Articles | Volume 11, issue 1
https://doi.org/10.5194/tc-11-669-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-11-669-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Liquid water content in ice estimated through a full-depth ground radar profile and borehole measurements in western Greenland
Aesir Consulting LLC, Missoula, Montana 59801, USA
Department of Geosciences, University of Montana, Missoula, Montana
59801, USA
Joel Harper
Department of Geosciences, University of Montana, Missoula, Montana
59801, USA
Neil Humphrey
Department of Geology and Geophysics, University of Wyoming, Laramie,
Wyoming 82071, USA
Related authors
No articles found.
Alamgir Hossan, Andreas Colliander, Baptiste Vandecrux, Nicole-Jeanne Schlegel, Joel Harper, Shawn Marshall, and Julie Z. Miller
The Cryosphere, 19, 4237–4258, https://doi.org/10.5194/tc-19-4237-2025, https://doi.org/10.5194/tc-19-4237-2025, 2025
Short summary
Short summary
We used L-band observations from the Soil Moisture Active Passive (SMAP) mission to quantify the surface and subsurface liquid water amounts (LWAs) in the percolation zone of the Greenland ice sheet. The algorithm is described, and the validation results are provided. The results demonstrate the potential for creating an LWA data product across the Greenland ice sheet (GrIS), which will advance our understanding of ice sheet physical processes for better projection of Greenland’s contribution to global sea level rise.
Kirsten Gehl, Joel Harper, and Neil Humphrey
EGUsphere, https://doi.org/10.5194/egusphere-2025-3002, https://doi.org/10.5194/egusphere-2025-3002, 2025
Short summary
Short summary
The geometric form of snow grains governs snow compaction and the movement of air and water within the snow. We observed unexpectedly thick and deep layers of faceted snow grains in cores drilled along the flanks of the Greenland Ice Sheet. Based on field measurements and modeling, we find that meltwater infiltration and refreezing in the cold snow generates these grains. As more of the ice sheet is affected by melting, subsurface faceting of snow crystals may become increasingly important.
Alamgir Hossan, Andreas Colliander, Nicole-Jeanne Schlegel, Joel Harper, Lauren Andrews, Jana Kolassa, Julie Z. Miller, and Richard Cullather
EGUsphere, https://doi.org/10.5194/egusphere-2025-2681, https://doi.org/10.5194/egusphere-2025-2681, 2025
Short summary
Short summary
Microwave L-band radiometry offers a promising tool for estimating the total surface-to-subsurface liquid water amount (LWA) in the snow and firn in polar ice sheets. An accurate modelling of wet snow effective permittivity is a key to this. Here, we evaluated the performance of ten commonly used microwave dielectric mixing models for estimating LWA in the percolation zone of the Greenland Ice Sheet to help an appropriate choice of dielectric mixing model for LWA retrieval algorithms.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Joel Harper, Toby Meierbachtol, Neil Humphrey, Jun Saito, and Aidan Stansberry
The Cryosphere, 15, 5409–5421, https://doi.org/10.5194/tc-15-5409-2021, https://doi.org/10.5194/tc-15-5409-2021, 2021
Short summary
Short summary
We use surface and borehole measurements to investigate the generation and fate of basal meltwater in the ablation zone of western Greenland. The rate of basal meltwater generation at borehole study sites increases by up to 20 % over the winter period. Accommodation of all basal meltwater by expansion of isolated subglacial cavities is implausible. Other sinks for water do not likely balance basal meltwater generation, implying water evacuation through a connected drainage system in winter.
Ian E. McDowell, Neil F. Humphrey, Joel T. Harper, and Toby W. Meierbachtol
The Cryosphere, 15, 897–907, https://doi.org/10.5194/tc-15-897-2021, https://doi.org/10.5194/tc-15-897-2021, 2021
Short summary
Short summary
Ice temperature controls rates of internal deformation and the onset of basal sliding. To identify heat transfer mechanisms and englacial heat sources within Greenland's ablation zone, we examine a 2–3-year continuous temperature record from nine full-depth boreholes. Thermal decay after basal crevasses release heat in the near-basal ice likely produces the observed cooling. Basal crevasses in Greenland can affect the basal ice rheology and indicate a potentially complex basal hydrologic system.
Cited articles
Arcone, S. A.: Numerical studies of the radiation patterns of resistively loaded dipoles, J. Appl. Geophys., 33, 39–52, https://doi.org/10.1016/0926-9851(95)90028-4, 1995.
Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H.: An enthalpy formulation for glaciers and ice sheets, J. Glaciol., 58, 441–457, https://doi.org/10.3189/2012JoG11J088, 2012.
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E., and Steinhage, D.: A new bed elevation dataset for Greenland, The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, 2013.
Bradford, J. H. and Harper, J. T.: Wave field migration as a tool for estimating spatially continuous radar velocity and water content in glaciers, Geophys. Res. Lett., 32, L08502, https://doi.org/10.1029/2004GL021770, 2005.
Bradford, J. H., Nichols, J., Mikesell, T. D., and Harper, J. T.: Continuous profiles of electromagnetic wave velocity and water content in glaciers: an example from Bench Glacier, Alaska, USA, Ann. Glaciol., 50, 1–9, https://doi.org/10.3189/172756409789097540, 2009.
Brinkerhoff, D. J., Meierbachtol, T. W., Johnson, J. V., and Harper, J. T.: Sensitivity of the Frozen/Melted Basal Boundary to Perturbations of Basal Traction and Geothermal Heat Flux?: Isunnguata Sermia, Western Greenland, Ann. Glaciol., 52, 43–49, 2011.
Brown, J., Bradford, J., Harper, J., Pfeffer, W. T., Humphrey, N., and Mosley-Thompson, E.: Georadar-derived estimates of firn density in the percolation zone, western Greenland ice sheet, J. Geophys. Res., 117, F01011, https://doi.org/10.1029/2011JF002089, 2012.
Catania, G. A., Neumann, T. A., and Price, S. F.: Characterizing englacial drainage in the ablation zone of the Greenland ice sheet, J. Glaciol., 54, 567–578, https://doi.org/10.3189/002214308786570854, 2008.
Dix, C. H.: Seismic velocities from surface measurements, Geophysics, 20, 68–86, https://doi.org/10.1190/1.1438126, 1955.
Duval, P.: The role of the water content on the creep rate of polycrystalline ice, Isot. Impurities Snow Ice, 118, 29–33, 1977.
Fujita, S., Matsuoka, T., Ishida, T., and Mae, S.: A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets, in: Physics of Ice Core Records, edited by: Hondoh, T., Hokkaido Univ. Press, Sapporo, Japan, 2000.
Greve, R.: A continuum-mechanical formulation for shallow polythermal ice sheets, Philos. T. Roy. Soc. A, 355, 921–974, https://doi.org/10.1098/rsta.1997.0050, 1997.
Gusmeroli, A., Jansson, P., Petterson, R., and Murray, T.: Twenty years of cold surface layer thinning at Storglaciaren, sub-Arctic Sweden, 1989–2009, J. Glaciol., 58, 3–10, https://doi.org/10.3189/2012JoG11J018, 2012.
Harrington, J. A., Humphrey, N. F., and Harper, J. T.: Temperature distribution and thermal anomalies along a flowline of the Greenland ice sheet, Ann. Glaciol., 56, 98–104, https://doi.org/10.3189/2015AoG70A945, 2015.
Hubbard, B. P., Hubbard, A., Mader, H. M., Tison, J. L., Grust, K., and Nienow, P. W.: Spatial variability in the water content and rheology of temperate glaciers: Glacier de Tsanfleuron, Switzerland, Ann. Glaciol., 37, 1–6, 2003.
Leuschen, C.: IceBridge MCoRDS L1B Geolocated Radar Echo Strength Profiles, Version 2, 20110413_02_002 and 20110413_02_006, Boulder, Colorado, USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/90S1XZRBAX5N, last access: 8 September, 2016.
Looyenga, H.: Dielectric constants of heterogeneous mixtures, J. Glaciol., 31, 401–406, 1965.
Lüthi, M., Funk, M., Iken, A., Gogineni, S., and Truffer, M.: Mechanisms of fast flow in Jakobshavn Isbrae, West Greenland: Part III, Measurements of ice deformation, temperature and cross-borehole conductivityin boreholes to, J. Glaciol., 48, 369–385, https://doi.org/10.3189/172756502781831322, 2002.
Lüthi, M. P., Ryser, C., Andrews, L. C., Catania, G. A., Funk, M., Hawley, R. L., Hoffman, M. J., and Neumann, T. A.: Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming, The Cryosphere, 9, 245–253, https://doi.org/10.5194/tc-9-245-2015, 2015.
Macheret, Y. Y. and Glazovsky, A. F.: Estimation of absolute water content in Spitsbergen glaciers from radar sounding data, Polar Res., 19, 205–216, 2000.
Macheret, Y. Y., Moskalevsky, M. Y., and Vasilenko, E. V: Velocity of radio waves in glaciers as an indicator of their hydrothermal state, structure and regime, J. Glaciol., 39, 373–384, 1993.
Meierbachtol, T. W., Harper, J. T., Johnson, J. V., Humphrey, N. F., and Brinkerhoff, D. J.: Thermal boundary conditions on western Greenland: Observational constraints and impacts on the modelled thermomechanical state, J. Geophys. Res.-Earth, 120, 623–636, https://doi.org/10.1002/2014JF003375, 2015.
Moore, J. C., Palli, A., Ludwig, G., Blatter, H., Jania, J., Gadek, B., Glowacki, P., Mochnacki, D., and Isaksson, E.: High-resolution hydrothermal structure of Hansbreen, Spitsbergen, mapped by ground-penetrating radar, J. Glaciol., 45, 524–532, 1999.
Morlighem, M., Rignot, E., Mouginot, J., Wu, X., Seroussi, H., Larour, E., and Paden, J.: High-resolution bed topography mapping of Russell Glacier, Greenland, inferred from Operation IceBridge data, J. Glaciol., 59, 1015–1023, https://doi.org/10.3189/2013JoG12J235, 2013.
Murray, T., Stuart, G. W., Fry, M., Gamble, N. H., and Crabtree, M. D.: Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis, J. Glaciol., 46, 389–398, 2000.
Murray, T., Booth, A., and Rippin, D. M.: Water-content of glacier-ice: limitations on estimates from velocity analysis of surface ground-penetrating radar surveys, J. Environ. Eng. Geophys., 12, 87–99, 2007.
Nye, B. F. and Frank, F. C.: Hydrology of the intergranular veins in a temperate glacier, in: Symposium on the Hydrology of Glaciers, Cambridge, UK, 95, 157–161,, 1973.
Pälli, A., Kohler, J. C., Isaksson, E., Moore, J. C., Pinglot, J. F., Pohjola, V. A., and Samuelsson, H.: Spatial and temporal variability of snow accumulation using ground-penetrating radar and ice cores on a Svalbard glacier, J. Glaciol., 48, 417–424, https://doi.org/10.3189/172756502781831205, 2002.
Raymond, C. F. and Harrison, W. D.: Some observations on the behavior of the liquid and gas phases in temperate glacier ice, J. Glaciol., 14, 213–233, 1975.
Ryser, C., Lüthi, M. P., Andrews, L. C., Hoffman, M. J., Catania, G. A., Hawley, R. L., Neumann, T. A., and Kristensen, S. S.: Sustained high basal motion of the Greenland ice sheet revealed by borehole deformation, J. Glaciol., 60, 647–660, https://doi.org/10.3189/2014JoG13J196, 2014.
Shreve, R. L. and Sharp, R. P.: Internal Deformation and Thermal Anomalies in Lower Blue Glacier, Mount Olympus, Washington, USA, J. Glaciol., 9, 65–86, 1970.
Vallon, M., Petit, J. R., and Fabre, B.: Study of an ice core to the bedrock in the accumulation zone of an alpine glacier, J. Glaciol., 17, 13–28, 1976.
Wharton, R., Rau, R. and Best, D.: Electromagnetic propagation logging: advances in technique and interpretation, in: Proceedings of SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 9267, 1980.
Zelt, C. A. and Smith, R. B.: Seismic traveltime inversion for 2-D crustal velocity structure, Geophys. J. Int., 108, 16–34, https://doi.org/10.1111/j.1365-246X.1992.tb00836.x, 1992.
Short summary
We use ground-penetrating radar surveys in conjunction with borehole depth and temperature data to estimate the liquid water content (wetness) of glacial ice in the ablation zone of an outlet glacier on the western side of the Greenland Ice Sheet. Our results show that the wetness of a warm basal ice layer is approximately 2.9 % to 4.6 % in our study region. This high level of wetness requires special attention when modelling ice dynamics or estimating ice thickness in the region.
We use ground-penetrating radar surveys in conjunction with borehole depth and temperature data...