Articles | Volume 12, issue 1
https://doi.org/10.5194/tc-12-1-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-12-1-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models
Prisco Frei
Institute for Atmospheric and Climate Sciences, ETH Zurich, 8006 Zurich, Switzerland
Sven Kotlarski
CORRESPONDING AUTHOR
Federal Office of Meteorology and Climatology, MeteoSwiss, 8058 Zurich Airport, Switzerland
Mark A. Liniger
Federal Office of Meteorology and Climatology, MeteoSwiss, 8058 Zurich Airport, Switzerland
Christoph Schär
Institute for Atmospheric and Climate Sciences, ETH Zurich, 8006 Zurich, Switzerland
Related authors
No articles found.
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-92, https://doi.org/10.5194/gmd-2024-92, 2024
Revised manuscript under review for GMD
Short summary
Short summary
We explore a high-level programming model for GPU porting of NWP model codes, based on the Python domain-specific library GT4Py. We present a Python rewrite with GT4Py of the ECMWF cloud microphysics scheme and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive performance and robust execution on diverse CPU and GPU architectures. The additional advantages in terms of maintainability, productivity and readability are also highlighted.
Ruoyi Cui, Nikolina Ban, Marie-Estelle Demory, Raffael Aellig, Oliver Fuhrer, Jonas Jucker, Xavier Lapillonne, and Christoph Schär
Weather Clim. Dynam., 4, 905–926, https://doi.org/10.5194/wcd-4-905-2023, https://doi.org/10.5194/wcd-4-905-2023, 2023
Short summary
Short summary
Our study focuses on severe convective storms that occur over the Alpine-Adriatic region. By running simulations for eight real cases and evaluating them against available observations, we found our models did a good job of simulating total precipitation, hail, and lightning. Overall, this research identified important meteorological factors for hail and lightning, and the results indicate that both HAILCAST and LPI diagnostics are promising candidates for future climate research.
Adrien Michel, Johannes Aschauer, Tobias Jonas, Stefanie Gubler, Sven Kotlarski, and Christoph Marty
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-298, https://doi.org/10.5194/gmd-2022-298, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We present a method to correct snow cover maps (represented in terms of snow water equivalent) to match better quality maps. The correction can then be extended backwards and forwards in time for periods when better quality maps are not available. The method is fast and gives good results. It is then applied to obtain a climatology of the snow cover in Switzerland over the last 60 years at a resolution of one day and one kilometre. This is the first time that such a dataset has been produced.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Roman Brogli, Christoph Heim, Jonas Mensch, Silje Lund Sørland, and Christoph Schär
Geosci. Model Dev., 16, 907–926, https://doi.org/10.5194/gmd-16-907-2023, https://doi.org/10.5194/gmd-16-907-2023, 2023
Short summary
Short summary
The pseudo-global-warming (PGW) approach is a downscaling methodology that imposes the large-scale GCM-based climate change signal on the boundary conditions of a regional climate simulation. It offers several benefits in comparison to conventional downscaling. We present a detailed description of the methodology, provide companion software to facilitate the preparation of PGW simulations, and present validation and sensitivity studies.
Qinggang Gao, Christian Zeman, Jesus Vergara-Temprado, Daniela C. A. Lima, Peter Molnar, and Christoph Schär
Weather Clim. Dynam., 4, 189–211, https://doi.org/10.5194/wcd-4-189-2023, https://doi.org/10.5194/wcd-4-189-2023, 2023
Short summary
Short summary
We developed a vortex identification algorithm for realistic atmospheric simulations. The algorithm enabled us to obtain a climatology of vortex shedding from Madeira Island for a 10-year simulation period. This first objective climatological analysis of vortex streets shows consistency with observed atmospheric conditions. The analysis shows a pronounced annual cycle with an increasing vortex shedding rate from April to August and a sudden decrease in September.
Christian R. Steger, Benjamin Steger, and Christoph Schär
Geosci. Model Dev., 15, 6817–6840, https://doi.org/10.5194/gmd-15-6817-2022, https://doi.org/10.5194/gmd-15-6817-2022, 2022
Short summary
Short summary
Terrain horizon and sky view factor are crucial quantities for many geoscientific applications; e.g. they are used to account for effects of terrain on surface radiation in climate and land surface models. Because typical terrain horizon algorithms are inefficient for high-resolution (< 30 m) elevation data, we developed a new algorithm based on a ray-tracing library. A comparison with two conventional methods revealed both its high performance and its accuracy for complex terrain.
Christian Zeman and Christoph Schär
Geosci. Model Dev., 15, 3183–3203, https://doi.org/10.5194/gmd-15-3183-2022, https://doi.org/10.5194/gmd-15-3183-2022, 2022
Short summary
Short summary
Our atmosphere is a chaotic system, where even a tiny change can have a big impact. This makes it difficult to assess if small changes, such as the move to a new hardware architecture, will significantly affect a weather and climate model. We present a methodology that allows to objectively verify this. The methodology is applied to several test cases, showing a high sensitivity. Results also show that a major system update of the underlying supercomputer did not significantly affect our model.
Roman Brogli, Silje Lund Sørland, Nico Kröner, and Christoph Schär
Weather Clim. Dynam., 2, 1093–1110, https://doi.org/10.5194/wcd-2-1093-2021, https://doi.org/10.5194/wcd-2-1093-2021, 2021
Short summary
Short summary
In a warmer future climate, climate simulations predict that some land areas will experience excessive warming during summer. We show that the excessive summer warming is related to the vertical distribution of warming within the atmosphere. In regions characterized by excessive warming, much of the warming occurs close to the surface. In other regions, most of the warming is redistributed to higher levels in the atmosphere, which weakens the surface warming.
Daniel Regenass, Linda Schlemmer, Elena Jahr, and Christoph Schär
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-426, https://doi.org/10.5194/hess-2021-426, 2021
Manuscript not accepted for further review
Short summary
Short summary
Weather and climate models need to represent the water cycle on land in order to provide accurate estimates of moisture and energy exchange between the land and the atmosphere. Infiltration of water into the soil is often modeled with an equation describing water transport in porous media. Here, we point out some challenges arising in the numerical solution of this equation and show the consequences for the representation of the water cycle in modern weather and climate models.
Silje Lund Sørland, Roman Brogli, Praveen Kumar Pothapakula, Emmanuele Russo, Jonas Van de Walle, Bodo Ahrens, Ivonne Anders, Edoardo Bucchignani, Edouard L. Davin, Marie-Estelle Demory, Alessandro Dosio, Hendrik Feldmann, Barbara Früh, Beate Geyer, Klaus Keuler, Donghyun Lee, Delei Li, Nicole P. M. van Lipzig, Seung-Ki Min, Hans-Jürgen Panitz, Burkhardt Rockel, Christoph Schär, Christian Steger, and Wim Thiery
Geosci. Model Dev., 14, 5125–5154, https://doi.org/10.5194/gmd-14-5125-2021, https://doi.org/10.5194/gmd-14-5125-2021, 2021
Short summary
Short summary
We review the contribution from the CLM-Community to regional climate projections following the CORDEX framework over Europe, South Asia, East Asia, Australasia, and Africa. How the model configuration, horizontal and vertical resolutions, and choice of driving data influence the model results for the five domains is assessed, with the purpose of aiding the planning and design of regional climate simulations in the future.
Christian Zeman, Nils P. Wedi, Peter D. Dueben, Nikolina Ban, and Christoph Schär
Geosci. Model Dev., 14, 4617–4639, https://doi.org/10.5194/gmd-14-4617-2021, https://doi.org/10.5194/gmd-14-4617-2021, 2021
Short summary
Short summary
Kilometer-scale atmospheric models allow us to partially resolve thunderstorms and thus improve their representation. We present an intercomparison between two distinct atmospheric models for 2 summer days with heavy thunderstorms over Europe. We show the dependence of precipitation and vertical wind speed on spatial and temporal resolution and also discuss the possible influence of the system of equations, numerical methods, and diffusion in the models.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
Stefan Rüdisühli, Michael Sprenger, David Leutwyler, Christoph Schär, and Heini Wernli
Weather Clim. Dynam., 1, 675–699, https://doi.org/10.5194/wcd-1-675-2020, https://doi.org/10.5194/wcd-1-675-2020, 2020
Short summary
Short summary
Most precipitation over Europe is linked to low-pressure systems, cold fronts, warm fronts, or high-pressure systems. Based on a massive computer simulation able to resolve thunderstorms, we quantify in detail how much precipitation these weather systems produced during 2000–2008. We find distinct seasonal and regional differences, such as fronts precipitating a lot in fall and winter over the North Atlantic but high-pressure systems mostly in summer over the continent by way of thunderstorms.
Fabian Willibald, Sven Kotlarski, Adrienne Grêt-Regamey, and Ralf Ludwig
The Cryosphere, 14, 2909–2924, https://doi.org/10.5194/tc-14-2909-2020, https://doi.org/10.5194/tc-14-2909-2020, 2020
Short summary
Short summary
Climate change will significantly reduce snow cover, but the extent remains disputed. We use regional climate model data as a driver for a snow model to investigate the impacts of climate change and climate variability on snow. We show that natural climate variability is a dominant source of uncertainty in future snow trends. We show that anthropogenic climate change will change the interannual variability of snow. Those factors will increase the vulnerabilities of snow-dependent economies.
Ana Casanueva, Sven Kotlarski, Sixto Herrera, Andreas M. Fischer, Tord Kjellstrom, and Cornelia Schwierz
Geosci. Model Dev., 12, 3419–3438, https://doi.org/10.5194/gmd-12-3419-2019, https://doi.org/10.5194/gmd-12-3419-2019, 2019
Short summary
Short summary
Given the large number of available data sets and products currently produced for climate impact studies, it is challenging to distil the most accurate and useful information for climate services. This work presents a comparison of methods widely used to generate climate projections, from different sources and at different spatial resolutions, in order to assess the role of downscaling and statistical post-processing (bias correction).
Samuel Monhart, Massimiliano Zappa, Christoph Spirig, Christoph Schär, and Konrad Bogner
Hydrol. Earth Syst. Sci., 23, 493–513, https://doi.org/10.5194/hess-23-493-2019, https://doi.org/10.5194/hess-23-493-2019, 2019
Short summary
Short summary
Subseasonal streamflow forecasts have received increasing attention during the past decade, but their performance in alpine catchments is still largely unknown. We analyse the effect of a statistical correction technique applied to the driving meteorological forecasts on the performance of the resulting streamflow forecasts. The study shows the benefits of such hydrometeorological ensemble prediction systems and highlights the importance of snow-related processes for subseasonal predictions.
Stefan Brönnimann, Jan Rajczak, Erich M. Fischer, Christoph C. Raible, Marco Rohrer, and Christoph Schär
Nat. Hazards Earth Syst. Sci., 18, 2047–2056, https://doi.org/10.5194/nhess-18-2047-2018, https://doi.org/10.5194/nhess-18-2047-2018, 2018
Short summary
Short summary
Heavy precipitation events in Switzerland are expected to become more intense, but the seasonality also changes. Analysing a large set of model simulations, we find that annual maximum rainfall events become less frequent in late summer and more frequent in early summer and early autumn. The seasonality shift is arguably related to summer drying. Results suggest that changes in the seasonal cycle need to be accounted for when preparing for moderately extreme precipitation events.
Erik Kjellström, Grigory Nikulin, Gustav Strandberg, Ole Bøssing Christensen, Daniela Jacob, Klaus Keuler, Geert Lenderink, Erik van Meijgaard, Christoph Schär, Samuel Somot, Silje Lund Sørland, Claas Teichmann, and Robert Vautard
Earth Syst. Dynam., 9, 459–478, https://doi.org/10.5194/esd-9-459-2018, https://doi.org/10.5194/esd-9-459-2018, 2018
Short summary
Short summary
Based on high-resolution regional climate models we investigate European climate change at 1.5 and 2 °C of global warming compared to pre-industrial levels. Considerable near-surface warming exceeding that of the global mean is found for most of Europe, already at the lower 1.5 °C of warming level. Changes in precipitation and near-surface wind speed are identified. The 1.5 °C of warming level shows significantly less change compared to the 2 °C level, indicating the importance of mitigation.
Alexander Pasternack, Jonas Bhend, Mark A. Liniger, Henning W. Rust, Wolfgang A. Müller, and Uwe Ulbrich
Geosci. Model Dev., 11, 351–368, https://doi.org/10.5194/gmd-11-351-2018, https://doi.org/10.5194/gmd-11-351-2018, 2018
Short summary
Short summary
We propose a decadal forecast recalibration strategy (DeFoReSt) which simultaneously adjusts unconditional and conditional bias, as well as the ensemble spread while considering the typical setting of decadal predictions, i.e., model drift and a climate trend. We apply DeFoReSt to decadal toy model data and surface temperature forecasts from the MiKlip system and find consistent improvements in forecast quality compared with a simple calibration of the lead-time-dependent systematic errors.
Martin Wild, Atsumu Ohmura, Christoph Schär, Guido Müller, Doris Folini, Matthias Schwarz, Maria Zyta Hakuba, and Arturo Sanchez-Lorenzo
Earth Syst. Sci. Data, 9, 601–613, https://doi.org/10.5194/essd-9-601-2017, https://doi.org/10.5194/essd-9-601-2017, 2017
Short summary
Short summary
The Global Energy Balance Archive (GEBA) is a database for the central storage of worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 database, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and to date contains around 500 000 monthly mean entries from 2500 locations.
Antoine Marmy, Jan Rajczak, Reynald Delaloye, Christin Hilbich, Martin Hoelzle, Sven Kotlarski, Christophe Lambiel, Jeannette Noetzli, Marcia Phillips, Nadine Salzmann, Benno Staub, and Christian Hauck
The Cryosphere, 10, 2693–2719, https://doi.org/10.5194/tc-10-2693-2016, https://doi.org/10.5194/tc-10-2693-2016, 2016
Short summary
Short summary
This paper presents a new semi-automated method to calibrate the 1-D soil model COUP. It is the first time (as far as we know) that this approach is developed for mountain permafrost. It is applied at six test sites in the Swiss Alps. In a second step, the calibrated model is used for RCM-based simulations with specific downscaling of RCM data to the borehole scale. We show projections of the permafrost evolution at the six sites until the end of the century and according to the A1B scenario.
David Leutwyler, Oliver Fuhrer, Xavier Lapillonne, Daniel Lüthi, and Christoph Schär
Geosci. Model Dev., 9, 3393–3412, https://doi.org/10.5194/gmd-9-3393-2016, https://doi.org/10.5194/gmd-9-3393-2016, 2016
Short summary
Short summary
The representation of moist convection (thunderstorms and rain showers) in climate models represents a major challenge, as this process is usually approximated due to the lack of appropriate computational resolution. Climate simulations using horizontal resolution of O(1 km) allow one to explicitly resolve deep convection and thus allow for an improved representation of the water cycle. We present a set of such simulations covering the European scale using a climate model enabled for GPUs.
D. E. Keller, A. M. Fischer, C. Frei, M. A. Liniger, C. Appenzeller, and R. Knutti
Hydrol. Earth Syst. Sci., 19, 2163–2177, https://doi.org/10.5194/hess-19-2163-2015, https://doi.org/10.5194/hess-19-2163-2015, 2015
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer
Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, https://doi.org/10.5194/gmd-7-1297-2014, 2014
Related subject area
Climate Interactions
Arctic glacier snowline altitudes rise 150 m over the last 4 decades
Triggers of the 2022 Larsen B multi-year landfast sea ice breakout and initial glacier response
Projection of snowfall extremes in the French Alps as a function of elevation and global warming level
Assessing the glacier projection uncertainties in the Patagonian Andes (40–56° S) from a catchment perspective
Forced and internal components of observed Arctic sea-ice changes
Changes in March mean snow water equivalent since the mid-20th century and the contributing factors in reanalyses and CMIP6 climate models
Climatic control of the surface mass balance of the Patagonian Icefields
Spatio-temporal reconstruction of winter glacier mass balance in the Alps, Scandinavia, Central Asia and western Canada (1981–2019) using climate reanalyses and machine learning
Impacts of snow assimilation on seasonal snow and meteorological forecasts for the Tibetan Plateau
The Antarctic contribution to 21st-century sea-level rise predicted by the UK Earth System Model with an interactive ice sheet
A probabilistic framework for quantifying the role of anthropogenic climate change in marine-terminating glacier retreats
Synoptic control over winter snowfall variability observed in a remote site of Apennine Mountains (Italy), 1884–2015
Network connectivity between the winter Arctic Oscillation and summer sea ice in CMIP6 models and observations
Land–atmosphere interactions in sub-polar and alpine climates in the CORDEX Flagship Pilot Study Land Use and Climate Across Scales (LUCAS) models – Part 2: The role of changing vegetation
How does a change in climate variability impact the Greenland ice-sheet surface mass balance?
Evidence of elevation-dependent warming from the Chinese Tian Shan
The contribution of melt ponds to enhanced Arctic sea-ice melt during the Last Interglacial
Significant additional Antarctic warming in atmospheric bias-corrected ARPEGE projections with respect to control run
On the attribution of industrial-era glacier mass loss to anthropogenic climate change
Snow conditions in northern Europe: the dynamics of interannual variability versus projected long-term change
Diverging responses of high-latitude CO2 and CH4 emissions in idealized climate change scenarios
Distributed summer air temperatures across mountain glaciers in the south-east Tibetan Plateau: temperature sensitivity and comparison with existing glacier datasets
Analyzing links between simulated Laptev Sea sea ice and atmospheric conditions over adjoining landmasses using causal-effect networks
Anthropogenic climate change versus internal climate variability: impacts on snow cover in the Swiss Alps
Clouds damp the radiative impacts of polar sea ice loss
Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble
Glacier runoff variations since 1955 in the Maipo River basin, in the semiarid Andes of central Chile
CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica
Optimization of over-summer snow storage at midlatitudes and low elevation
Effect of prescribed sea surface conditions on the modern and future Antarctic surface climate simulated by the ARPEGE atmosphere general circulation model
Impact of warming shelf waters on ice mélange and terminus retreat at a large SE Greenland glacier
A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018)
An efficient surface energy–mass balance model for snow and ice
Brief communication: Understanding solar geoengineering's potential to limit sea level rise requires attention from cryosphere experts
Spring snow albedo feedback over northern Eurasia: Comparing in situ measurements with reanalysis products
The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation
Complex principal component analysis of mass balance changes on the Qinghai–Tibetan Plateau
Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea
Brief communication: The global signature of post-1900 land ice wastage on vertical land motion
Simulating the evolution of Hardangerjøkulen ice cap in southern Norway since the mid-Holocene and its sensitivity to climate change
Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region
Brief communication: Impacts of a developing polynya off Commonwealth Bay, East Antarctica, triggered by grounding of iceberg B09B
A simple equation for the melt elevation feedback of ice sheets
Glacier melting and precipitation trends detected by surface area changes in Himalayan ponds
Analyzing airflow in static ice caves by using the calcFLOW method
ENSO influence on surface energy and mass balance at Shallap Glacier, Cordillera Blanca, Peru
Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013)
Projected changes of snow conditions and avalanche activity in a warming climate: the French Alps over the 2020–2050 and 2070–2100 periods
The effect of snow/sea ice type on the response of albedo and light penetration depth (e-folding depth) to increasing black carbon
Sensitivity of lake ice regimes to climate change in the Nordic region
Laura J. Larocca, James M. Lea, Michael P. Erb, Nicholas P. McKay, Megan Phillips, Kara A. Lamantia, and Darrell S. Kaufman
The Cryosphere, 18, 3591–3611, https://doi.org/10.5194/tc-18-3591-2024, https://doi.org/10.5194/tc-18-3591-2024, 2024
Short summary
Short summary
Here we present summer snowline altitude (SLA) time series for 269 Arctic glaciers. Between 1984 and 2022, SLAs rose ∼ 150 m, equating to a ∼ 127 m shift per 1 °C of summer warming. SLA is most strongly correlated with annual temperature variables, highlighting their dual effect on ablation and accumulation processes. We show that SLAs are rising fastest on low-elevation glaciers and that > 50 % of the studied glaciers could have SLAs that exceed the maximum ice elevation by 2100.
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere, 18, 1709–1731, https://doi.org/10.5194/tc-18-1709-2024, https://doi.org/10.5194/tc-18-1709-2024, 2024
Short summary
Short summary
On the Antarctic Peninsula, there is a small bay that had sea ice fastened to the shoreline (
fast ice) for over a decade. The fast ice stabilized the glaciers that fed into the ocean. In January 2022, the fast ice broke away. Using satellite data we found that this was because of low sea ice concentrations and a high long-period ocean wave swell. We find that the glaciers have responded to this event by thinning, speeding up, and retreating by breaking off lots of icebergs at remarkable rates.
Erwan Le Roux, Guillaume Evin, Raphaëlle Samacoïts, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 17, 4691–4704, https://doi.org/10.5194/tc-17-4691-2023, https://doi.org/10.5194/tc-17-4691-2023, 2023
Short summary
Short summary
We assess projected changes in snowfall extremes in the French Alps as a function of elevation and global warming level for a high-emission scenario. On average, heavy snowfall is projected to decrease below 3000 m and increase above 3600 m, while extreme snowfall is projected to decrease below 2400 m and increase above 3300 m. At elevations in between, an increase is projected until +3 °C of global warming and then a decrease. These results have implications for the management of risks.
Rodrigo Aguayo, Fabien Maussion, Lilian Schuster, Marius Schaefer, Alexis Caro, Patrick Schmitt, Jonathan Mackay, Lizz Ultee, Jorge Leon-Muñoz, and Mauricio Aguayo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2325, https://doi.org/10.5194/egusphere-2023-2325, 2023
Short summary
Short summary
Predicting how much water will come from glaciers in the future is a complex task, and there are many factors that make it uncertain. Using a glacier model, we explored 1,920 scenarios for each glacier in the Patagonian Andes. We found that the choice of climate data was the most important factor, while other factors such as different data sources, climate models and emission scenarios played a smaller role.
Jakob Simon Dörr, David B. Bonan, Marius Årthun, Lea Svendsen, and Robert C. J. Wills
The Cryosphere, 17, 4133–4153, https://doi.org/10.5194/tc-17-4133-2023, https://doi.org/10.5194/tc-17-4133-2023, 2023
Short summary
Short summary
The Arctic sea-ice cover is retreating due to climate change, but this retreat is influenced by natural (internal) variability in the climate system. We use a new statistical method to investigate how much internal variability has affected trends in the summer and winter Arctic sea-ice cover using observations since 1979. Our results suggest that the impact of internal variability on sea-ice retreat might be lower than what climate models have estimated.
Jouni Räisänen
The Cryosphere, 17, 1913–1934, https://doi.org/10.5194/tc-17-1913-2023, https://doi.org/10.5194/tc-17-1913-2023, 2023
Short summary
Short summary
Changes in snow amount since the mid-20th century are studied, focusing on the mechanisms that have changed the water equivalent of the snowpack (SWE). Both reanalysis and climate model data show a decrease in SWE in most of the Northern Hemisphere. The total winter precipitation has increased in most areas, but this has been compensated for by reduced snowfall-to-precipitation ratio and enhanced snowmelt. However, the details and magnitude of these trends vary between different data sets.
Tomás Carrasco-Escaff, Maisa Rojas, René Darío Garreaud, Deniz Bozkurt, and Marius Schaefer
The Cryosphere, 17, 1127–1149, https://doi.org/10.5194/tc-17-1127-2023, https://doi.org/10.5194/tc-17-1127-2023, 2023
Short summary
Short summary
In this study, we investigate the interplay between climate and the Patagonian Icefields. By modeling the glacioclimatic conditions of the southern Andes, we found that the annual variations in net surface mass change experienced by these icefields are mainly controlled by annual variations in the air pressure field observed near the Drake Passage. Little dependence on main modes of variability was found, suggesting the Drake Passage as a key region for understanding the Patagonian Icefields.
Matteo Guidicelli, Matthias Huss, Marco Gabella, and Nadine Salzmann
The Cryosphere, 17, 977–1002, https://doi.org/10.5194/tc-17-977-2023, https://doi.org/10.5194/tc-17-977-2023, 2023
Short summary
Short summary
Spatio-temporal reconstruction of winter glacier mass balance is important for assessing long-term impacts of climate change. However, high-altitude regions significantly lack reliable observations, which is limiting the calibration of glaciological and hydrological models. We aim at improving knowledge on the spatio-temporal variations in winter glacier mass balance by exploring the combination of data from reanalyses and direct snow accumulation observations on glaciers with machine learning.
Wei Li, Jie Chen, Lu Li, Yvan J. Orsolini, Yiheng Xiang, Retish Senan, and Patricia de Rosnay
The Cryosphere, 16, 4985–5000, https://doi.org/10.5194/tc-16-4985-2022, https://doi.org/10.5194/tc-16-4985-2022, 2022
Short summary
Short summary
Snow assimilation over the Tibetan Plateau (TP) may influence seasonal forecasts over this region. To investigate the impacts of snow assimilation on the seasonal forecasts of snow, temperature and precipitation, twin ensemble reforecasts are initialized with and without snow assimilation above 1500 m altitude over the TP for spring and summer in 2018. The results show that snow assimilation can improve seasonal forecasts over the TP through the interaction between land and atmosphere.
Antony Siahaan, Robin S. Smith, Paul R. Holland, Adrian Jenkins, Jonathan M. Gregory, Victoria Lee, Pierre Mathiot, Antony J. Payne, Jeff K. Ridley, and Colin G. Jones
The Cryosphere, 16, 4053–4086, https://doi.org/10.5194/tc-16-4053-2022, https://doi.org/10.5194/tc-16-4053-2022, 2022
Short summary
Short summary
The UK Earth System Model is the first to fully include interactions of the atmosphere and ocean with the Antarctic Ice Sheet. Under the low-greenhouse-gas SSP1–1.9 (Shared Socioeconomic Pathway) scenario, the ice sheet remains stable over the 21st century. Under the strong-greenhouse-gas SSP5–8.5 scenario, the model predicts strong increases in melting of large ice shelves and snow accumulation on the surface. The dominance of accumulation leads to a sea level fall at the end of the century.
John Erich Christian, Alexander A. Robel, and Ginny Catania
The Cryosphere, 16, 2725–2743, https://doi.org/10.5194/tc-16-2725-2022, https://doi.org/10.5194/tc-16-2725-2022, 2022
Short summary
Short summary
Marine-terminating glaciers have recently retreated dramatically, but the role of anthropogenic forcing remains uncertain. We use idealized model simulations to develop a framework for assessing the probability of rapid retreat in the context of natural climate variability. Our analyses show that century-scale anthropogenic trends can substantially increase the probability of retreats. This provides a roadmap for future work to formally assess the role of human activity in recent glacier change.
Vincenzo Capozzi, Carmela De Vivo, and Giorgio Budillon
The Cryosphere, 16, 1741–1763, https://doi.org/10.5194/tc-16-1741-2022, https://doi.org/10.5194/tc-16-1741-2022, 2022
Short summary
Short summary
This work documents the snowfall variability observed from late XIX century to recent years in Montevergine (southern Italy) and discusses its relationship with large-scale atmospheric circulation. The main results lie in the absence of a trend until mid-1970s, in the strong reduction of the snowfall quantity and frequency from mid-1970s to 1990s and in the increase of both variables from early 2000s. In the past 50 years, the nivometric regime has been strongly modulated by AO and NAO indices.
William Gregory, Julienne Stroeve, and Michel Tsamados
The Cryosphere, 16, 1653–1673, https://doi.org/10.5194/tc-16-1653-2022, https://doi.org/10.5194/tc-16-1653-2022, 2022
Short summary
Short summary
This research was conducted to better understand how coupled climate models simulate one of the large-scale interactions between the atmosphere and Arctic sea ice that we see in observational data, the accurate representation of which is important for producing reliable forecasts of Arctic sea ice on seasonal to inter-annual timescales. With network theory, this work shows that models do not reflect this interaction well on average, which is likely due to regional biases in sea ice thickness.
Priscilla A. Mooney, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Natalie de Noblet-Ducoudré, Marcus Breil, Rita M. Cardoso, Anne Sophie Daloz, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 1383–1397, https://doi.org/10.5194/tc-16-1383-2022, https://doi.org/10.5194/tc-16-1383-2022, 2022
Short summary
Short summary
We use multiple regional climate models to show that afforestation in sub-polar and alpine regions reduces the radiative impact of snow albedo on the atmosphere, reduces snow cover, and delays the start of the snowmelt season. This is important for local communities that are highly reliant on snowpack for water resources and winter tourism. However, models disagree on the amount of change particularly when snow is melting. This shows that more research is needed on snow–vegetation interactions.
Tobias Zolles and Andreas Born
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-379, https://doi.org/10.5194/tc-2021-379, 2022
Revised manuscript accepted for TC
Short summary
Short summary
The Greenland ice-sheet largely depends on the climate state. The uncertainties associated with the year-to-year variability have only a marginal impact on our simulated surface mass budget, this increases our confidence in projections and reconstructions. Basing the simulations based on proxies for, f.ex., temperature, overestimates the surface mass balance, as climatologies lead to small amounts of snowfall every day. This can be reduced by including sub-monthly precipitation variability.
Lu Gao, Haijun Deng, Xiangyong Lei, Jianhui Wei, Yaning Chen, Zhongqin Li, Miaomiao Ma, Xingwei Chen, Ying Chen, Meibing Liu, and Jianyun Gao
The Cryosphere, 15, 5765–5783, https://doi.org/10.5194/tc-15-5765-2021, https://doi.org/10.5194/tc-15-5765-2021, 2021
Short summary
Short summary
There is a widespread controversy on the existence of the elevation-dependent warming (EDW) phenomenon due to the limited observations in high mountains. This study provides new evidence of EDW from the Chinese Tian Shan based on a high-resolution (1 km, 6-hourly) air temperature dataset. The result reveals the significant EDW on a monthly scale. The warming rate of the minimum temperature in winter showed a significant elevation dependence (p < 0.01), especially above 3000 m.
Rachel Diamond, Louise C. Sime, David Schroeder, and Maria-Vittoria Guarino
The Cryosphere, 15, 5099–5114, https://doi.org/10.5194/tc-15-5099-2021, https://doi.org/10.5194/tc-15-5099-2021, 2021
Short summary
Short summary
The Hadley Centre Global Environment Model version 3 (HadGEM3) is the first coupled climate model to simulate an ice-free summer Arctic during the Last Interglacial (LIG), 127 000 years ago, and yields accurate Arctic surface temperatures. We investigate the causes and impacts of this extreme simulated ice loss and, in particular, the role of melt ponds.
Julien Beaumet, Michel Déqué, Gerhard Krinner, Cécile Agosta, Antoinette Alias, and Vincent Favier
The Cryosphere, 15, 3615–3635, https://doi.org/10.5194/tc-15-3615-2021, https://doi.org/10.5194/tc-15-3615-2021, 2021
Short summary
Short summary
We use empirical run-time bias correction (also called flux correction) to correct the systematic errors of the ARPEGE atmospheric climate model. When applying the method to future climate projections, we found a lesser poleward shift and an intensification of the maximum of westerly winds present in the southern high latitudes. This yields a significant additional warming of +0.6 to +0.9 K of the Antarctic Ice Sheet with respect to non-corrected control projections using the RCP8.5 scenario.
Gerard H. Roe, John Erich Christian, and Ben Marzeion
The Cryosphere, 15, 1889–1905, https://doi.org/10.5194/tc-15-1889-2021, https://doi.org/10.5194/tc-15-1889-2021, 2021
Short summary
Short summary
The worldwide retreat of mountain glaciers and consequent loss of ice mass is one of the most obvious signs of a changing climate and has significant implications for the hydrology and natural hazards in mountain landscapes. Consistent with our understanding of the human role in temperature change, we demonstrate that the central estimate of the size of the human-caused mass loss is essentially 100 % of the observed loss. This assessment resolves some important inconsistencies in the literature.
Jouni Räisänen
The Cryosphere, 15, 1677–1696, https://doi.org/10.5194/tc-15-1677-2021, https://doi.org/10.5194/tc-15-1677-2021, 2021
Short summary
Short summary
Interannual variability of snow amount in northern Europe is studied. In the coldest areas, total winter precipitation governs snow amount variability. In warmer regions, the fraction of snowfall that survives without melting is more important. Since winter temperature and precipitation are positively correlated, there is often more snow in milder winters in the coldest areas. However, in model simulations of a warmer future climate, snow amount decreases nearly everywhere in northern Europe.
Philipp de Vrese, Tobias Stacke, Thomas Kleinen, and Victor Brovkin
The Cryosphere, 15, 1097–1130, https://doi.org/10.5194/tc-15-1097-2021, https://doi.org/10.5194/tc-15-1097-2021, 2021
Short summary
Short summary
With large amounts of carbon stored in frozen soils and a highly energy-limited vegetation the Arctic is very sensitive to changes in climate. Here our simulations with the land surface model JSBACH reveal a number of offsetting factors moderating the Arctic's net response to global warming. More importantly we find that the effects of climate change may not be fully reversible on decadal timescales, leading to substantially different CH4 emissions depending on whether the Arctic warms or cools.
Thomas E. Shaw, Wei Yang, Álvaro Ayala, Claudio Bravo, Chuanxi Zhao, and Francesca Pellicciotti
The Cryosphere, 15, 595–614, https://doi.org/10.5194/tc-15-595-2021, https://doi.org/10.5194/tc-15-595-2021, 2021
Short summary
Short summary
Near surface air temperature (Ta) is important for simulating the melting of glaciers, though its variability in space and time on mountain glaciers is still poorly understood. We combine new Ta observations on glacier in Tibet with several glacier datasets around the world to explore the applicability of an existing method to estimate glacier Ta based upon glacier flow distance. We make a first step at generalising a method and highlight the remaining unknowns for this field of research.
Zoé Rehder, Anne Laura Niederdrenk, Lars Kaleschke, and Lars Kutzbach
The Cryosphere, 14, 4201–4215, https://doi.org/10.5194/tc-14-4201-2020, https://doi.org/10.5194/tc-14-4201-2020, 2020
Short summary
Short summary
To better understand the connection between sea ice and permafrost, we investigate how sea ice interacts with the atmosphere over the adjacent landmass in the Laptev Sea region using a climate model. Melt of sea ice in spring is mainly controlled by the atmosphere; in fall, feedback mechanisms are important. Throughout summer, lower-than-usual sea ice leads to more southward transport of heat and moisture, but these links from sea ice to the atmosphere over land are weak.
Fabian Willibald, Sven Kotlarski, Adrienne Grêt-Regamey, and Ralf Ludwig
The Cryosphere, 14, 2909–2924, https://doi.org/10.5194/tc-14-2909-2020, https://doi.org/10.5194/tc-14-2909-2020, 2020
Short summary
Short summary
Climate change will significantly reduce snow cover, but the extent remains disputed. We use regional climate model data as a driver for a snow model to investigate the impacts of climate change and climate variability on snow. We show that natural climate variability is a dominant source of uncertainty in future snow trends. We show that anthropogenic climate change will change the interannual variability of snow. Those factors will increase the vulnerabilities of snow-dependent economies.
Ramdane Alkama, Patrick C. Taylor, Lorea Garcia-San Martin, Herve Douville, Gregory Duveiller, Giovanni Forzieri, Didier Swingedouw, and Alessandro Cescatti
The Cryosphere, 14, 2673–2686, https://doi.org/10.5194/tc-14-2673-2020, https://doi.org/10.5194/tc-14-2673-2020, 2020
Short summary
Short summary
The amount of solar energy absorbed by Earth is believed to strongly depend on clouds. Here, we investigate this relationship using satellite data and 32 climate models, showing that this relationship holds everywhere except over polar seas, where an increased reflection by clouds corresponds to an increase in absorbed solar radiation at the surface. This interplay between clouds and sea ice reduces by half the increase of net radiation at the surface that follows the sea ice retreat.
Lawrence Mudryk, María Santolaria-Otín, Gerhard Krinner, Martin Ménégoz, Chris Derksen, Claire Brutel-Vuilmet, Mike Brady, and Richard Essery
The Cryosphere, 14, 2495–2514, https://doi.org/10.5194/tc-14-2495-2020, https://doi.org/10.5194/tc-14-2495-2020, 2020
Short summary
Short summary
We analyze how well updated state-of-the-art climate models reproduce observed historical snow cover extent and snow mass and how they project that these quantities will change up to the year 2100. Overall the updated models better represent historical snow extent than previous models, and they simulate stronger historical trends in snow extent and snow mass. They project that spring snow extent will decrease by 8 % for each degree Celsius that the global surface air temperature increases.
Álvaro Ayala, David Farías-Barahona, Matthias Huss, Francesca Pellicciotti, James McPhee, and Daniel Farinotti
The Cryosphere, 14, 2005–2027, https://doi.org/10.5194/tc-14-2005-2020, https://doi.org/10.5194/tc-14-2005-2020, 2020
Short summary
Short summary
We reconstruct past glacier changes (1955–2016) and estimate the committed ice loss in the Maipo River basin (semi-arid Andes of Chile), with a focus on glacier runoff. We found that glacier volume has decreased by one-fifth since 1955 and that glacier runoff shows a sequence of decreasing maxima starting in a severe drought in 1968. As meltwater originating from the Andes plays a key role in this dry region, our results can be useful for developing adaptation or mitigation strategies.
Alice Barthel, Cécile Agosta, Christopher M. Little, Tore Hattermann, Nicolas C. Jourdain, Heiko Goelzer, Sophie Nowicki, Helene Seroussi, Fiammetta Straneo, and Thomas J. Bracegirdle
The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020, https://doi.org/10.5194/tc-14-855-2020, 2020
Short summary
Short summary
We compare existing coupled climate models to select a total of six models to provide forcing to the Greenland and Antarctic ice sheet simulations of the Ice Sheet Model Intercomparison Project (ISMIP6). We select models based on (i) their representation of current climate near Antarctica and Greenland relative to observations and (ii) their ability to sample a diversity of projected atmosphere and ocean changes over the 21st century.
Hannah S. Weiss, Paul R. Bierman, Yves Dubief, and Scott D. Hamshaw
The Cryosphere, 13, 3367–3382, https://doi.org/10.5194/tc-13-3367-2019, https://doi.org/10.5194/tc-13-3367-2019, 2019
Short summary
Short summary
Climate change is devastating winter tourism. High-elevation, high-latitude ski centers have turned to saving snow over the summer. We present results of two field seasons to test and optimize over-summer snow storage at a midlatitude, low-elevation nordic ski center in the northeastern USA. In 2018, we tested coverings and found success overlaying 20 cm of wet woodchips with a reflective sheet. In 2019, we employed this strategy to a large pile and stored sufficient snow to open the ski season.
Julien Beaumet, Michel Déqué, Gerhard Krinner, Cécile Agosta, and Antoinette Alias
The Cryosphere, 13, 3023–3043, https://doi.org/10.5194/tc-13-3023-2019, https://doi.org/10.5194/tc-13-3023-2019, 2019
Short summary
Short summary
The atmospheric model ARPEGE is used with a stretched grid in order to reach an average horizontal resolution of 35 km over Antarctica. Over 1981–2010, we forced the model with observed and modelled sea surface conditions (SSCs). For the late 21st century, we use original and bias-corrected sea surface conditions from RCP8.5 climate projections. We assess the impact of using direct or bias-corrected SSCs for the evolution of Antarctic climate and surface mass balance.
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Tom Cowton, and Joe Todd
The Cryosphere, 13, 2303–2315, https://doi.org/10.5194/tc-13-2303-2019, https://doi.org/10.5194/tc-13-2303-2019, 2019
Short summary
Short summary
Kangerlussuaq Glacier in Greenland retreated significantly in the early 2000s and typified the response of calving glaciers to climate change. Satellite images show that it has recently retreated even further. The current retreat follows the appearance of extremely warm surface waters on the continental shelf during the summer of 2016, which likely entered the fjord and caused the rigid mass of sea ice and icebergs, which normally inhibits calving, to melt and break up.
Ward van Pelt, Veijo Pohjola, Rickard Pettersson, Sergey Marchenko, Jack Kohler, Bartłomiej Luks, Jon Ove Hagen, Thomas V. Schuler, Thorben Dunse, Brice Noël, and Carleen Reijmer
The Cryosphere, 13, 2259–2280, https://doi.org/10.5194/tc-13-2259-2019, https://doi.org/10.5194/tc-13-2259-2019, 2019
Short summary
Short summary
The climate in Svalbard is undergoing amplified change compared to the global mean, which has a strong impact on the climatic mass balance of glaciers and the state of seasonal snow in land areas. In this study we analyze a coupled energy balance–subsurface model dataset, which provides detailed information on distributed climatic mass balance, snow conditions, and runoff across Svalbard between 1957 and 2018.
Andreas Born, Michael A. Imhof, and Thomas F. Stocker
The Cryosphere, 13, 1529–1546, https://doi.org/10.5194/tc-13-1529-2019, https://doi.org/10.5194/tc-13-1529-2019, 2019
Short summary
Short summary
We present a new numerical model to simulate the surface energy and mass balance of snow and ice. While similar models exist and cover a wide range of complexity from empirical models to those that simulate the microscopic structure of individual snow grains, we aim to strike a balance between physical completeness and numerical efficiency. This new model will enable physically accurate simulations over timescales of hundreds of millennia, a key requirement of investigating ice age cycles.
Peter J. Irvine, David W. Keith, and John Moore
The Cryosphere, 12, 2501–2513, https://doi.org/10.5194/tc-12-2501-2018, https://doi.org/10.5194/tc-12-2501-2018, 2018
Short summary
Short summary
Stratospheric aerosol geoengineering, a form of solar geoengineering, is a proposal to add a reflective layer of aerosol to the upper atmosphere. This would reduce sea level rise by slowing the melting of ice on land and the thermal expansion of the oceans. However, there is considerable uncertainty about its potential efficacy. This article highlights key uncertainties in the sea level response to solar geoengineering and recommends approaches to address these in future work.
Martin Wegmann, Emanuel Dutra, Hans-Werner Jacobi, and Olga Zolina
The Cryosphere, 12, 1887–1898, https://doi.org/10.5194/tc-12-1887-2018, https://doi.org/10.5194/tc-12-1887-2018, 2018
Short summary
Short summary
An important factor for Earth's climate is the high sunlight reflectivity of snow. By melting, it reveals darker surfaces and sunlight is converted to heat. We investigate how well this process is represented in reanalyses data sets compared to observations over Russia. We found snow processes to be well represented, but reflectivity variability needs to be improved. Our results highlight the need for a better representation of this key climate change feedback process in modelled data.
Marcus Lofverstrom and Johan Liakka
The Cryosphere, 12, 1499–1510, https://doi.org/10.5194/tc-12-1499-2018, https://doi.org/10.5194/tc-12-1499-2018, 2018
Jingang Zhan, Hongling Shi, Yong Wang, and Yixin Yao
The Cryosphere, 11, 1487–1499, https://doi.org/10.5194/tc-11-1487-2017, https://doi.org/10.5194/tc-11-1487-2017, 2017
Short summary
Short summary
The mass balance change on Qinghai-Tibet Plateau is the result of interactions between the atmospheric vapor and the surface water resources. We evaluated the spatial characteristics and principal components of mass balance change using CPCA and wavelet analysis. The results reflect the change in four major different atmospheric circulation patterns and their contribution percentages to mass balance. The novelty of the phase information revealed their impact area and travel route in detail.
Ira Leifer, Denis Chernykh, Natalia Shakhova, and Igor Semiletov
The Cryosphere, 11, 1333–1350, https://doi.org/10.5194/tc-11-1333-2017, https://doi.org/10.5194/tc-11-1333-2017, 2017
Short summary
Short summary
Vast Arctic methane deposits may alter global climate and require remote sensing (RS) to map. Sonar has great promise, but quantitative inversion based on theory is challenged by multiple bubble acoustical scattering in plumes. We demonstrate use of a real-world in situ bubble plume calibration using a bubble model to correct for differences in the calibration and seep plumes. Spatial seep sonar maps were then used to improve understanding of subsurface geologic controls.
Riccardo E. M. Riva, Thomas Frederikse, Matt A. King, Ben Marzeion, and Michiel R. van den Broeke
The Cryosphere, 11, 1327–1332, https://doi.org/10.5194/tc-11-1327-2017, https://doi.org/10.5194/tc-11-1327-2017, 2017
Short summary
Short summary
The reduction of ice masses stored on land has made an important contribution to sea-level rise over the last century, as well as changed the Earth's shape. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have varied strongly throughout the last century, which affects the interpretation and extrapolation of recent observations of vertical land motion and sea-level change.
Henning Åkesson, Kerim H. Nisancioglu, Rianne H. Giesen, and Mathieu Morlighem
The Cryosphere, 11, 281–302, https://doi.org/10.5194/tc-11-281-2017, https://doi.org/10.5194/tc-11-281-2017, 2017
Short summary
Short summary
We present simulations of the history of Hardangerjøkulen ice cap in southern Norway using a dynamical ice sheet model. From mid-Holocene ice-free conditions 4000 years ago, Hardangerjøkulen grows nonlinearly in response to a linear climate forcing, reaching maximum extent during the Little Ice Age (~ 1750 AD). The ice cap exhibits spatially asymmetric growth and retreat and is highly sensitive to climate change. Our results call for reassessment of glacier reconstructions from proxy records.
Ethan R. Dale, Adrian J. McDonald, Jack H. J. Coggins, and Wolfgang Rack
The Cryosphere, 11, 267–280, https://doi.org/10.5194/tc-11-267-2017, https://doi.org/10.5194/tc-11-267-2017, 2017
Short summary
Short summary
This work studies the affects of strong winds on sea ice within the Ross Sea polynya. We compare both automatic weather station (AWS) and reanalysis wind data with sea ice concentration (SIC) measurements based on satellite images. Due to its low resolution, the reanalysis data were unable to reproduce several relationships found between the AWS and SIC data. We find that the strongest third of wind speeds had the most significant affect on SIC and resulting sea ice production.
Christopher J. Fogwill, Erik van Sebille, Eva A. Cougnon, Chris S. M. Turney, Steve R. Rintoul, Benjamin K. Galton-Fenzi, Graeme F. Clark, E. M. Marzinelli, Eleanor B. Rainsley, and Lionel Carter
The Cryosphere, 10, 2603–2609, https://doi.org/10.5194/tc-10-2603-2016, https://doi.org/10.5194/tc-10-2603-2016, 2016
Short summary
Short summary
Here we report new data from in situ oceanographic surveys and high-resolution ocean modelling experiments in the Commonwealth Bay region of East Antarctica, where in 2010 there was a major reconfiguration of the regional icescape due to the collision of the 97 km long iceberg B09B with the Mertz Glacier tongue. Here we compare post-calving observations with high-resolution ocean modelling which suggest that this reconfiguration has led to the development of a new polynya off Commonwealth Bay.
Anders Levermann and Ricarda Winkelmann
The Cryosphere, 10, 1799–1807, https://doi.org/10.5194/tc-10-1799-2016, https://doi.org/10.5194/tc-10-1799-2016, 2016
Short summary
Short summary
In recent decades, the Greenland Ice Sheet has been losing mass and has thereby contributed to global sea-level rise. Here we derive the basic equations for the melt elevation feedback that can lead to self-amplifying melt of the Greenland Ice Sheet and ice sheets in general. The theory unifies the results of complex models when the feedback dominates the dynamics and it allows us to estimate the melt time of ice sheets from data in cases where ice dynamic loss can be neglected.
Franco Salerno, Sudeep Thakuri, Nicolas Guyennon, Gaetano Viviano, and Gianni Tartari
The Cryosphere, 10, 1433–1448, https://doi.org/10.5194/tc-10-1433-2016, https://doi.org/10.5194/tc-10-1433-2016, 2016
Short summary
Short summary
This contribution shows that the surface area variations of unconnected glacial ponds, i.e. ponds not directly connected to glacier ice, can be considered as suitable proxies for detecting past changes in the main hydrological components of the water balance (glacier melt, precipitation, evaporation) on the south side of Mt Everest.
Christiane Meyer, Ulrich Meyer, Andreas Pflitsch, and Valter Maggi
The Cryosphere, 10, 879–894, https://doi.org/10.5194/tc-10-879-2016, https://doi.org/10.5194/tc-10-879-2016, 2016
Short summary
Short summary
In the paper a new method to calculate airflow speeds in static ice caves by using air temperature data is presented. As most study sites are in very remote places, where it is often not possible to use sonic anemometers and other devices for the analysis of the cave climate, we show how one can use the given database for calculating airflow speeds. Understanding/quantifying all elements of the specific cave climate is indispensable for understanding the evolution of the ice body in ice caves.
F. Maussion, W. Gurgiser, M. Großhauser, G. Kaser, and B. Marzeion
The Cryosphere, 9, 1663–1683, https://doi.org/10.5194/tc-9-1663-2015, https://doi.org/10.5194/tc-9-1663-2015, 2015
Short summary
Short summary
Using a newly developed open-source tool, we downscale the glacier surface energy and mass balance fluxes at Shallap Glacier. This allows an unprecedented quantification of the ENSO influence on a tropical glacier at climatological time scales (1980-2013). We find a stronger and steadier anti-correlation between Pacific sea-surface temperature (SST) and glacier mass balance than previously reported and provide keys to understand its mechanism.
F. Salerno, N. Guyennon, S. Thakuri, G. Viviano, E. Romano, E. Vuillermoz, P. Cristofanelli, P. Stocchi, G. Agrillo, Y. Ma, and G. Tartari
The Cryosphere, 9, 1229–1247, https://doi.org/10.5194/tc-9-1229-2015, https://doi.org/10.5194/tc-9-1229-2015, 2015
Short summary
Short summary
Climate-trends data in Himalaya are completely absent at high elevation. We explore the south slopes of Mt Everest though time series reconstructed from 7 stations (2660-5600m) during 1994-2013. The main increase in temp is concentrated outside of the monsoon, minimum temp increased far more than maximum, while we note a precipitation weakening. We contribute to change the perspective on which climatic drivers (temperature vs. precipitation) led mainly the glacier responses in the last 20 yr.
H. Castebrunet, N. Eckert, G. Giraud, Y. Durand, and S. Morin
The Cryosphere, 8, 1673–1697, https://doi.org/10.5194/tc-8-1673-2014, https://doi.org/10.5194/tc-8-1673-2014, 2014
A. A. Marks and M. D. King
The Cryosphere, 8, 1625–1638, https://doi.org/10.5194/tc-8-1625-2014, https://doi.org/10.5194/tc-8-1625-2014, 2014
S. Gebre, T. Boissy, and K. Alfredsen
The Cryosphere, 8, 1589–1605, https://doi.org/10.5194/tc-8-1589-2014, https://doi.org/10.5194/tc-8-1589-2014, 2014
Cited articles
Abegg, B. A., S., Crick, F., and de Montfalcon, A.: Climate change impacts and adaptation in winter tourism, in: Climate Change in the European Alps: Adapting Winter Tourism and Natural Hazards Management, edited by: Agrawala, S., Organisation for Economic Cooperation and Development (OECD), Paris, France, 25–125, 2007.
Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 224–232, https://doi.org/10.1038/nature01092, 2002.
Beniston, M.: Impacts of climatic change on water and associated economic activities in the Swiss Alps, J. Hydrol., 412, 291–296, https://doi.org/10.1016/j.jhydrol.2010.06.046, 2012.
Beniston, M.: Climatic Change in Mountain Regions: a Review of Possible Impacts, Climatic Change, 59, 5–31, 2013.
Ceppi, P., Scherrer, S. C., Fischer, A. M., and Appenzeller, C.: Revisiting Swiss temperature trends 1959–2008, Int. J. Climatol., 32, 203–213, https://doi.org/10.1002/joc.2260, 2012.
CH2011: Swiss Climate Change Scenarios CH2011, C2SM, MeteoSwiss, ETH, NCCR Climate, and OcCC, Zurich, Switzerland, 88 pp., 2011.
Chimani, B., Böhm, R., Matulla, C., and Ganekind, M.: Development of a longterm dataset of solid/liquid precipitation, Adv. Sci. Res., 6, 39–43, https://doi.org/10.5194/asr-6-39-2011, 2011.
Deser, C., Knutti, R., Solomon, S., and Phillips, A. S.: Communication of the role of natural variability in future North American climate, Nature Climate Change, 2, 775–779, 2012.
de Vries, H., Haarsma, R. J., and Hazeleger, W.: On the future reduction of snowfall in western and central Europe, Clim. Dynam., 41, 2319–2330, https://doi.org/10.1007/s00382-012-1583-x, 2013.
de Vries, H., Lenderink, G., and van Meijgaard, E.: Future snowfall in western and central Europe projected with a high-resolution regional climate model ensemble, Geophys. Res. Lett., 41, 4294–4299, https://doi.org/10.1002/2014GL059724, 2014.
Elsasser, H. and Bürki, R.: Climate change as a threat to tourism in the Alps, Clim. Res., 20, 253–257, 2002.
Fischer, A. M., Keller, D. E., Liniger, M. A., Rajczak, J., Schär, C., and Appenzeller, C.: Projected changes in precipitation intensity and frequency in Switzerland: a multi-model perspective, Int. J. Climatol., 35, 3204–3219, https://doi.org/10.1002/joc.4162, 2015.
Fischer, E. M. and Knutti, R.: Observed heavy precipitation increase confirms theory and early models, Nature Climate Change, 6, 986–992, https://doi.org/10.1038/NCLIMATE3110, 2016.
Frei, C.: Interpolation of temperature in a mountainous region using nonlinear profiles and non-Euclidean distances, Int. J. Climatol., 34, 1585–1605, https://doi.org/10.1002/joc.3786, 2014.
Frei, C. and Schär, C.: A precipitation climatology of the Alps from high-resolution rain-gauge observations, Int. J. Climatol., 18, 873–900, https://doi.org/10.1002/(Sici)1097-0088(19980630)18:8<873::Aid-Joc255>3.0.Co;2-9, 1998.
Frei, C., Christensen, J. H., Déqué, M., Jacob, D., Jones, R. G., and Vidale, P. L.: Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps, J. Geophys. Res., 108, 4124, https://doi.org/10.1029/2002jd002287, 2003.
Giorgi, F.: Simulation of regional climate using a limited area model nested in a general circulation model, J. Climate, 3, 941–963, 1990.
Giorgi, F., Jones, C., and Asrar, G. R.: Addressing climate information needs at the regional level: the CORDEX framework, World Meteo., 58, 175–183, 2009.
Giorgi, F., Torma, C., Coppola, E., Ban, N., Schär, C., and Somot, S.: Enhanced summer convective rainfall at Alpine high elevations in response to climate warming, Nat. Geosci., 9, 584–589, https://doi.org/10.1038/ngeo2761, 2016.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and Stoffel, M.: 21st century climate change in the European Alps – a review, Sci. Total Environ., 493, 1138–1151, https://doi.org/10.1016/j.scitotenv.2013.07.050, 2014.
Grünewald, T. and Lehning, M.: Are flat-field snow depth measurements representative? A comparison of selected index sites with areal snow depth measurements at the small catchment scale, Hydrol. Process., 29, 1717–1728, https://doi.org/10.1002/hyp.10295, 2015.
Hantel, M., Maurer, C., and Mayer, D.: The snowline climate of the Alps 1961–2010, Theor. Appl. Climatol., 110, 517, https://doi.org/10.1007/s00704-012-0688-9, 2012.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in regional climate predictions, B. Am. Meteorol. Soc., 90, 1095, https://doi.org/10.1175/2009BAMS2607.1, 2009.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M.: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006, J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201, 2008.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to global warming, J. Climate, 19, 5686–5699, https://doi.org/10.1175/Jcli3990.1, 2006.
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2013.
Isotta, F. A., Frei, C., Weilguni, V., Tadic, M. P., Lassegues, P., Rudolf, B., Pavan, V., Cacciamani, C., Antolini, G., Ratto, S. M., Munari, M., Micheletti, S., Bonati, V., Lussana, C., Ronchi, C., Panettieri, E., Marigo, G., and Vertacnik, G.: The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data, Int. J. Climatol., 34, 1657–1675, https://doi.org/10.1002/joc.3794, 2014.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J. F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution climate change projections for European impact research, Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Keller, D. E., Fischer, A. M., Liniger, M. A., Appenzeller, C., and Knutti, R.: Testing a weather generator for downscaling climate change projections over Switzerland, Int. J. Climatol., 37, 928–942, https://doi.org/10.1002/joc.4750, 2016.
Kienzle, S. W.: A new temperature based method to separate rain and snow, Hydrol. Process., 22, 5067–5085, https://doi.org/10.1002/hyp.7131, 2008.
Kotlarski, S., Bosshard, T., Lüthi, D., Pall, P., and Schär, C.: Elevation gradients of European climate change in the regional climate model COSMO-CLM, Climatic Change, 112, 189–215, https://doi.org/10.1007/s10584-011-0195-5, 2012.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Kotlarski, S., Lüthi, D., and Schär, C.: The elevation dependency of 21st century European climate change: an RCM ensemble perspective, Int. J. Climatol., 35, 3902–3920, https://doi.org/10.1002/joc.4254, 2015.
Krasting, J. P., Broccoli, A. J., Dixon, K. W., and Lanzante, J. R.: Future changes in Northern Hemisphere snowfall, J. Climate, 26, 7813–7828, https://doi.org/10.1175/JCLI-D-12-00832.1, 2013.
Laternser, M. and Schneebeli, M.: Long-term snow climate trends of the Swiss Alps (1931–99), Int. J. Climatol., 23, 733–750, https://doi.org/10.1002/joc.912, 2003.
Marty, C.: Regime shift of snow days in Switzerland, Geophys. Res. Lett., 35, L12501, https://doi.org/10.1029/2008gl033998, 2008.
Marty, C. and Blanchet, J.: Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics, Climatic Change, 111, 705–721, 2011.
McAfee, S. A., Walsh, J., and Rupp, T. S.: Statistically downscaled projections of snow/rain partitioning for Alaska, Hydrol. Process., 28, 3930–3946, https://doi.org/10.1002/hyp.9934, 2014.
MeteoSwiss: Klimareport 2015, Bundesamt für Meteorologie und Klimatologie MeteoSchweiz, Zürich, Switzerland, 2016.
MeteoSwiss: Daily Precipitation (final analysis): RhiresD: www.meteoswiss.admin.ch/content/dam/meteoswiss/de/ (last access: 10 January 2017), 2013a.
MeteoSwiss: Daily Mean, Minimum and Maximum Temperature: TabsD, TminD, TmaxD: (last access: 10 January 2017), 2013b.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation of scenarios for climate change research and assessment, Nature, 463, 747–756, https://doi.org/10.1038/nature08823, 2010.
Neff, E. L.: How much rain does a rain gauge gauge, J. Hydrol., 35, 213–220, https://doi.org/10.1016/0022-1694(77)90001-4, 1977.
O'Gorman, P. A.: Contrasting responses of mean and extreme snowfall to climate change, Nature, 512, 416-U401, https://doi.org/10.1038/nature13625, 2014.
Piazza, M., Boé, J., Terray, L., Pagé, C., Sanchez-Gomez, E., and Déqué, M.: Projected 21st century snowfall changes over the French Alps and related uncertainties, Climatic Change, 122, 583–594, https://doi.org/10.1007/s10584-013-1017-8, 2014.
Räisänen, J.: Twenty-first century changes in snowfall climate in Northern Europe in ENSEMBLES regional climate models, Clim. Dynam., 46, 339–353, https://doi.org/10.1007/s00382-015-2587-0, 2016.
Rajczak, J. and Schär, C.: Projections of future precipitation extremes over Europe: A multimodel assessment of climate simulations, J. Geophys. Res.-Atmos., 122, 10773–10800, https://doi.org/10.1002/2017JD027176, 2017.
Rajczak, J., Pall, P., and Schär, C.: Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region, J. Geophys. Res.-Atmos., 118, 3610–3626, https://doi.org/10.1002/jgrd.50297, 2013.
Rajczak, J., Kotlarski, S., and Schär, C.: Does Quantile Mapping of Simulated Precipitation Correct for Biases in Transition Probabilities and Spell Lengths?, J. Climate, 29, 1605–1615, https://doi.org/10.1175/Jcli-D-15-0162.1, 2016.
Richards, F. J.: A flexible growth function for empirical use, J. Exp. Bot., 10, 290–300, https://doi.org/10.1093/Jxb/10.2.290, 1959.
Rummukainen, M.: State-of-the-art with regional climate models, Wires Clim. Change, 1, 82–96, https://doi.org/10.1002/wcc.8, 2010.
Schär, C., Ban, N., Fischer, E. M., Rajczak, J., Schmidli, J., Frei, C., Giorgi, F., Karl, T. R., Kendon, E. J., Tank, A. M. G. K., O'Gorman, P. A., Sillmann, J., Zhang, X. B., and Zwiers, F. W.: Percentile indices for assessing changes in heavy precipitation events, Climatic Change, 137, 201–216, https://doi.org/10.1007/s10584-016-1669-2, 2016.
Scherrer, S. C., Appenzeller, C., and Laternser, M.: Trends in Swiss Alpine snow days: the role of local- and large-scale climate variability, Geophys. Res. Lett., 31, L13215, https://doi.org/10.1029/2004gl020255, 2004.
Schmidli, J., Frei, C., and Vidale, P. L.: Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods, Int. J. Climatol., 26, 679–689, https://doi.org/10.1002/joc.1287, 2006.
Schmucki, E., Marty, C., Fierz, C., and Lehning, M.: Simulations of 21st century snow response to climate change in Switzerland from a set of RCMs, Int. J. Climatol., 35, 3262–3273, https://doi.org/10.1002/joc.4205, 2015a.
Schmucki, E., Marty, C., Fierz, C., Weingartner, R., and Lehning, M.: Impact of climate change in Switzerland on socioeconomic snow indices, Theor. Appl. Climatol., 127, 875–889, https://doi.org/10.1007/s00704-015-1676-7, 2015b.
Serquet, G., Marty, C., and Rebetez, M.: Monthly trends and the corresponding altitudinal shift in the snowfall/precipitation day ratio, Theor. Appl. Climatol., 114, 437–444, https://doi.org/10.1007/s00704-013-0847-7, 2013.
Sevruk, B.: Der Niederschlag in der Schweiz, Geographisches Institut der Eidgenössischen Technischen Hochschule in Zürich, Abteilung Hydrologie, Zurich, Switzerland, 1985.
SFOE: Hydropower, http://www.bfe.admin.ch/themen/00490/00491/index.html?lang=en (last access: 16 September 2016), 2014.
Smiatek, G., Kunstmann, H., and Senatore, A.: EURO-CORDEX regional climate model analysis for the Greater Alpine Region: performance and expected future change, J. Geophys. Res.-Atmos., 121, 7710–7728, https://doi.org/10.1002/2015JD024727, 2016.
Soncini, A. and Bocchiola, D.: Assessment of future snowfall regimes within the Italian Alps using general circulation models, Cold Reg. Sci. Technol., 68, 113–123, https://doi.org/10.1016/j.coldregions.2011.06.011, 2011.
Steger, C., Kotlarski, S., Jonas, T., and Schär, C.: Alpine snow cover in a changing climate: a regional climate model perspective, Clim. Dynam., 41, 735–754, https://doi.org/10.1007/s00382-012-1545-3, 2013.
Techel, F., Stucki, T., Margreth, S., Marty, C., and Winkler, K.: Schnee und Lawinen in den Schweizer Alpen, Hydrologisches Jahr 2013/14, WSL-Institut für Schnee- und Lawinenforschung SLF, Birmensdorf, Switzerland, 2015.
Terzago, S., von Hardenberg, J., Palazzi, E., and Provenzale, A.: Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models, The Cryosphere, 11, 1625–1645, https://doi.org/10.5194/tc-11-1625-2017, 2017
Torma, C., Giorgi, F., and Coppola, E.: Added value of regional climate modeling over areas characterized by complex terrain precipitation over the Alps, J. Geophys. Res.-Atmos., 120, 3957–3972, https://doi.org/10.1002/2014JD022781, 2015.
Vautard, R., Gobiet, A., Jacob, D., Belda, M., Colette, A., Déqué, M., Fernandez, J., Garcia-Diez, M., Goergen, K., Guttler, I., Halenka, T., Karacostas, T., Katragkou, E., Keuler, K., Kotlarski, S., Mayer, S., van Meijgaard, E., Nikulin, G., Patarcic, M., Scinocca, J., Sobolowski, S., Suklitsch, M., Teichmann, C., Warrach-Sagi, K., Wulfmeyer, V., and Yiou, P.: The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project, Clim. Dynam., 41, 2555–2575, https://doi.org/10.1007/s00382-013-1714-z, 2013.
Weingartner, R., Schädler, B., and Hänggi, P.: Auswirkungen der Klimaänderung auf die schweizerische Wasserkraftnutzung, Geographica Helvetica, 68, 239–248, 2013.
Yang, D. Q., Elomaa, E., Tuominen, A., Aaltonen, A., Goodison, B., Gunther, T., Golubev, V., Sevruk, B., Madsen, H., and Milkovic, J.: Wind-induced precipitation undercatch of the Hellmann gauges, Nord. Hydrol., 30, 57–80, 1999.
Zubler, E. M., Scherrer, S. C., Croci-Maspoli, M., Liniger, M. A., and Appenzeller, C.: Key climate indices in Switzerland; expected changes in a future climate, Climatic Change, 123, 255–271, https://doi.org/10.1007/s10584-013-1041-8, 2014.
Zubler, E. M., Fischer, A. M., Liniger, M. A., and Schlegel, T.: Auftausalzverbrauch im Klimawandel, Fachbericht 253, MeteoSwiss, Zurich, Switzerland, 2015.
Short summary
Snowfall is central to Alpine environments, and its future changes will be associated with pronounced impacts. We here assess future snowfall changes in the European Alps based on an ensemble of state-of-the-art regional climate model experiments and on two different greenhouse gas emission scenarios. The results reveal pronounced changes in the Alpine snowfall climate with considerable snowfall reductions at low and mid-elevations but also snowfall increases at high elevations in midwinter.
Snowfall is central to Alpine environments, and its future changes will be associated with...