Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
TC | Articles | Volume 12, issue 5
The Cryosphere, 12, 1595–1614, 2018
https://doi.org/10.5194/tc-12-1595-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 12, 1595–1614, 2018
https://doi.org/10.5194/tc-12-1595-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 03 May 2018

Research article | 03 May 2018

Observations and simulations of the seasonal evolution of snowpack cold content and its relation to snowmelt and the snowpack energy budget

Keith S. Jennings et al.

Related authors

Two-Dimensional Liquid Water Flow through Snow at the Plot Scale in Continental Snowpacks: Simulations and Field Data Comparisons
Ryan W. Webb, Keith S. Jennings, Stefan Finsterle, and Steven R. Fassnacht
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-199,https://doi.org/10.5194/tc-2020-199, 2020
Preprint under review for TC
Short summary
The sensitivity of modeled snow accumulation and melt to precipitation phase methods across a climatic gradient
Keith S. Jennings and Noah P. Molotch
Hydrol. Earth Syst. Sci., 23, 3765–3786, https://doi.org/10.5194/hess-23-3765-2019,https://doi.org/10.5194/hess-23-3765-2019, 2019
Short summary

Related subject area

Discipline: Snow | Subject: Energy Balance Obs/Modelling
Impact of forcing on sublimation simulations for a high mountain catchment in the semiarid Andes
Marion Réveillet, Shelley MacDonell, Simon Gascoin, Christophe Kinnard, Stef Lhermitte, and Nicole Schaffer
The Cryosphere, 14, 147–163, https://doi.org/10.5194/tc-14-147-2020,https://doi.org/10.5194/tc-14-147-2020, 2020
Intercomparison and improvement of two-stream shortwave radiative transfer schemes in Earth system models for a unified treatment of cryospheric surfaces
Cheng Dang, Charles S. Zender, and Mark G. Flanner
The Cryosphere, 13, 2325–2343, https://doi.org/10.5194/tc-13-2325-2019,https://doi.org/10.5194/tc-13-2325-2019, 2019
A key factor initiating surface ablation of Arctic sea ice: earlier and increasing liquid precipitation
Tingfeng Dou, Cunde Xiao, Jiping Liu, Wei Han, Zhiheng Du, Andrew R. Mahoney, Joshua Jones, and Hajo Eicken
The Cryosphere, 13, 1233–1246, https://doi.org/10.5194/tc-13-1233-2019,https://doi.org/10.5194/tc-13-1233-2019, 2019
Short summary
Forcing the SURFEX/Crocus snow model with combined hourly meteorological forecasts and gridded observations in southern Norway
Hanneke Luijting, Dagrun Vikhamar-Schuler, Trygve Aspelien, Åsmund Bakketun, and Mariken Homleid
The Cryosphere, 12, 2123–2145, https://doi.org/10.5194/tc-12-2123-2018,https://doi.org/10.5194/tc-12-2123-2018, 2018
Short summary

Cited articles

Albert, M. R. and McGilvary, W. R.: Thermal effects due to air flow and vapor transport in dry snow, J. Glaciol., 38, 273–281, 1992. 
Anderson, E. A.: Development and testing of snow pack energy balance equations, Water Resour. Res., 4, 19–37, 1968. 
Anderson, E. A.: A point of energy and mass balance model of snow cover, NOAA technical report NWS, 19, 150 pp., 1976. 
Andreadis, K. M., Storck, P., and Lettenmaier, D. P.: Modeling snow accumulation and ablation processes in forested environments, Water Resour. Res., 45, W05429, https://doi.org/10.1029/2008WR007042, 2009. 
Angström, A. K.: A study of the radiation of the atmosphere: based upon observations of the nocturnal radiation during expeditions to Algeria and to California, Smithsonian Institution, Washington, DC, 159 pp., 1915. 
Publications Copernicus
Download
Short summary
We show through observations and simulations that cold content, a key part of the snowpack energy budget, develops primarily through new snowfall. We also note that cold content damps snowmelt rate and timing at sub-seasonal timescales, while seasonal melt onset is controlled by the timing of peak cold content and total spring precipitation. This work has implications for how cold content is represented in snow models and improves our understanding of its effect on snowmelt processes.
We show through observations and simulations that cold content, a key part of the snowpack...
Citation