Articles | Volume 12, issue 4
https://doi.org/10.5194/tc-12-1415-2018
https://doi.org/10.5194/tc-12-1415-2018
Research article
 | 
19 Apr 2018
Research article |  | 19 Apr 2018

Changes in flow of Crosson and Dotson ice shelves, West Antarctica, in response to elevated melt

David A. Lilien, Ian Joughin, Benjamin Smith, and David E. Shean

Related authors

Age, thinning and spatial origin of the Beyond EPICA ice from a 2.5D ice flow model
Ailsa Chung, Frédéric Parrenin, Robert Mulvaney, Luca Vittuari, Massimo Frezzotti, Antonio Zanutta, David A. Lilien, Marie G. P. Cavitte, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1650,https://doi.org/10.5194/egusphere-2024-1650, 2024
Short summary
Stagnant ice and age modelling in the Dome C region, Antarctica
Ailsa Chung, Frédéric Parrenin, Daniel Steinhage, Robert Mulvaney, Carlos Martín, Marie G. P. Cavitte, David A. Lilien, Veit Helm, Drew Taylor, Prasad Gogineni, Catherine Ritz, Massimo Frezzotti, Charles O'Neill, Heinrich Miller, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023,https://doi.org/10.5194/tc-17-3461-2023, 2023
Short summary
Brief communication: New radar constraints support presence of ice older than 1.5 Myr at Little Dome C
David A. Lilien, Daniel Steinhage, Drew Taylor, Frédéric Parrenin, Catherine Ritz, Robert Mulvaney, Carlos Martín, Jie-Bang Yan, Charles O'Neill, Massimo Frezzotti, Heinrich Miller, Prasad Gogineni, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 15, 1881–1888, https://doi.org/10.5194/tc-15-1881-2021,https://doi.org/10.5194/tc-15-1881-2021, 2021
Short summary
Advection and non-climate impacts on the South Pole Ice Core
Tyler J. Fudge, David A. Lilien, Michelle Koutnik, Howard Conway, C. Max Stevens, Edwin D. Waddington, Eric J. Steig, Andrew J. Schauer, and Nicholas Holschuh
Clim. Past, 16, 819–832, https://doi.org/10.5194/cp-16-819-2020,https://doi.org/10.5194/cp-16-819-2020, 2020
Short summary
Melt at grounding line controls observed and future retreat of Smith, Pope, and Kohler glaciers
David A. Lilien, Ian Joughin, Benjamin Smith, and Noel Gourmelen
The Cryosphere, 13, 2817–2834, https://doi.org/10.5194/tc-13-2817-2019,https://doi.org/10.5194/tc-13-2817-2019, 2019
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
Widespread increase in discharge from west Antarctic Peninsula glaciers since 2018
Benjamin J. Davison, Anna E. Hogg, Carlos Moffat, Michael P. Meredith, and Benjamin J. Wallis
The Cryosphere, 18, 3237–3251, https://doi.org/10.5194/tc-18-3237-2024,https://doi.org/10.5194/tc-18-3237-2024, 2024
Short summary
Surface dynamics and history of the calving cycle of Astrolabe Glacier (Adélie Coast, Antarctica) derived from satellite imagery
Floriane Provost, Dimitri Zigone, Emmanuel Le Meur, Jean-Philippe Malet, and Clément Hibert
The Cryosphere, 18, 3067–3079, https://doi.org/10.5194/tc-18-3067-2024,https://doi.org/10.5194/tc-18-3067-2024, 2024
Short summary
Weak relationship between remotely detected crevasses and inferred ice rheological parameters on Antarctic ice shelves
Cristina Gerli, Sebastian Rosier, G. Hilmar Gudmundsson, and Sainan Sun
The Cryosphere, 18, 2677–2689, https://doi.org/10.5194/tc-18-2677-2024,https://doi.org/10.5194/tc-18-2677-2024, 2024
Short summary
Extensive palaeo-surfaces beneath the Evans–Rutford region of the West Antarctic Ice Sheet control modern and past ice flow
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024,https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 1: Event detection for cryoseismology
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, and J. Paul Winberry
The Cryosphere, 18, 2061–2079, https://doi.org/10.5194/tc-18-2061-2024,https://doi.org/10.5194/tc-18-2061-2024, 2024
Short summary

Cited articles

Alley, K. E., Scambos, T. A., Siegfried, M. R., and Fricker, H. A.: Impacts of warm water on Antarctic ice shelf stability through basal channel formation, Nat. Geosci., 9, 290–293, https://doi.org/10.1038/ngeo2675, 2016.
Borstad, C., Khazendar, A., Scheuchl, B., Morlighem, M., Larour, E., and Rignot, E.: A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B ice shelf, Geophys. Res. Lett., 43, 2027–2035, https://doi.org/10.1002/2015GL067365, 2016.
Cassotto, R., Fahnestock, M., Amundson, J. M., Truffer, M., and Joughin, I.: Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland, J. Glaciol., 61, 76–88, https://doi.org/10.3189/2015JoG13J235, 2015.
Crabtree, R. D. and Doake, C. S. M.: Radio-Echo Investigations of Ronne Ice Shelf, Ann. Glaciol., 8, 37–41, https://doi.org/10.1017/S0260305500001105, 1986.
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M., Ligtenberg, S. R. M., van den Broeke, M. R., and Moholdt, G.: Calving fluxes and basal melt rates of Antarctic ice shelves., Nature, 502, 89–92, https://doi.org/10.1038/nature12567, 2013.
Download
Short summary
We used remotely sensed data and a numerical model to study the processes controlling the stability of two rapidly changing ice shelves in West Antarctica. Both these ice shelves have been losing mass since at least 1996, primarily as a result of ocean-forced melt. We find that this imbalance likely results from changes initiated around 1970 or earlier. Our results also show that the shelves’ differing speedup is controlled by the strength of their margins and their grounding-line positions.