencies extend into June (bottom panel).

The ROR1 simulations show inconsistencies between the
February flows and low-flow variability as indicated by the
low-slope signature. The reason for this is not clear, but in-
terestingly, the inclusion of an extra, more diffuse, flow path-
way in the ROR2 model appears to remedy this, suggesting
that there is some non-linear behaviour that the ROR1 model
structure cannot capture. However, it comes at the cost of
inducing an extra inconsistency between the mean flows in
January and the overall flow variability as indicated by the
coefficient of variation. This new inconsistency is amplified
when using the ROR3 structure.

Interestingly, the consistency scores when using the ROR1
and ROR2 structures are relatively similar, with each con-
figuration demonstrating inconsistencies between four and
five pairs of river discharge signatures. In contrast, using the
most complex ROR3 structure introduces a number of new
inconsistencies with a total of 12 inconsistent pairs of sim-
ulated river discharge signatures. These new inconsistencies
are centred around the mean monthly flow signatures as well
as the signatures relating to high- and low-flow magnitude
and variability.

4 Discussion

The first aim of this study was to investigate whether a
signature-based approach within a LOA framework could be
used to diagnose deficiencies in the different melt and run-
off-routing model structures. The comprehensive set of sig-
natures provided a powerful method with which to evaluate
the model behaviour. Furthermore, when used within a LOA
framework, it was straightforward to identify those aspects of
the glacio-hydrological system that the GHM configurations
could not capture. A number of the identified model deficien-
cies are particularly important in the context of future river
flow predictions, which will now be discussed.

Regardless of the choice of melt model structure, all GHM
configurations were able to capture the three signatures of ice
melt individually, but none of them could capture all of the
signatures simultaneously. The challenge here was to recon-
cile three signatures that characterise glacier melt over dif-
ferent spatial and temporal scales. This is not a straightfor-
ward task, particularly when using temperature index mod-
els that lump a number of spatially and temporally variable
terms from the full energy balance equation into a hand-
ful of calibration parameters which may lack robustness in
space and time (MacDougall et al., 2011; Gabbi et al., 2014;
Matthews et al., 2015). The inclusion of solar and topo-
graphic effects in the TIM2 and TIM3 melt model structures
addressed some of these limitations. Indeed, their inclusion
in conjunction with the dynamic snow albedo parameterisa-
tion returned the most acceptable simulations of the ice melt
signatures overall. However, further improvements are re-
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Figure 18. Average consistency scores between river discharge sig-
natures using the three run-off-routing model structures in combi-
nation with the TIM1 melt model structure.

quired to achieve acceptable model simulations that capture
all of the ice melt signatures simultaneously. Certainly, one
aspect of the glacier which was not accounted for was debris
cover at the glacier terminus, which could be an important
control for point scale and overall ice mass balance. Some
TIMs that include representations of debris cover do exist
(e.g. Carenzo et al., 2016) and the signature-based LOA ap-
proach would provide the ideal framework for evaluating the
added value of further structural modifications like these.

The snow coverage signatures highlighted deficiencies in
all of the GHM configurations. None of the prior 45 000
model compositions were able to capture the spring and
early-summer snow coverage in the upper catchment and all
of the calibrated GHM configurations overestimated snow
coverage in the upper catchment while underestimating it in
the lower catchment. Interestingly, using the most sophisti-
cated TIM3 structure with the dynamic snow albedo function
had almost no effect on the overall acceptability across these
signatures, indicating that the melt model formulation was
not the primary source of model deficiencies here. Of course,
snow coverage simulations are sensitive to other components
of the GHM, such as the snow redistribution model, which
itself is sensitive to the resolution of the DEM used to pa-
rameterise it; a coarser DEM resolution removes peaks and
troughs in the land surface which can bring about more com-
plex patterns of snow coverage. Similarly, the glacier vol-
ume change signature will be sensitive to the glacier evo-
lution formulation and parameterisation. It is clear, there-
fore, that, while the application of a LOA framework here
has demonstrated the gains that can be made in capturing
some signatures through the inclusion of extra model com-
plexity, the apparent insensitivity of the snow coverage sig-
natures to structural modifications indicates that further gains
may also be made by investigating other components of the
GHM structure within this framework. Beyond the structural
nature of a GHM, the boundary conditions may also con-
tribute to model deficiencies. For this study, the driving pre-
cipitation data were relatively well constrained by observa-
tions within the catchment during the summer and autumn
months of recent years, but there were fewer observations
during the winter months and none at all before 2009. Fur-
thermore, while the bias-corrected precipitation time series
was well correlated over a 3-day time step, it was not at an
hourly time step. It is also important to note that precipitation
observations were all collected at the bottom of the catch-
ment and therefore driving precipitation data at the top of the
catchment are less certain. Indeed, one could explain the ten-
dency to overestimate snow coverage higher up in the catch-
ment by a positive bias in the driving precipitation data here.
Such a bias could also explain the modelled inconsistencies
across signatures that characterise ice melt at different spatio-
temporal scales. Furthermore, given the strong coupling be-
tween snow, ice and river run-off, deficiencies in capturing
the snow and ice signatures could also propagate through the
hydrological representation of the catchment. For example,
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one could imagine how errors in the spatial distribution of
snow could perturb the timing of run-off through the catch-
ment given that snow distribution influences the behaviour of
the semi-distributed run-off-routing routine employed in the
GHM. Such perturbations are likely to impact the ability of
the GHM to capture the full range of river discharge signa-
tures. Accordingly, it is important to stress the influence that
biases in the driving climate data could have on the model ac-
ceptability across the different signatures. Of course, for bal-
ance, it should be noted that regarding precipitation higher
up in the catchment, the limited precipitation collected at the
summit of Öræfajökull indicate that mean annual biases in
driving precipitation data are small (Guðmundsson, 2000).
Even so, the recent melt model comparison by Reveillet et al.
(2017) suggest that uncertainties in driving precipitation data
can cloud any differences in melt model behaviour.

As a side experiment, we tried increasing the snowmelt
parameters for the TIM3 model to see whether this would
help remove some of the inconsistencies across the ice and
snow signatures. It was found that using snowmelt parame-
ters equal to or even greater than those used for the ice re-
duced (improved) the consistency score between the ice melt
signatures by more than 50 % when using TIM3. The physi-
cal justification of this is of course questionable, but it does
highlight the influence that the prior parameter distributions
could have on the results presented here. Accordingly, dif-
ferent specifications of the calibration parameter ranges may
also help to improve model consistency.

The main deficiencies noted for all of the GHM config-
urations when compared to the river discharge signatures
were an overestimation of the relatively low winter flows
in January and February, and the flows at the start of the
melt season in May. It was assumed that the additional slow
flow pathways in the ROR2 and ROR3 run-off-routing struc-
tures would help to correct for any deficiencies in capturing
the hydrograph seasonality. Instead, the choice of run-off-
routing structure had very little influence on these signatures,
indicating that longer-term storages of water do not signif-
icantly control the seasonality of the hydrograph. This is
probably because of the catchment’s small size, which leads
to an instantaneous seasonal response to melt on a monthly
timescale. We suggest, however, that for larger catchments,
the monthly flow signatures are likely to be more sensitive
to the choice of run-off-routing structure. Instead, the simu-
lated mean monthly river flow signatures were more sensitive
to the choice of melt model structure, particularly in May at
the start of the melt season, which is not surprising given the
high degree of glaciation of the river basin. Even so, regard-
less of the melt model structure employed, none of the GHM
configurations could correct for the biases in mean monthly
flows, indicating that further structural modifications are re-
quired. One process that is not represented at all in any of
the GHM configurations, but which has been shown to be
important in for Icelandic glaciers, is refreezing of meltwa-
ter and rainfall (Johannesson et al., 1995). It is estimated that

about 7 % of total melt in valley glaciers in Iceland refreezes,
and therefore, the inclusion of this process could also help
to reduce run-off during the colder months of January and
February.

In contrast to the monthly river flow signatures, the choice
of run-off-routing structure had by far the dominant influ-
ence on those signatures that are controlled by flows oper-
ating on much shorter timescales such as the distribution of
flows, flow variability and flashiness. This hierarchy of influ-
ence between the melt and run-off-routing model structures
has important implications for river discharge prediction un-
certainty in glaciated basins. For example, if one were in-
terested in future seasonal water resource availability, they
would be most reliant on predictions of mean monthly river
flows. The results here indicate that, for this catchment at
least, uncertainties in these predictions stem primarily from
melt model uncertainty. In contrast, if one were interested
in future changes in flood frequency, the dominant source
of model prediction uncertainty is the run-off-routing ap-
proach. Uncertainties in river flow predictions from glacio-
hydrological models are therefore dependent on the river
flow characteristic of interest.

The results from the simulated river discharge signatures
also raised some questions about the added value from in-
troducing extra complexity to conceptual models of glacio-
hydrological processes. The most sophisticated TIM3 melt
structure was the most consistent across the ice melt and
snow coverage signatures. However, it was also the least ac-
ceptable structure for the mean May river flow signature,
which showed the highest positive bias. This is interesting,
as May coincides with the beginning of the main melt season
and therefore this could be some indication of an inability
to capture this initialisation properly. It was shown that the
simulated snow coverage signatures were almost identical
when using the three melt model structures, indicating that
this deficiency did not stem from the dynamic snow albedo
component of TIM3. Furthermore, May corresponds to the
period in which temperatures are relatively low but incom-
ing solar radiation is relatively high, indicating that it is the
additive form of the TIM3 melt equation and the subsequent
increased influence of solar radiation on melt which induced
the positive bias in flow simulations in the early melt season.

Similarly, the ROR3 structure, originally proposed as the
most realistic conceptual representation of water storage and
transmission in the river basin, was the least acceptable
model overall across the river discharge signatures. Certainly,
the more diffusive behaviour of the ROR3 run-off-routing
structure was advantageous for capturing peak flows during
the winter. However, it also resulted in an underestimation of
peak flows at the end of the melt season and an underestima-
tion of overall river flow variability. These results highlight
the need to exercise caution before introducing complex-
ity to conceptual models of glacio-hydrological processes.
They also illustrate the importance of testing prior assump-
tions about the system against other possible model hypothe-
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ses, for which a signature-based LOA framework is ideally
suited.

The second aim of this study was to determine whether the
signature-based evaluation within a LOA framework could
be used to constrain the prior population of model structures
and parameter sets (compositions) to a smaller population of
acceptable models. The initial discrimination tests showed
that all of the signatures have discrimination power, although
for two of the snow signatures, none of the 45 000 model
compositions could capture them. The mean January and
May river flow signatures were the best discriminators, in-
dividually reducing mean river discharge uncertainty to 60–
70 % of that from the full population of model compositions,
although it should be noted that the majority of this reduc-
tion stemmed from constraining the acceptable parameter
sets rather than the model structures. These results indicate
that a LOA framework could be used to find a population of
acceptable model compositions. However, the fact that none
of the prior 45 000 compositions were able to capture all of
the signatures means that this remains to be seen. At a fun-
damental level, the results indicate that the structural con-
figurations of the GHM employed in this study are simply
not good enough to capture the observation data within their
observation uncertainty bounds. To address this, one could
implement further structural modifications, some of which
have been alluded to, until acceptable simulations are ob-
tained. Indeed, a more thorough exploration of a wider pa-
rameter space could also yield acceptable model composi-
tions. There are, of course, other sources of unacceptable be-
haviour. Of these, boundary conditions including the ice and
watershed boundaries, as well as the driving climate data, are
all contenders. The initial ice geometry was also uncertain
but not explicitly accounted for. It is therefore recommended
that, where possible, future applications of a LOA framework
should incorporate these additional sources of uncertainty,
so that more robust conclusions about model appropriate-
ness can be made. Certainly, it is important to emphasise that
these future applications need not adopt the same 33 signa-
tures used in this study. On the contrary, the choice of signa-
tures will always depend somewhat on the availability of data
at a given study site as well as the complexity (e.g. spatio-
temporal resolution) of the model(s) being interrogated. In-
deed, future users should be encouraged to experiment with
different signatures (where data permits), particularly if they
wish to focus on other process representations within their
GHM. Study sites with good observation data and an under-
standing of data uncertainty would be ideal candidates for
these future applications.

5 Conclusions

The signature-based, LOA framework adopted in this study
provided a comprehensive evaluation of different GHM melt
and run-off-routing model structures. In contrast to tradi-

tional model evaluation approaches, which rely on one or
several global summary statistics, the adoption of multiple
signatures helped to identify those aspects of the glacio-
hydrological system that a particular model could or could
not capture and the added value of introducing additional
complexities to simplified process models. When evaluated
against individual signatures, the more complex model for-
mulations did improve model simulations in some cases.
However, they were not necessarily more consistent across
the full range of signatures, emphasising the need to exercise
caution and properly evaluate whether additional complex-
ities are justified. The often conflicting acceptability scores
across the signatures highlights the difficulty and inherent
uncertainty in model structure selection. It is clear, therefore,
that future glaciological and hydrological projection stud-
ies that use simplified model structures should take into ac-
count these uncertainties, although to date they have rarely
been considered. For future river flow predictions in glaciated
basins it is likely that the source of model uncertainty de-
pends on the particular river flow characteristic of interest.
We found evidence that a hierarchy of influence exists be-
tween the melt and run-off-routing model structures across
the range of river discharge signatures.

An additional advantage of adopting a LOA framework is
that it provides objective criterion for accepting or rejecting
particular model structures and parameterisations. While all
but two of the signatures demonstrated discrimination power,
none of the 45 000 different model compositions tested in this
study were able to capture them within their LOA simultane-
ously. Therefore, it remains to be seen if the framework can
be used in this way, although we suggest that applications
that go beyond examining the melt and run-off-routing struc-
tural uncertainties may prove more fruitful in obtaining a be-
havioural population of models. These should consider other
uncertainties including those associated with snow redistri-
bution, glacier evolution and model boundary conditions. We
would therefore encourage future studies, particularly with a
broad range of observation data covering different aspects
of the glacio-hydrological system, to move away from us-
ing traditional global summary statistics for model evaluation
and adopt a multi-metric approach within a LOA framework
so that their simplified process hypotheses can be rigorously
tested and their structural uncertainty better understood.

Code and data availability. For persons interested in applying a
similar signature-based LOA approach to model evaluation, we
would encourage them to contact the authorship, who are open to
providing advice and sharing data and code where possible.
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Figure A1. Multiple linear regression model used to convert ambi-
ent air temperature and incoming solar radiation into potential evap-
otranspiration.

Appendix A: Glacio-hydrological model

A1 Soil infiltration and evapotranspiration

The semi-vegetated nature of the catchment coupled with rel-
atively cool temperatures year-round mean that evapotranspi-
ration is generally low (Einarsson, 1972). Even so, to satisfy
the water balance, an explicit representation of the soil zone
for model nodes that are not ice or snow-covered was in-
cluded using the method developed by Griffiths et al. (2006),
which has been successfully applied to temperate regions in
the past (Mackay et al., 2014; Sorensen et al., 2014) and
is based on the well-established UN Food and Agricultural
Organisation soil water balance method (Allen et al., 1998).
For each bare ground node, the soil is represented as a finite
storage reservoir with a soil water capacity, termed the total
available water, TAW [L], which defines the maximum vol-
ume of water available to plants for evapotranspiration after
the soil has drained to its field capacity, and can be defined
from look-up tables with basic information on vegetation and
soil type (Allen et al., 1998). This was parametrised using
the Talus soil class and semi-vegetated land surface class,
giving an average TAW value of 7 mm. Soil storage is re-
plenished by infiltration from rainfall and melting of residual
snow overlying the bare ground and is depleted by evapo-
transpiration giving a soil water balance:

1Ssoil

1t
= I −ET, (A1)

where Ssoil [L] is the soil water storage, t is time, I [LT−1]
is the infiltration rate and ET [LT−1] is the evapotranspira-
tion rate. Because measured ET is rarely available, Griffiths

et al. (2006) propose using the potential evapotranspiration
rate, ET0, instead, which defines the evapotranspiration rate
from a reference grass-covered wet soil (see Appendix A2
for calculation of ET0). Using ET0 as the maximum possi-
ble evapotranspiration rate, they define a separate function
which accounts for the fact that as the soil becomes drier,
plants find it more difficult to extract moisture from the soil
matrix, and therefore ET is typically less than ET0. While
this is conceptually sound, it was decided to not include this
function and instead assume that ET=ET0. There are three
reasons for doing this. Firstly, because the inclusion of this
function requires an additional parameter which is uncertain
and must be calibrated. Secondly, because ET is a relatively
small component of the overall water balance in this catch-
ment and it was not the aim of this study to investigate this
aspect of the catchment hydrology. Thirdly, because previous
studies have shown that this parameter (and therefore the be-
haviour of this function) is relatively insensitive and uniden-
tifiable (Mackay et al., 2014).

In the original formulation by Griffiths et al. (2006), any
excess soil water (i.e. when Ssoil>TAW) is distributed be-
tween overland flow and groundwater recharge pathways.
They use a fixed baseflow index (BFI) parameter which de-
fines the proportion of soil water excess that recharges the
groundwater. Given the nature of the Virkisá River basin
(thin soils overlying impermeable bedrock), it was assumed
that soil water migrates to the river outlet only via relatively
fast overland flow pathways and so the BFI parameter was
set to zero.

A2 Potential evapotranspiration

Potential evapotranspiration can be calculated from mea-
sured meteorological data, most simply as a linear function
of measured temperature (e.g. Blaney and Morin, 1942), or
where measurements of wind speed, air pressure and solar
radiation exist, the full Penmen–Monteith combination equa-
tion can be solved. Given that these additional variables are
measured at AWS1 from 2009, the combination equation as
defined by Allen et al. (1998) was used to calculate hourly
potential evapotranspiration over this period:

ET0 =
0.4081(Rn−G)+ γ

900
T+273u(es− ea)

1+ γ (1+ 0.34u)
h, (A2)

where ET0 is the daily average potential evapotranspiration
rate (mm d−1), Rn is the net radiation (MJ m−2 d−1), G is
the soil heat flux (MJ m−2 d−1), es and ea are the saturation
and actual vapour pressure respectively (kPa), 1 is the rate
of change in the saturation vapour pressure with temperature
(kPa ◦C−1), γ is the psychrometric constant (kPa ◦C−1), u is
the wind speed (m s−1) and T is the mean daily ambient air
temperature (◦C).

Prior to 2009, the viability of using T as a proxy for ET0 in
a linear regression model framework like Blaney and Morin
(1942) was investigated. Similarly, incident solar radiation
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Figure A2. Raw elevation change data from 1988 and 2011 ice DEMs (a) and fitted 1h model to normalised mean elevation change curve
following Huss et al. (2010) (b).

was also used as the independent variable for this model. In
fact, the best fit was achieved using both variables in a multi-
ple linear regression model, which was able to explain 66 %
of the ET0 variance (Fig. A1). This model was used to dis-
tribute ET0 in space and time using the driving temperature
and incident solar radiation data.

A3 Glacier geometry evolution

The empirical 1h parametrisation (Huss et al., 2010) re-
quires the availability of at least two digital elevation models
of the glacier separated in time. The difference between the
two is used to define the1h polynomial which has the form:

1h= (hr+ a)
γ
+ b(hr+ a)+ c, (A3)

where 1h is the normalised surface elevation, hr is the nor-
malised elevation range and a, b, γ and c are fitted param-
eters. For this study, the two digital elevation models from
1988 and 2011 were used to define this relationship. Fig-
ure A2a shows the raw change data against the 1988 ice
elevation. It was decided that the data at the very front of
the glacier should not be used, as here the ice has com-
pletely melted and as such the bedrock beneath skews the
raw change data. Figure A2b shows the 1h model fitted to
the normalised mean elevation change curve. Following Huss
et al. (2010), the glacier geometry is updated each year by

distributing the net glacier mass balance across the glacier
according to this relationship.

Appendix B: Temperature lapse rates

In order to investigate seasonal variations in lapse rate, the
temperature gradient between the lowest (AWS1) and high-
est (AWS4) weather stations in the Virkisá River basin were
analysed. The results showed a remarkable degree of varia-
tion in hourly average lapse rate between the months of the
year (white lines in Fig. B1). During the winter months be-
tween November and February, the lapse rate is relatively
stable −5 ◦C km−1 throughout the day. In contrast, between
March and October there is a pronounced diurnal variation
in lapse rate that is strongest in the late afternoon and early
evening. The heat maps in Fig. B1 represent the frequency
distribution of wind direction for each month and show that
the development of the strongest lapse rates in the after-
noon correspond with a break-up of the prevailing north-
easterly winds that flow down from the summit of Öræfa-
jökull and a switch to winds from the south-west. Petersen
and Pellicciotti (2011) found a similar phenomenon on the
Juncal Norte Glacier in the semi-arid Chilean Andes. They
attributed the shallow temperature gradient in the morning
to katabatic winds flowing down-glacier, which serve to cool
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Figure B1. Monthly average hourly temperature lapse rates (white lines, right-hand axis) derived from AWS1 and AWS4 temperature time
series overlying heat maps which represent the frequency distribution of hourly wind direction data from AWS4 (left-hand axis).

the air over the glacier and weaken the lapse rate. In the af-
ternoon, they showed that a break-up of this layer by val-
ley winds served to increase the temperature gradient by
warming the air over the lower glacier. This suggests that
winds flowing down from the Öræfajökull summit in the
warmer months could serve to cool near-surface air temper-
atures over the ice, thereby retarding ice melt. To account
for this phenomenon, Petersen and Pellicciotti (2011) sug-
gest adopting the Shea and Moore (2010) model to correct
on-ice temperatures relative to ambient off-ice weather sta-
tion measurements. Shea and Moore (2010) found that, for
three glaciers on the southern Coast Mountains of British
Columbia, Canada, there was a threshold in ambient off-
ice air temperature, above which the winds flowing over the
glacier served to cool the near-surface on-ice air. They sug-
gest this temperature lies somewhere between 4 and 8 ◦C but
is likely to be site specific.

To investigate whether such a threshold exists on the Virk-
isjökull glacier, five Gemini Tinytag Aquatic 2 temperature
loggers were deployed across the glacier at elevations rang-
ing from 150 to 400 m a.s.l. Each logger was secured at 1.5 m
above the ice in a white PVC radiation shield attached to
a tripod (Fig. B2). The sensors were deployed for 7 days
in late August 2016 and then for a further 7 days in early
March 2017 to represent summer and winter on-ice temper-
atures, respectively. The loggers were synchronised in time

with the AWS weather stations and set to measure tempera-
ture every 15 min. This allowed for the direct comparison of
on- and off-ice near surface temperatures.

Figure B3 shows the synchronised on- and off-ice temper-
atures from all of the measurements taken in winter (blue
dots) and summer (yellow dots). The off-ice temperatures
were derived assuming a linear lapse rate between AWS1 and
AWS3 as these are situated at elevations similar to the Tiny-
tag temperature loggers. The results show that there is a tem-
perature threshold above which on-ice temperature falls be-
low off-ice temperature, which was estimated to be 5.27 ◦C.
Following Shea and Moore (2010), Petersen and Pellicciotti
(2011), and Ragettli et al. (2014), this cooling effect was in-
terpreted as being due to north-easterly winds which bring
cooler air from over the tongue of the glacier, thereby cool-
ing the on-ice air temperature, and the piecewise function
derived from Fig. B3 was employed to correct temperatures
on the ice during the warmer months when ambient air tem-
peratures exceed this threshold:

Ton =

{
Toff Toff ≤ 5.27

0.74 · Toff+ 1.38 Toff > 5.27
, (B1)

where Ton and Toff are the on- and off-ice near-surface air
temperatures (◦C).
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Figure B2. Example of Gemini TinyTag housing used for measur-
ing on-ice temperature at one location.

Figure B3. Derived temperature threshold at which on-ice temper-
ature is cooler than the ambient off-ice temperature using the Shea
and Moore (2010) model.
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Appendix C: Calibration parameters

Table C1 lists all of the calibration parameters for the melt
and run-off-routing model structures, which were randomly
perturbed during the GHM calibration procedure.

Table C1. Calibration parameters for the melt and run-off-routing
model structures.

Structure Parameter Calibration range Units

TIM1
aice 2.0× 10−4–7.0× 10−4 m w.e. ◦C−1 h−1

asnow/firn 4.0× 10−7–2.0× 10−4 m w.e. ◦C−1 h−1

TIM2

aice 2.0× 10−4–7.0× 10−4 m w.e. ◦C−1 h−1

asnow/firn 4.0× 10−7–2.0× 10−4 m w.e. ◦C−1 h−1

bice 4.0× 10−7–2.0× 10−6 m3 w.e. W−1 ◦C−1 h−1

bsnow/firn 4.0× 10−8–4.0× 10−7 m3 w.e. W−1 ◦C−1 h−1

TIM3

aice 1.5× 10−4–3.0× 10−4 m w.e. ◦C−1 h−1

asnow/firn 6.0× 10−5–2.0× 10−4 m w.e. ◦C−1 h−1

bice 1.0× 10−5–8.0× 10−5 m3 w.e. W−1 h−1

bsnow/firn 2.0× 10−7–4.0× 10−6 m3 w.e. W−1 h−1

p2 0.01–0.4

ROR1
k 1–30 h
n 1–5

ROR2

kice/soil 0.1–5 h
ksnow/firn 20–100 h
nice/soil 1–5
nice/snow 1–5

ROR3

ksoil 0.1–5 h
kice 0.1–5 h
ksnow 10–50 h
kfirn 50–300 h
nsoil 1–5
nice 1–5
nsnow 1–5
nsoil 1–5
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Appendix D: GHM input/output time series

Figure D1 shows the complete GHM input and output time
series over the period with observed river discharge data.
These include the watershed total precipitation, watershed
average temperature and incident solar radiation data used
to drive the GHM as well as the simulated watershed total
snowmelt, ice melt and river discharge using the TIM1, TIM2
and TIM3 melt model structures in conjunction with the sim-
plest ROR1 run-off-routing structure. Figure D2 shows the
same set of plots when using the ROR1, ROR2 and ROR3
run-off-routing model structures in conjunction with the sim-
plest TIM1 melt model structure.

Figure D1. Time series of driving precipitation, temperature and
incident solar radiation data and simulated snowmelt, ice melt and
river discharge using the TIM1, TIM2 and TIM3 melt model struc-
tures in conjunction with the simplest ROR1 run-off-routing struc-
ture. Note that the proportion of rainfall and snowfall is an output
from the GHM, which is approximately equal across the different
configurations. Ice melt includes melt of bare ice and firn.
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Figure D2. Time series of driving precipitation, temperature and incident solar radiation data and simulated snowmelt, ice melt and river
discharge using the ROR1, ROR2 and ROR3 run-off-routing model structures in conjunction with the simplest TIM1 melt model structure.
Note that the proportion of rainfall and snowfall is an output from the GHM, which is approximately equal across the different configurations.
Also note that ice melt includes melt of bare ice and firn.
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