Articles | Volume 12, issue 4
https://doi.org/10.5194/tc-12-1415-2018
https://doi.org/10.5194/tc-12-1415-2018
Research article
 | 
19 Apr 2018
Research article |  | 19 Apr 2018

Changes in flow of Crosson and Dotson ice shelves, West Antarctica, in response to elevated melt

David A. Lilien, Ian Joughin, Benjamin Smith, and David E. Shean

Related authors

Anisotropic Scattering in Radio-Echo Sounding: Insights from Northeast Greenland
Tamara Annina Gerber, David A. Lilien, Niels F. Nymand, Daniel Steinhage, Olaf Eisen, and Dorthe Dahl-Jensen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2276,https://doi.org/10.5194/egusphere-2024-2276, 2024
Short summary
Age, thinning and spatial origin of the Beyond EPICA ice from a 2.5D ice flow model
Ailsa Chung, Frédéric Parrenin, Robert Mulvaney, Luca Vittuari, Massimo Frezzotti, Antonio Zanutta, David A. Lilien, Marie G. P. Cavitte, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1650,https://doi.org/10.5194/egusphere-2024-1650, 2024
Short summary
Stagnant ice and age modelling in the Dome C region, Antarctica
Ailsa Chung, Frédéric Parrenin, Daniel Steinhage, Robert Mulvaney, Carlos Martín, Marie G. P. Cavitte, David A. Lilien, Veit Helm, Drew Taylor, Prasad Gogineni, Catherine Ritz, Massimo Frezzotti, Charles O'Neill, Heinrich Miller, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023,https://doi.org/10.5194/tc-17-3461-2023, 2023
Short summary
Brief communication: New radar constraints support presence of ice older than 1.5 Myr at Little Dome C
David A. Lilien, Daniel Steinhage, Drew Taylor, Frédéric Parrenin, Catherine Ritz, Robert Mulvaney, Carlos Martín, Jie-Bang Yan, Charles O'Neill, Massimo Frezzotti, Heinrich Miller, Prasad Gogineni, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 15, 1881–1888, https://doi.org/10.5194/tc-15-1881-2021,https://doi.org/10.5194/tc-15-1881-2021, 2021
Short summary
Advection and non-climate impacts on the South Pole Ice Core
Tyler J. Fudge, David A. Lilien, Michelle Koutnik, Howard Conway, C. Max Stevens, Edwin D. Waddington, Eric J. Steig, Andrew J. Schauer, and Nicholas Holschuh
Clim. Past, 16, 819–832, https://doi.org/10.5194/cp-16-819-2020,https://doi.org/10.5194/cp-16-819-2020, 2020
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
Bathymetry-constrained impact of relative sea-level change on basal melting in Antarctica
Moritz Kreuzer, Torsten Albrecht, Lena Nicola, Ronja Reese, and Ricarda Winkelmann
The Cryosphere, 19, 1181–1203, https://doi.org/10.5194/tc-19-1181-2025,https://doi.org/10.5194/tc-19-1181-2025, 2025
Short summary
Age–depth distribution in western Dronning Maud Land, East Antarctica, and Antarctic-wide comparisons of internal reflection horizons
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
The Cryosphere, 19, 1153–1180, https://doi.org/10.5194/tc-19-1153-2025,https://doi.org/10.5194/tc-19-1153-2025, 2025
Short summary
Assessing the sensitivity of the Vanderford Glacier, East Antarctica, to basal melt and calving
Lawrence A. Bird, Felicity S. McCormack, Johanna Beckmann, Richard S. Jones, and Andrew N. Mackintosh
The Cryosphere, 19, 955–973, https://doi.org/10.5194/tc-19-955-2025,https://doi.org/10.5194/tc-19-955-2025, 2025
Short summary
A history-matching analysis of the Antarctic Ice Sheet since the Last Interglacial – Part 1: Ice sheet evolution
Benoit S. Lecavalier and Lev Tarasov
The Cryosphere, 19, 919–953, https://doi.org/10.5194/tc-19-919-2025,https://doi.org/10.5194/tc-19-919-2025, 2025
Short summary
ISMIP6-based Antarctic projections to 2100: simulations with the BISICLES ice sheet model
James F. O'Neill, Tamsin L. Edwards, Daniel F. Martin, Courtney Shafer, Stephen L. Cornford, Hélène L. Seroussi, Sophie Nowicki, Mira Adhikari, and Lauren J. Gregoire
The Cryosphere, 19, 541–563, https://doi.org/10.5194/tc-19-541-2025,https://doi.org/10.5194/tc-19-541-2025, 2025
Short summary

Cited articles

Alley, K. E., Scambos, T. A., Siegfried, M. R., and Fricker, H. A.: Impacts of warm water on Antarctic ice shelf stability through basal channel formation, Nat. Geosci., 9, 290–293, https://doi.org/10.1038/ngeo2675, 2016.
Borstad, C., Khazendar, A., Scheuchl, B., Morlighem, M., Larour, E., and Rignot, E.: A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B ice shelf, Geophys. Res. Lett., 43, 2027–2035, https://doi.org/10.1002/2015GL067365, 2016.
Cassotto, R., Fahnestock, M., Amundson, J. M., Truffer, M., and Joughin, I.: Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland, J. Glaciol., 61, 76–88, https://doi.org/10.3189/2015JoG13J235, 2015.
Crabtree, R. D. and Doake, C. S. M.: Radio-Echo Investigations of Ronne Ice Shelf, Ann. Glaciol., 8, 37–41, https://doi.org/10.1017/S0260305500001105, 1986.
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M., Ligtenberg, S. R. M., van den Broeke, M. R., and Moholdt, G.: Calving fluxes and basal melt rates of Antarctic ice shelves., Nature, 502, 89–92, https://doi.org/10.1038/nature12567, 2013.
Download
Short summary
We used remotely sensed data and a numerical model to study the processes controlling the stability of two rapidly changing ice shelves in West Antarctica. Both these ice shelves have been losing mass since at least 1996, primarily as a result of ocean-forced melt. We find that this imbalance likely results from changes initiated around 1970 or earlier. Our results also show that the shelves’ differing speedup is controlled by the strength of their margins and their grounding-line positions.
Share