Articles | Volume 11, issue 1
https://doi.org/10.5194/tc-11-483-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-11-483-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Active-layer thickness estimation from X-band SAR backscatter intensity
Barbara Widhalm
CORRESPONDING AUTHOR
Zentralanstalt für Meteorologie und Geodynamik, Division Data, Methods and Modelling, 1190 Vienna, Austria
Annett Bartsch
Zentralanstalt für Meteorologie und Geodynamik, Division Data, Methods and Modelling, 1190 Vienna, Austria
Vienna University of Technology, Department of Geodesy and Geoinformation, 1040 Vienna, Austria
Marina Leibman
Earth Cryosphere Institute, Russian Academy of Sciences, Siberian Branch, Tyumen 625000, Russia
Tyumen State University, Department of Cryosophy, Tyumen 625006, Russia
Artem Khomutov
Earth Cryosphere Institute, Russian Academy of Sciences, Siberian Branch, Tyumen 625000, Russia
Tyumen State University, Department of Cryosophy, Tyumen 625006, Russia
Related authors
Clemens von Baeckmann, Annett Bartsch, Helena Bergstedt, Aleksandra Efimova, Barbara Widhalm, Dorothee Ehrich, Timo Kumpula, Alexander Sokolov, and Svetlana Abdulmanova
The Cryosphere, 18, 4703–4722, https://doi.org/10.5194/tc-18-4703-2024, https://doi.org/10.5194/tc-18-4703-2024, 2024
Short summary
Short summary
Lakes are common features in Arctic permafrost areas. Land cover change following their drainage needs to be monitored since it has implications for ecology and the carbon cycle. Satellite data are key in this context. We compared a common vegetation index approach with a novel land-cover-monitoring scheme. Land cover information provides specific information on wetland features. We also showed that the bioclimatic gradients play a significant role after drainage within the first 10 years.
Barbara Widhalm, Annett Bartsch, Tazio Strozzi, Nina Jones, Artem Khomutov, Elena Babkina, Marina Leibman, Rustam Khairullin, Mathias Göckede, Helena Bergstedt, Clemens von Baeckmann, and Xaver Muri
EGUsphere, https://doi.org/10.5194/egusphere-2024-2356, https://doi.org/10.5194/egusphere-2024-2356, 2024
Short summary
Short summary
Mapping soil moisture in Arctic permafrost regions is crucial for various activities, but it is challenging with typical satellite methods due to the landscape's diversity. Seasonal freezing and thawing cause the ground to periodically rise and subside. Our research demonstrates that this seasonal ground settlement, measured with Sentinel-1 satellite data, is larger in areas with wetter soils. This method helps to monitor permafrost degradation.
Annett Bartsch, Aleksandra Efimova, Barbara Widhalm, Xaver Muri, Clemens von Baeckmann, Helena Bergstedt, Ksenia Ermokhina, Gustaf Hugelius, Birgit Heim, and Marina Leibman
Hydrol. Earth Syst. Sci., 28, 2421–2481, https://doi.org/10.5194/hess-28-2421-2024, https://doi.org/10.5194/hess-28-2421-2024, 2024
Short summary
Short summary
Wetness gradients and landcover diversity for the entire Arctic tundra have been assessed using a novel satellite-data-based map. Patterns of lakes, wetlands, general soil moisture conditions and vegetation physiognomy are represented at 10 m. About 40 % of the area north of the treeline falls into three units of dry types, with limited shrub growth. Wetter regions have higher landcover diversity than drier regions.
Annett Bartsch, Barbara Widhalm, Peter Kuhry, Gustaf Hugelius, Juri Palmtag, and Matthias Benjamin Siewert
Biogeosciences, 13, 5453–5470, https://doi.org/10.5194/bg-13-5453-2016, https://doi.org/10.5194/bg-13-5453-2016, 2016
Short summary
Short summary
A new approach for the estimation of soil organic carbon (SOC) pools north of the tree line has been developed based on synthetic aperture radar (SAR) data from the ENVISAT satellite. It can be shown that measurements of C-band SAR under frozen conditions represent vegetation and surface structure properties which relate to soil properties, specifically SOC. The approach provides the first spatially consistent account of soil organic carbon across the Arctic.
Clemens von Baeckmann, Annett Bartsch, Helena Bergstedt, Aleksandra Efimova, Barbara Widhalm, Dorothee Ehrich, Timo Kumpula, Alexander Sokolov, and Svetlana Abdulmanova
The Cryosphere, 18, 4703–4722, https://doi.org/10.5194/tc-18-4703-2024, https://doi.org/10.5194/tc-18-4703-2024, 2024
Short summary
Short summary
Lakes are common features in Arctic permafrost areas. Land cover change following their drainage needs to be monitored since it has implications for ecology and the carbon cycle. Satellite data are key in this context. We compared a common vegetation index approach with a novel land-cover-monitoring scheme. Land cover information provides specific information on wetland features. We also showed that the bioclimatic gradients play a significant role after drainage within the first 10 years.
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024, https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary
Short summary
Computer models, like those used in climate change studies, are written by modellers who have to decide how best to construct the models in order to satisfy the purpose they serve. Using snow modelling as an example, we examine the process behind the decisions to understand what motivates or limits modellers in their decision-making. We find that the context in which research is undertaken is often more crucial than scientific limitations. We argue for more transparency in our research practice.
Barbara Widhalm, Annett Bartsch, Tazio Strozzi, Nina Jones, Artem Khomutov, Elena Babkina, Marina Leibman, Rustam Khairullin, Mathias Göckede, Helena Bergstedt, Clemens von Baeckmann, and Xaver Muri
EGUsphere, https://doi.org/10.5194/egusphere-2024-2356, https://doi.org/10.5194/egusphere-2024-2356, 2024
Short summary
Short summary
Mapping soil moisture in Arctic permafrost regions is crucial for various activities, but it is challenging with typical satellite methods due to the landscape's diversity. Seasonal freezing and thawing cause the ground to periodically rise and subside. Our research demonstrates that this seasonal ground settlement, measured with Sentinel-1 satellite data, is larger in areas with wetter soils. This method helps to monitor permafrost degradation.
Annett Bartsch, Xaver Muri, Markus Hetzenecker, Kimmo Rautiainen, Helena Bergstedt, Jan Wuite, Thomas Nagler, and Dmitry Nicolsky
EGUsphere, https://doi.org/10.5194/egusphere-2024-2518, https://doi.org/10.5194/egusphere-2024-2518, 2024
Short summary
Short summary
We developed a robust freeze/thaw detection approach, applying a constant threshold on Copernicus Sentinel-1 data, that is suitable for tundra regions. All global, coarser resolution products, tested with the resulting benchmarking dataset, are of value for freeze/thaw retrieval, although differences were found depending on seasons, in particular during spring and autumn transition.
Annett Bartsch, Aleksandra Efimova, Barbara Widhalm, Xaver Muri, Clemens von Baeckmann, Helena Bergstedt, Ksenia Ermokhina, Gustaf Hugelius, Birgit Heim, and Marina Leibman
Hydrol. Earth Syst. Sci., 28, 2421–2481, https://doi.org/10.5194/hess-28-2421-2024, https://doi.org/10.5194/hess-28-2421-2024, 2024
Short summary
Short summary
Wetness gradients and landcover diversity for the entire Arctic tundra have been assessed using a novel satellite-data-based map. Patterns of lakes, wetlands, general soil moisture conditions and vegetation physiognomy are represented at 10 m. About 40 % of the area north of the treeline falls into three units of dry types, with limited shrub growth. Wetter regions have higher landcover diversity than drier regions.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Luke D. Schiferl, Clayton Elder, Olli Peltola, Annett Bartsch, Amanda Armstrong, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-84, https://doi.org/10.5194/essd-2024-84, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
We present daily methane fluxes of northern wetlands at 10-km resolution during 2016–2022 (WetCH4) derived from a novel machine-learning framework with improved accuracy. We estimated an average annual CH4 emissions of 20.8 ±2.1 Tg CH4 yr-1. Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variations coming from West Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Annett Bartsch, Helena Bergstedt, Georg Pointner, Xaver Muri, Kimmo Rautiainen, Leena Leppänen, Kyle Joly, Aleksandr Sokolov, Pavel Orekhov, Dorothee Ehrich, and Eeva Mariatta Soininen
The Cryosphere, 17, 889–915, https://doi.org/10.5194/tc-17-889-2023, https://doi.org/10.5194/tc-17-889-2023, 2023
Short summary
Short summary
Rain-on-snow (ROS) events occur across many regions of the terrestrial Arctic in mid-winter. In extreme cases ice layers form which affect wildlife, vegetation and soils beyond the duration of the event. The fusion of multiple types of microwave satellite observations is suggested for the creation of a climate data record. Retrieval is most robust in the tundra biome, where records can be used to identify extremes and the results can be applied to impact studies at regional scale.
Zhen Zhang, Etienne Fluet-Chouinard, Katherine Jensen, Kyle McDonald, Gustaf Hugelius, Thomas Gumbricht, Mark Carroll, Catherine Prigent, Annett Bartsch, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 2001–2023, https://doi.org/10.5194/essd-13-2001-2021, https://doi.org/10.5194/essd-13-2001-2021, 2021
Short summary
Short summary
The spatiotemporal distribution of wetlands is one of the important and yet uncertain factors determining the time and locations of methane fluxes. The Wetland Area and Dynamics for Methane Modeling (WAD2M) dataset describes the global data product used to quantify the areal dynamics of natural wetlands and how global wetlands are changing in response to climate.
Alexander Savvichev, Igor Rusanov, Yury Dvornikov, Vitaly Kadnikov, Anna Kallistova, Elena Veslopolova, Antonina Chetverova, Marina Leibman, Pavel A. Sigalevich, Nikolay Pimenov, Nikolai Ravin, and Artem Khomutov
Biogeosciences, 18, 2791–2807, https://doi.org/10.5194/bg-18-2791-2021, https://doi.org/10.5194/bg-18-2791-2021, 2021
Short summary
Short summary
Microbial processes of the methane cycle were studied in four lakes of the central part of the Yamal Peninsula in an area of continuous permafrost: two large, deep lakes and two small and shallow ones. It was found that only small, shallow lakes contributed significantly to the overall diffusive methane emissions from the water surface during the warm summer season. The water column of large, deep lakes on Yamal acted as a microbial filter preventing methane emissions into the atmosphere.
Georg Pointner, Annett Bartsch, Yury A. Dvornikov, and Alexei V. Kouraev
The Cryosphere, 15, 1907–1929, https://doi.org/10.5194/tc-15-1907-2021, https://doi.org/10.5194/tc-15-1907-2021, 2021
Short summary
Short summary
This study presents strong new indications that regions of anomalously low backscatter in C-band synthetic aperture radar (SAR) imagery of ice of Lake Neyto in northwestern Siberia are related to strong emissions of natural gas. Spatio-temporal dynamics and potential scattering and formation mechanisms are assessed. It is suggested that exploiting the spatial and temporal properties of Sentinel-1 SAR data may be beneficial for the identification of similar phenomena in other Arctic lakes.
Michael Kern, Robert Cullen, Bruno Berruti, Jerome Bouffard, Tania Casal, Mark R. Drinkwater, Antonio Gabriele, Arnaud Lecuyot, Michael Ludwig, Rolv Midthassel, Ignacio Navas Traver, Tommaso Parrinello, Gerhard Ressler, Erik Andersson, Cristina Martin-Puig, Ole Andersen, Annett Bartsch, Sinead Farrell, Sara Fleury, Simon Gascoin, Amandine Guillot, Angelika Humbert, Eero Rinne, Andrew Shepherd, Michiel R. van den Broeke, and John Yackel
The Cryosphere, 14, 2235–2251, https://doi.org/10.5194/tc-14-2235-2020, https://doi.org/10.5194/tc-14-2235-2020, 2020
Short summary
Short summary
The Copernicus Polar Ice and Snow Topography Altimeter will provide high-resolution sea ice thickness and land ice elevation measurements and the capability to determine the properties of snow cover on ice to serve operational products and services of direct relevance to the polar regions. This paper describes the mission objectives, identifies the key contributions the CRISTAL mission will make, and presents a concept – as far as it is already defined – for the mission payload.
Jaroslav Obu, Sebastian Westermann, Gonçalo Vieira, Andrey Abramov, Megan Ruby Balks, Annett Bartsch, Filip Hrbáček, Andreas Kääb, and Miguel Ramos
The Cryosphere, 14, 497–519, https://doi.org/10.5194/tc-14-497-2020, https://doi.org/10.5194/tc-14-497-2020, 2020
Short summary
Short summary
Little is known about permafrost in the Antarctic outside of the few research stations. We used a simple equilibrium permafrost model to estimate permafrost temperatures in the whole Antarctic. The lowest permafrost temperature on Earth is −36 °C in the Queen Elizabeth Range in the Transantarctic Mountains. Temperatures are commonly between −23 and −18 °C in mountainous areas rising above the Antarctic Ice Sheet, between −14 and −8 °C in coastal areas, and up to 0 °C on the Antarctic Peninsula.
Christine Kroisleitner, Annett Bartsch, and Helena Bergstedt
The Cryosphere, 12, 2349–2370, https://doi.org/10.5194/tc-12-2349-2018, https://doi.org/10.5194/tc-12-2349-2018, 2018
Short summary
Short summary
Knowledge about permafrost extent is required with respect to climate change. We used borehole temperature records from across the Arctic for the assessment of surface status information (frozen or unfrozen) derived from space-borne microwave sensors for permafrost extent mapping. The comparison to mean annual ground temperature (MAGT) at the coldest sensor depth revealed that not only extent but also temperature can be obtained from C-band-derived surface state with a residual error of 2.22 °C.
Sarah E. Chadburn, Gerhard Krinner, Philipp Porada, Annett Bartsch, Christian Beer, Luca Belelli Marchesini, Julia Boike, Altug Ekici, Bo Elberling, Thomas Friborg, Gustaf Hugelius, Margareta Johansson, Peter Kuhry, Lars Kutzbach, Moritz Langer, Magnus Lund, Frans-Jan W. Parmentier, Shushi Peng, Ko Van Huissteden, Tao Wang, Sebastian Westermann, Dan Zhu, and Eleanor J. Burke
Biogeosciences, 14, 5143–5169, https://doi.org/10.5194/bg-14-5143-2017, https://doi.org/10.5194/bg-14-5143-2017, 2017
Short summary
Short summary
Earth system models (ESMs) are our main tools for understanding future climate. The Arctic is important for the future carbon cycle, particularly due to the large carbon stocks in permafrost. We evaluated the performance of the land component of three major ESMs at Arctic tundra sites, focusing on the fluxes and stocks of carbon.
We show that the next steps for model improvement are to better represent vegetation dynamics, to include mosses and to improve below-ground carbon cycle processes.
Sina Muster, Kurt Roth, Moritz Langer, Stephan Lange, Fabio Cresto Aleina, Annett Bartsch, Anne Morgenstern, Guido Grosse, Benjamin Jones, A. Britta K. Sannel, Ylva Sjöberg, Frank Günther, Christian Andresen, Alexandra Veremeeva, Prajna R. Lindgren, Frédéric Bouchard, Mark J. Lara, Daniel Fortier, Simon Charbonneau, Tarmo A. Virtanen, Gustaf Hugelius, Juri Palmtag, Matthias B. Siewert, William J. Riley, Charles D. Koven, and Julia Boike
Earth Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017, https://doi.org/10.5194/essd-9-317-2017, 2017
Short summary
Short summary
Waterbodies are abundant in Arctic permafrost lowlands. Most waterbodies are ponds with a surface area smaller than 100 x 100 m. The Permafrost Region Pond and Lake Database (PeRL) for the first time maps ponds as small as 10 x 10 m. PeRL maps can be used to document changes both by comparing them to historical and future imagery. The distribution of waterbodies in the Arctic is important to know in order to manage resources in the Arctic and to improve climate predictions in the Arctic.
Annett Bartsch, Barbara Widhalm, Peter Kuhry, Gustaf Hugelius, Juri Palmtag, and Matthias Benjamin Siewert
Biogeosciences, 13, 5453–5470, https://doi.org/10.5194/bg-13-5453-2016, https://doi.org/10.5194/bg-13-5453-2016, 2016
Short summary
Short summary
A new approach for the estimation of soil organic carbon (SOC) pools north of the tree line has been developed based on synthetic aperture radar (SAR) data from the ENVISAT satellite. It can be shown that measurements of C-band SAR under frozen conditions represent vegetation and surface structure properties which relate to soil properties, specifically SOC. The approach provides the first spatially consistent account of soil organic carbon across the Arctic.
Klaus Haslinger and Annett Bartsch
Hydrol. Earth Syst. Sci., 20, 1211–1223, https://doi.org/10.5194/hess-20-1211-2016, https://doi.org/10.5194/hess-20-1211-2016, 2016
Short summary
Short summary
Gridded fields of daily max. and min. temperatures for the Austrian domain are used to calculate ET0 based on a re-calibrated Hargreaves method. Newly derived, station-based calibration parameters, with Penman–Monteith ET0 as a reference, show a distinct altitude and seasonal dependence. Theses features are used to interpolate the new calibration values in space and time onto the temperature grids. The ET0 is then calculated based on the entire gridded temperature data starting back in 1961.
I. Gouttevin, A. Bartsch, G. Krinner, and V. Naeimi
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-11241-2013, https://doi.org/10.5194/hessd-10-11241-2013, 2013
Manuscript not accepted for further review
Related subject area
Remote Sensing
Improved snow property retrievals by solving for topography in the inversion of at-sensor radiance measurements
Change in grounding line location on the Antarctic Peninsula measured using a tidal motion offset correlation method
Land cover succession for recently drained lakes in permafrost on the Yamal Peninsula, Western Siberia
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
Simulation of Arctic snow microwave emission in surface-sensitive atmosphere channels
AWI-ICENet1: a convolutional neural network retracker for ice altimetry
Monthly velocity and seasonal variations of the Mont Blanc glaciers derived from Sentinel-2 between 2016 and 2024
Retrieval of snow and soil properties for forward radiative transfer modeling of airborne Ku-band SAR to estimate snow water equivalent: the Trail Valley Creek 2018/19 snow experiment
Evaluating L-band InSAR snow water equivalent retrievals with repeat ground-penetrating radar and terrestrial lidar surveys in northern Colorado
Toward long-term monitoring of regional permafrost thaw with satellite interferometric synthetic aperture radar
Improved records of glacier flow instabilities using customized NASA autoRIFT (CautoRIFT) applied to PlanetScope imagery
Reanalyzing the spatial representativeness of snow depth at automated monitoring stations using airborne lidar data
The AutoICE Challenge
Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data
Tower-based C-band radar measurements of an alpine snowpack
A study of sea ice topography in the Weddell and Ross seas using dual-polarimetric TanDEM-X imagery
Estimating differential penetration of green (532 nm) laser light over sea ice with NASA's Airborne Topographic Mapper: observations and models
Mapping surface hoar from near-infrared texture in a laboratory
Sentinel-1 detection of ice slabs on the Greenland Ice Sheet
Estimating the uncertainty of sea-ice area and sea-ice extent from satellite retrievals
Land surface temperature trends derived from Landsat imagery in the Swiss Alps
A Framework for Automated Supraglacial Lake Detection and Depth Retrieval in ICESat-2 Photon Data Across the Greenland and Antarctic Ice Sheets
Thermal infrared shadow-hiding in GOES-R ABI imagery: snow and forest temperature observations from the SnowEx 2020 Grand Mesa field campaign
Sea ice transport and replenishment across and within the Canadian Arctic Archipelago, 2016–2022
SAR deep learning sea ice retrieval trained with airborne laser scanner measurements from the MOSAiC expedition
Lake ice break-up in Greenland: timing and spatiotemporal variability
Evaluating Snow Depth Retrievals from Sentinel-1 Volume Scattering over NASA SnowEx Sites
Temperature-dominated spatiotemporal variability in snow phenology on the Tibetan Plateau from 2002 to 2022
Temporal stability of a new 40-year daily AVHRR Land Surface Temperature dataset for the Pan-Arctic region
MMSeaIce: a collection of techniques for improving sea ice mapping with a multi-task model
Snow water equivalent retrieved from X- and dual Ku-band scatterometer measurements at Sodankylä using the Markov Chain Monte Carlo method
Lead fractions from SAR-derived sea ice divergence during MOSAiC
Multitemporal UAV LiDAR detects seasonal heave and subsidence on palsas
The Pléiades Glacier Observatory: high resolution digital elevation models and ortho-imagery to monitor glacier change
Bayesian physical–statistical retrieval of snow water equivalent and snow depth from X- and Ku-band synthetic aperture radar – demonstration using airborne SnowSAr in SnowEx'17
A low-cost and open-source approach for supraglacial debris thickness mapping using UAV-based infrared thermography
Snow water equivalent retrieval over Idaho – Part 1: Using Sentinel-1 repeat-pass interferometry
Pan-Arctic Sea Ice Concentration from SAR and Passive Microwave
Passive microwave remote-sensing-based high-resolution snow depth mapping for Western Himalayan zones using multifactor modeling approach
Refined glacial lake extraction in a high-Asia region by deep neural network and superpixel-based conditional random field methods
Retrieval of snow water equivalent from dual-frequency radar measurements: using time series to overcome the need for accurate a priori information
Ice floe segmentation and floe size distribution in airborne and high-resolution optical satellite images: towards an automated labelling deep learning approach
Annual to seasonal glacier mass balance in High Mountain Asia derived from Pléiades stereo images: examples from the Pamir and the Tibetan Plateau
Snow accumulation, albedo and melt patterns following road construction on permafrost, Inuvik–Tuktoyaktuk Highway, Canada
Co-registration and residual correction of digital elevation models: a comparative study
Out-of-the-box calving-front detection method using deep learning
Mapping the extent of giant Antarctic icebergs with deep learning
Allometric scaling of retrogressive thaw slumps
Mapping Antarctic crevasses and their evolution with deep learning applied to satellite radar imagery
Measuring the spatiotemporal variability in snow depth in subarctic environments using UASs – Part 1: Measurements, processing, and accuracy assessment
Brenton A. Wilder, Joachim Meyer, Josh Enterkine, and Nancy F. Glenn
The Cryosphere, 18, 5015–5029, https://doi.org/10.5194/tc-18-5015-2024, https://doi.org/10.5194/tc-18-5015-2024, 2024
Short summary
Short summary
Remotely sensed properties of snow are dependent on accurate terrain information, which for a lot of the cryosphere and seasonal snow zones is often insufficient in accuracy. However, as we show in this paper, we can bypass this issue by optimally solving for the terrain by utilizing the raw radiance data returned to the sensor. This method performed well when compared to validation datasets and has the potential to be used across a variety of different snow climates.
Benjamin J. Wallis, Anna E. Hogg, Yikai Zhu, and Andrew Hooper
The Cryosphere, 18, 4723–4742, https://doi.org/10.5194/tc-18-4723-2024, https://doi.org/10.5194/tc-18-4723-2024, 2024
Short summary
Short summary
The grounding line, where ice begins to float, is an essential variable to understand ice dynamics, but in some locations it can be challenging to measure with established techniques. Using satellite data and a new method, Wallis et al. measure the grounding line position of glaciers and ice shelves in the Antarctic Peninsula and find retreats of up to 16.3 km have occurred since the last time measurements were made in the 1990s.
Clemens von Baeckmann, Annett Bartsch, Helena Bergstedt, Aleksandra Efimova, Barbara Widhalm, Dorothee Ehrich, Timo Kumpula, Alexander Sokolov, and Svetlana Abdulmanova
The Cryosphere, 18, 4703–4722, https://doi.org/10.5194/tc-18-4703-2024, https://doi.org/10.5194/tc-18-4703-2024, 2024
Short summary
Short summary
Lakes are common features in Arctic permafrost areas. Land cover change following their drainage needs to be monitored since it has implications for ecology and the carbon cycle. Satellite data are key in this context. We compared a common vegetation index approach with a novel land-cover-monitoring scheme. Land cover information provides specific information on wetland features. We also showed that the bioclimatic gradients play a significant role after drainage within the first 10 years.
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024, https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary
Short summary
Passive microwave observations from satellites are crucial for monitoring Arctic sea ice and atmosphere. To do this effectively, it is important to understand how sea ice emits microwaves. Through unique Arctic sea ice observations, we improved our understanding, identified four distinct emission types, and expanded current knowledge to include higher frequencies. These findings will enhance our ability to monitor the Arctic climate and provide valuable information for new satellite missions.
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024, https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Short summary
Satellite microwave observations are used for weather forecasting. In Arctic regions this is complicated by natural emission from snow. By simulating airborne observations from in situ measurements of snow, this study shows how snow properties affect the signal within the atmosphere. Fresh snowfall between flights changed airborne measurements. Good knowledge of snow layering and structure can be used to account for the effects of snow and could unlock these data to improve forecasts.
Veit Helm, Alireza Dehghanpour, Ronny Hänsch, Erik Loebel, Martin Horwath, and Angelika Humbert
The Cryosphere, 18, 3933–3970, https://doi.org/10.5194/tc-18-3933-2024, https://doi.org/10.5194/tc-18-3933-2024, 2024
Short summary
Short summary
We present a new approach (AWI-ICENet1), based on a deep convolutional neural network, for analysing satellite radar altimeter measurements to accurately determine the surface height of ice sheets. Surface height estimates obtained with AWI-ICENet1 (along with related products, such as ice sheet height change and volume change) show improved and unbiased results compared to other products. This is important for the long-term monitoring of ice sheet mass loss and its impact on sea level rise.
Fabrizio Troilo, Niccolò Dematteis, Francesco Zucca, Martin Funk, and Daniele Giordan
The Cryosphere, 18, 3891–3909, https://doi.org/10.5194/tc-18-3891-2024, https://doi.org/10.5194/tc-18-3891-2024, 2024
Short summary
Short summary
The study of glacier sliding along slopes is relevant in many aspects of glaciology. We processed Sentinel-2 satellite optical images of Mont Blanc, obtaining surface velocities of 30 glaciers between 2016 and 2024. The study revealed different behaviours and velocity variations that have relationships with glacier morphology. A velocity anomaly was observed in some glaciers of the southern side in 2020–2022, but its origin needs to be investigated further.
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024, https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Short summary
This paper validates the use of free open-source models to link distributed snow measurements to radar measurements in the Canadian Arctic. Using multiple radar sensors, we can decouple the soil from the snow contribution. We then retrieve the "microwave snow grain size" to characterize the interaction between the snow mass and the radar signal. This work supports future satellite mission development to retrieve snow mass information such as the future Canadian Terrestrial Snow Mass Mission.
Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng
The Cryosphere, 18, 3765–3785, https://doi.org/10.5194/tc-18-3765-2024, https://doi.org/10.5194/tc-18-3765-2024, 2024
Short summary
Short summary
Snow provides water for billions of people, but the amount of snow is difficult to detect remotely. During the 2020 and 2021 winters, a radar was flown over mountains in Colorado, USA, to measure the amount of snow on the ground, while our team collected ground observations to test the radar technique’s capabilities. The technique yielded accurate measurements of the snowpack that had good correlation with ground measurements, making it a promising application for the upcoming NISAR satellite.
Taha Sadeghi Chorsi, Franz J. Meyer, and Timothy H. Dixon
The Cryosphere, 18, 3723–3740, https://doi.org/10.5194/tc-18-3723-2024, https://doi.org/10.5194/tc-18-3723-2024, 2024
Short summary
Short summary
The active layer thaws and freezes seasonally. The annual freeze–thaw cycle of the active layer causes significant surface height changes due to the volume difference between ice and liquid water. We estimate the subsidence rate and active-layer thickness (ALT) for part of northern Alaska for summer 2017 to 2022 using interferometric synthetic aperture radar and lidar. ALT estimates range from ~20 cm to larger than 150 cm in area. Subsidence rate varies between close points (2–18 mm per month).
Jukes Liu, Madeline Gendreau, Ellyn Mary Enderlin, and Rainey Aberle
The Cryosphere, 18, 3571–3590, https://doi.org/10.5194/tc-18-3571-2024, https://doi.org/10.5194/tc-18-3571-2024, 2024
Short summary
Short summary
There are sometimes gaps in global glacier velocity records produced using satellite image feature-tracking algorithms during times of rapid glacier acceleration, which hinders the study of glacier flow processes. We present an open-source pipeline for customizing the feature-tracking parameters and for including images from an additional source. We applied it to five glaciers and found that it produced accurate velocity data that supplemented their velocity records during rapid acceleration.
Jordan N. Herbert, Mark S. Raleigh, and Eric E. Small
The Cryosphere, 18, 3495–3512, https://doi.org/10.5194/tc-18-3495-2024, https://doi.org/10.5194/tc-18-3495-2024, 2024
Short summary
Short summary
Automated stations measure snow properties at a single point but are frequently used to validate data that represent much larger areas. We use lidar snow depth data to see how often the mean snow depth surrounding a snow station is within 10 cm of the snow station depth at different scales. We found snow stations overrepresent the area-mean snow depth in ~ 50 % of cases, but the direction of bias at a site is temporally consistent, suggesting a site could be calibrated to the surrounding area.
Andreas Stokholm, Jørgen Buus-Hinkler, Tore Wulf, Anton Korosov, Roberto Saldo, Leif Toudal Pedersen, David Arthurs, Ionut Dragan, Iacopo Modica, Juan Pedro, Annekatrien Debien, Xinwei Chen, Muhammed Patel, Fernando Jose Pena Cantu, Javier Noa Turnes, Jinman Park, Linlin Xu, Katharine Andrea Scott, David Anthony Clausi, Yuan Fang, Mingzhe Jiang, Saeid Taleghanidoozdoozan, Neil Curtis Brubacher, Armina Soleymani, Zacharie Gousseau, Michał Smaczny, Patryk Kowalski, Jacek Komorowski, David Rijlaarsdam, Jan Nicolaas van Rijn, Jens Jakobsen, Martin Samuel James Rogers, Nick Hughes, Tom Zagon, Rune Solberg, Nicolas Longépé, and Matilde Brandt Kreiner
The Cryosphere, 18, 3471–3494, https://doi.org/10.5194/tc-18-3471-2024, https://doi.org/10.5194/tc-18-3471-2024, 2024
Short summary
Short summary
The AutoICE challenge encouraged the development of deep learning models to map multiple aspects of sea ice – the amount of sea ice in an area and the age and ice floe size – using multiple sources of satellite and weather data across the Canadian and Greenlandic Arctic. Professionally drawn operational sea ice charts were used as a reference. A total of 179 students and sea ice and AI specialists participated and produced maps in broad agreement with the sea ice charts.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Isis Brangers, Hans-Peter Marshall, Gabrielle De Lannoy, Devon Dunmire, Christian Mätzler, and Hans Lievens
The Cryosphere, 18, 3177–3193, https://doi.org/10.5194/tc-18-3177-2024, https://doi.org/10.5194/tc-18-3177-2024, 2024
Short summary
Short summary
To better understand the interactions between C-band radar waves and snow, a tower-based experiment was set up in the Idaho Rocky Mountains. The reflections were collected in the time domain to measure the backscatter profile from the various snowpack and ground surface layers. The results demonstrate that C-band radar is sensitive to seasonal patterns in snow accumulation but that changes in microstructure, stratigraphy and snow wetness may complicate satellite-based snow depth retrievals.
Lanqing Huang and Irena Hajnsek
The Cryosphere, 18, 3117–3140, https://doi.org/10.5194/tc-18-3117-2024, https://doi.org/10.5194/tc-18-3117-2024, 2024
Short summary
Short summary
Interferometric synthetic aperture radar can measure the total freeboard of sea ice but can be biased when radar signals penetrate snow and ice. We develop a new method to retrieve the total freeboard and analyze the regional variation of total freeboard and roughness in the Weddell and Ross seas. We also investigate the statistical behavior of the total freeboard for diverse ice types. The findings enhance the understanding of Antarctic sea ice topography and its dynamics in a changing climate.
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024, https://doi.org/10.5194/tc-18-2625-2024, 2024
Short summary
Short summary
We use green lidar data and natural-color imagery over sea ice to quantify elevation biases potentially impacting estimates of change in ice thickness of the polar regions. We complement our analysis using a model of scattering of light in snow and ice that predicts the shape of lidar waveforms reflecting from snow and ice surfaces based on the shape of the transmitted pulse. We find that biased elevations exist in airborne and spaceborne data products from green lidars.
James Dillon, Christopher Donahue, Evan Schehrer, Karl Birkeland, and Kevin Hammonds
The Cryosphere, 18, 2557–2582, https://doi.org/10.5194/tc-18-2557-2024, https://doi.org/10.5194/tc-18-2557-2024, 2024
Short summary
Short summary
Surface hoar crystals are snow grains that form when vapor deposits on a snow surface. They create a weak layer in the snowpack that can cause large avalanches to occur. Thus, determining when and where surface hoar forms is a lifesaving matter. Here, we developed a means of mapping surface hoar using remote-sensing technologies. We found that surface hoar displayed heightened texture, hence the variability of brightness. Using this, we created surface hoar maps with an accuracy upwards of 95 %.
Riley Culberg, Roger J. Michaelides, and Julie Z. Miller
The Cryosphere, 18, 2531–2555, https://doi.org/10.5194/tc-18-2531-2024, https://doi.org/10.5194/tc-18-2531-2024, 2024
Short summary
Short summary
Ice slabs enhance meltwater runoff from the Greenland Ice Sheet. Therefore, it is important to understand their extent and change in extent over time. We present a new method for detecting ice slabs in satellite radar data, which we use to map ice slabs at 500 m resolution across the entire ice sheet in winter 2016–2017. Our results provide better spatial coverage and resolution than previous maps from airborne radar and lay the groundwork for long-term monitoring of ice slabs from space.
Andreas Wernecke, Dirk Notz, Stefan Kern, and Thomas Lavergne
The Cryosphere, 18, 2473–2486, https://doi.org/10.5194/tc-18-2473-2024, https://doi.org/10.5194/tc-18-2473-2024, 2024
Short summary
Short summary
The total Arctic sea-ice area (SIA), which is an important climate indicator, is routinely monitored with the help of satellite measurements. Uncertainties in observations of sea-ice concentration (SIC) partly cancel out when summed up to the total SIA, but the degree to which this is happening has been unclear. Here we find that the uncertainty daily SIA estimates, based on uncertainties in SIC, are about 300 000 km2. The 2002 to 2017 September decline in SIA is approx. 105 000 ± 9000 km2 a−1.
Deniz Tobias Gök, Dirk Scherler, and Hendrik Wulf
EGUsphere, https://doi.org/10.5194/egusphere-2024-1228, https://doi.org/10.5194/egusphere-2024-1228, 2024
Short summary
Short summary
We derived Landsat Collection 2 land surface temperature (LST) trends in the Swiss Alps using a harmonic model with linear trend. Validation with LST data from 119 high-altitude weather stations yielded robust results, but Landsat LST trends are biased due to unstable acquisition times. The bias varies with topographic slope and aspect. We discuss its origin and propose a simple correction method in relation to modeled changes in shortwave radiation.
Philipp Sebastian Arndt and Helen Amanda Fricker
EGUsphere, https://doi.org/10.5194/egusphere-2024-1156, https://doi.org/10.5194/egusphere-2024-1156, 2024
Short summary
Short summary
We develop a method for ice-sheet-scale retrieval of supraglacial meltwater depths using ICESat-2 photon data. We report results for two drainage basins in Greenland and Antarctica during two contrasting melt seasons, where our method reveals a total of 1249 lakes up to 25 m deep. The large volume and wide variety of accurate depth data that our method provides enables the development of data-driven models of meltwater volumes in satellite imagery.
Steven J. Pestana, C. Chris Chickadel, and Jessica D. Lundquist
The Cryosphere, 18, 2257–2276, https://doi.org/10.5194/tc-18-2257-2024, https://doi.org/10.5194/tc-18-2257-2024, 2024
Short summary
Short summary
We compared infrared images taken by GOES-R satellites of an area with snow and forests against surface temperature measurements taken on the ground, from an aircraft, and by another satellite. We found that GOES-R measured warmer temperatures than the other measurements, especially in areas with more forest and when the Sun was behind the satellite. From this work, we learned that the position of the Sun and surface features such as trees that can cast shadows impact GOES-R infrared images.
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
The Cryosphere, 18, 2321–2333, https://doi.org/10.5194/tc-18-2321-2024, https://doi.org/10.5194/tc-18-2321-2024, 2024
Short summary
Short summary
The CAA serves as both a source and a sink for sea ice from the Arctic Ocean, while also exporting sea ice into Baffin Bay. It is also an important region with respect to navigating the Northwest Passage. Here, we quantify sea ice transport and replenishment across and within the CAA from 2016 to 2022. We also provide the first estimates of the ice area and volume flux within the CAA from the Queen Elizabeth Islands to Parry Channel, which spans the central region of the Northwest Passage.
Karl Kortum, Suman Singha, Gunnar Spreen, Nils Hutter, Arttu Jutila, and Christian Haas
The Cryosphere, 18, 2207–2222, https://doi.org/10.5194/tc-18-2207-2024, https://doi.org/10.5194/tc-18-2207-2024, 2024
Short summary
Short summary
A dataset of 20 radar satellite acquisitions and near-simultaneous helicopter-based surveys of the ice topography during the MOSAiC expedition is constructed and used to train a variety of deep learning algorithms. The results give realistic insights into the accuracy of retrieval of measured ice classes using modern deep learning models. The models able to learn from the spatial distribution of the measured sea ice classes are shown to have a clear advantage over those that cannot.
Christoph Posch, Jakob Abermann, and Tiago Silva
The Cryosphere, 18, 2035–2059, https://doi.org/10.5194/tc-18-2035-2024, https://doi.org/10.5194/tc-18-2035-2024, 2024
Short summary
Short summary
Radar beams from satellites exhibit reflection differences between water and ice. This condition, as well as the comprehensive coverage and high temporal resolution of the Sentinel-1 satellites, allows automatically detecting the timing of when ice cover of lakes in Greenland disappear. We found that lake ice breaks up 3 d later per 100 m elevation gain and that the average break-up timing varies by ±8 d in 2017–2021, which has major implications for the energy budget of the lakes.
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1018, https://doi.org/10.5194/egusphere-2024-1018, 2024
Short summary
Short summary
This study uses radar imagery from the Sentinel-1 satellite to derive snow depth from increases in the returning energy. These retrieved depths are then compared to nine lidar derived snow depths across the western United State to assess the ability of this technique to be used to monitor global snow distributions. We also qualitatively compare the changes in underlying Sentinel-1 amplitudes against both the total lidar snow depths and 9 automated snow monitoring stations.
Jiahui Xu, Yao Tang, Linxin Dong, Shujie Wang, Bailang Yu, Jianping Wu, Zhaojun Zheng, and Yan Huang
The Cryosphere, 18, 1817–1834, https://doi.org/10.5194/tc-18-1817-2024, https://doi.org/10.5194/tc-18-1817-2024, 2024
Short summary
Short summary
Understanding snow phenology (SP) and its possible feedback are important. We reveal spatiotemporal heterogeneous SP on the Tibetan Plateau (TP) and the mediating effects from meteorological, topographic, and environmental factors on it. The direct effects of meteorology on SP are much greater than the indirect effects. Topography indirectly effects SP, while vegetation directly effects SP. This study contributes to understanding past global warming and predicting future trends on the TP.
Sonia Dupuis, Frank-Michael Göttsche, and Stefan Wunderle
EGUsphere, https://doi.org/10.5194/egusphere-2024-857, https://doi.org/10.5194/egusphere-2024-857, 2024
Short summary
Short summary
The Arctic experienced pronounced warming throughout the last decades. This warming threatens ecosystems, vegetation dynamics, snow cover duration, and permafrost. Traditional monitoring methods like stations and climate models lack the detail needed. Land surface temperature (LST) data derived from satellites offers high spatial and temporal coverage, perfect for studying changes in the Arctic. In particular, LST information from AVHRR provides a 40-year record, valuable for analyzing trends.
Xinwei Chen, Muhammed Patel, Fernando J. Pena Cantu, Jinman Park, Javier Noa Turnes, Linlin Xu, K. Andrea Scott, and David A. Clausi
The Cryosphere, 18, 1621–1632, https://doi.org/10.5194/tc-18-1621-2024, https://doi.org/10.5194/tc-18-1621-2024, 2024
Short summary
Short summary
This paper introduces an automated sea ice mapping pipeline utilizing a multi-task U-Net architecture. It attained the top score of 86.3 % in the AutoICE challenge. Ablation studies revealed that incorporating brightness temperature data and spatial–temporal information significantly enhanced model accuracy. Accurate sea ice mapping is vital for comprehending the Arctic environment and its global climate effects, underscoring the potential of deep learning.
Jinmei Pan, Michael Durand, Juha Lemmetyinen, Desheng Liu, and Jiancheng Shi
The Cryosphere, 18, 1561–1578, https://doi.org/10.5194/tc-18-1561-2024, https://doi.org/10.5194/tc-18-1561-2024, 2024
Short summary
Short summary
We developed an algorithm to estimate snow mass using X- and dual Ku-band radar, and tested it in a ground-based experiment. The algorithm, the Bayesian-based Algorithm for SWE Estimation (BASE) using active microwaves, achieved an RMSE of 30 mm for snow water equivalent. These results demonstrate the potential of radar, a highly promising sensor, to map snow mass at high spatial resolution.
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024, https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Short summary
Leads (openings in sea ice cover) are created by sea ice dynamics. Because they are important for many processes in the Arctic winter climate, we aim to detect them with satellites. We present two new techniques to detect lead widths of a few hundred meters at high spatial resolution (700 m) and independent of clouds or sun illumination. We use the MOSAiC drift 2019–2020 in the Arctic for our case study and compare our new products to other existing lead products.
Cas Renette, Mats Olvmo, Sofia Thorsson, Björn Holmer, and Heather Reese
EGUsphere, https://doi.org/10.5194/egusphere-2024-141, https://doi.org/10.5194/egusphere-2024-141, 2024
Short summary
Short summary
We used a drone to monitor seasonal changes in the height of subarctic permafrost mounds (palsas). With five drone flights in one year, we found a seasonal fluctuation of ca. 15 cm as result of freeze/thaw cycles. On one mound, a large area sank down between each flight as a result of permafrost thaw. The approach of using repeated high-resolution scans from such drone is unique for such environments and highlights its effectiveness in capturing the subtle dynamics of permafrost landscapes.
Etienne Berthier, Jérôme Lebreton, Delphine Fontannaz, Steven Hosford, Joaquin Munoz Cobo Belart, Fanny Brun, Liss Marie Andreassen, Brian Menounos, and Charlotte Blondel
EGUsphere, https://doi.org/10.5194/egusphere-2024-250, https://doi.org/10.5194/egusphere-2024-250, 2024
Short summary
Short summary
Repeat elevation measurements are crucial for monitoring glacier health and how they affect river flows and sea levels. Until recently, high resolution elevation data were mostly available for polar regions and High Mountain Asia. Our project, the Pléiades Glacier Observatory (PGO), now provides high-resolution topographies of 140 glacier sites worldwide. This is a novel and open dataset to monitor the impact of climate change on glacier at high resolution and accuracy.
Siddharth Singh, Michael Durand, Edward Kim, and Ana P. Barros
The Cryosphere, 18, 747–773, https://doi.org/10.5194/tc-18-747-2024, https://doi.org/10.5194/tc-18-747-2024, 2024
Short summary
Short summary
Seasonal snowfall accumulation plays a critical role in climate. The water stored in it is measured by the snow water equivalent (SWE), the amount of water released after completely melting. We demonstrate a Bayesian physical–statistical framework to estimate SWE from airborne X- and Ku-band synthetic aperture radar backscatter measurements constrained by physical snow hydrology and radar models. We explored spatial resolutions and vertical structures that agree well with ground observations.
Jérôme Messmer and Alexander Raphael Groos
The Cryosphere, 18, 719–746, https://doi.org/10.5194/tc-18-719-2024, https://doi.org/10.5194/tc-18-719-2024, 2024
Short summary
Short summary
The lower part of mountain glaciers is often covered with debris. Knowing the thickness of the debris is important as it influences the melting and future evolution of the affected glaciers. We have developed an open-source approach to map variations in debris thickness on glaciers using a low-cost drone equipped with a thermal infrared camera. The resulting high-resolution maps of debris surface temperature and thickness enable more accurate monitoring and modelling of debris-covered glaciers.
Shadi Oveisgharan, Robert Zinke, Zachary Hoppinen, and Hans Peter Marshall
The Cryosphere, 18, 559–574, https://doi.org/10.5194/tc-18-559-2024, https://doi.org/10.5194/tc-18-559-2024, 2024
Short summary
Short summary
The seasonal snowpack provides water resources to billions of people worldwide. Large-scale mapping of snow water equivalent (SWE) with high resolution is critical for many scientific and economics fields. In this work we used the radar remote sensing interferometric synthetic aperture radar (InSAR) to estimate the SWE change between 2 d. The error in the estimated SWE change is less than 2 cm for in situ stations. Additionally, the retrieved SWE using InSAR is correlated with lidar snow depth.
Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, and Matilde Brandt Kreiner
EGUsphere, https://doi.org/10.5194/egusphere-2024-178, https://doi.org/10.5194/egusphere-2024-178, 2024
Short summary
Short summary
Here, we present ASIP (Automated Sea Ice Products): a new and comprehensive deep learning-based methodology to retrieve high-resolution sea ice concentration with accompanying well-calibrated uncertainties from Sentinel-1 SAR and AMSR2 passive microwave observations at a pan-Arctic scale for all seasons. In a comparative study against pan-Arctic ice charts and passive microwave-based sea ice products, we show that ASIP generalizes well to the pan-Arctic region.
Dhiraj Kumar Singh, Srinivasarao Tanniru, Kamal Kant Singh, Harendra Singh Negi, and RAAJ Ramsankaran
The Cryosphere, 18, 451–474, https://doi.org/10.5194/tc-18-451-2024, https://doi.org/10.5194/tc-18-451-2024, 2024
Short summary
Short summary
In situ techniques for snow depth (SD) measurement are not adequate to represent the spatiotemporal variability in SD in the Western Himalayan region. Therefore, this study focuses on the high-resolution mapping of daily snow depth in the Indian Western Himalayan region using passive microwave remote-sensing-based algorithms. Overall, the proposed multifactor SD models demonstrated substantial improvement compared to the operational products. However, there is a scope for further improvement.
Yungang Cao, Rumeng Pan, Meng Pan, Ruodan Lei, Puying Du, and Xueqin Bai
The Cryosphere, 18, 153–168, https://doi.org/10.5194/tc-18-153-2024, https://doi.org/10.5194/tc-18-153-2024, 2024
Short summary
Short summary
This study built a glacial lake dataset with 15376 samples in seven types and proposed an automatic method by two-stage (the semantic segmentation network and post-processing) optimizations to detect glacial lakes. The proposed method for glacial lake extraction has achieved the best results so far, in which the F1 score and IoU reached 0.945 and 0.907, respectively. The area of the minimum glacial lake that can be entirely and correctly extracted has been raised to the 100 m2 level.
Michael Durand, Joel T. Johnson, Jack Dechow, Leung Tsang, Firoz Borah, and Edward J. Kim
The Cryosphere, 18, 139–152, https://doi.org/10.5194/tc-18-139-2024, https://doi.org/10.5194/tc-18-139-2024, 2024
Short summary
Short summary
Seasonal snow accumulates each winter, storing water to release later in the year and modulating both water and energy cycles, but the amount of seasonal snow is one of the most poorly measured components of the global water cycle. Satellite concepts to monitor snow accumulation have been proposed but not selected. This paper shows that snow accumulation can be measured using radar, and that (contrary to previous studies) does not require highly accurate information about snow microstructure.
Qin Zhang and Nick Hughes
The Cryosphere, 17, 5519–5537, https://doi.org/10.5194/tc-17-5519-2023, https://doi.org/10.5194/tc-17-5519-2023, 2023
Short summary
Short summary
To alleviate tedious manual image annotations for training deep learning (DL) models in floe instance segmentation, we employ a classical image processing technique to automatically label floes in images. We then apply a DL semantic method for fast and adaptive floe instance segmentation from high-resolution airborne and satellite images. A post-processing algorithm is also proposed to refine the segmentation and further to derive acceptable floe size distributions at local and global scales.
Daniel Falaschi, Atanu Bhattacharya, Gregoire Guillet, Lei Huang, Owen King, Kriti Mukherjee, Philipp Rastner, Tandong Yao, and Tobias Bolch
The Cryosphere, 17, 5435–5458, https://doi.org/10.5194/tc-17-5435-2023, https://doi.org/10.5194/tc-17-5435-2023, 2023
Short summary
Short summary
Because glaciers are crucial freshwater sources in the lowlands surrounding High Mountain Asia, constraining short-term glacier mass changes is essential. We investigate the potential of state-of-the-art satellite elevation data to measure glacier mass changes in two selected regions. The results demonstrate the ability of our dataset to characterize glacier changes of different magnitudes, allowing for an increase in the number of inaccessible glaciers that can be readily monitored.
Jennika Hammar, Inge Grünberg, Steven V. Kokelj, Jurjen van der Sluijs, and Julia Boike
The Cryosphere, 17, 5357–5372, https://doi.org/10.5194/tc-17-5357-2023, https://doi.org/10.5194/tc-17-5357-2023, 2023
Short summary
Short summary
Roads on permafrost have significant environmental effects. This study assessed the Inuvik to Tuktoyaktuk Highway (ITH) in Canada and its impact on snow accumulation, albedo and snowmelt timing. Our findings revealed that snow accumulation increased by up to 36 m from the road, 12-day earlier snowmelt within 100 m due to reduced albedo, and altered snowmelt patterns in seemingly undisturbed areas. Remote sensing aids in understanding road impacts on permafrost.
Tao Li, Yuanlin Hu, Bin Liu, Liming Jiang, Hansheng Wang, and Xiang Shen
The Cryosphere, 17, 5299–5316, https://doi.org/10.5194/tc-17-5299-2023, https://doi.org/10.5194/tc-17-5299-2023, 2023
Short summary
Short summary
Raw DEMs are often misaligned with each other due to georeferencing errors, and a co-registration process is required before DEM differencing. We present a comparative analysis of the two classical DEM co-registration and three residual correction algorithms. The experimental results show that rotation and scale biases should be considered in DEM co-registration. The new non-parametric regression technique can eliminate the complex systematic errors, which existed in the co-registration results.
Oskar Herrmann, Nora Gourmelon, Thorsten Seehaus, Andreas Maier, Johannes J. Fürst, Matthias H. Braun, and Vincent Christlein
The Cryosphere, 17, 4957–4977, https://doi.org/10.5194/tc-17-4957-2023, https://doi.org/10.5194/tc-17-4957-2023, 2023
Short summary
Short summary
Delineating calving fronts of marine-terminating glaciers in satellite images is a labour-intensive task. We propose a method based on deep learning that automates this task. We choose a deep learning framework that adapts to any given dataset without needing deep learning expertise. The method is evaluated on a benchmark dataset for calving-front detection and glacier zone segmentation. The framework can beat the benchmark baseline without major modifications.
Anne Braakmann-Folgmann, Andrew Shepherd, David Hogg, and Ella Redmond
The Cryosphere, 17, 4675–4690, https://doi.org/10.5194/tc-17-4675-2023, https://doi.org/10.5194/tc-17-4675-2023, 2023
Short summary
Short summary
In this study, we propose a deep neural network to map the extent of giant Antarctic icebergs in Sentinel-1 images automatically. While each manual delineation requires several minutes, our U-net takes less than 0.01 s. In terms of accuracy, we find that U-net outperforms two standard segmentation techniques (Otsu, k-means) in most metrics and is more robust to challenging scenes with sea ice, coast and other icebergs. The absolute median deviation in iceberg area across 191 images is 4.1 %.
Jurjen van der Sluijs, Steven V. Kokelj, and Jon F. Tunnicliffe
The Cryosphere, 17, 4511–4533, https://doi.org/10.5194/tc-17-4511-2023, https://doi.org/10.5194/tc-17-4511-2023, 2023
Short summary
Short summary
There is an urgent need to obtain size and erosion estimates of climate-driven landslides, such as retrogressive thaw slumps. We evaluated surface interpolation techniques to estimate slump erosional volumes and developed a new inventory method by which the size and activity of these landslides are tracked through time. Models between slump area and volume reveal non-linear intensification, whereby model coefficients improve our understanding of how permafrost landscapes may evolve over time.
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, and David C. Hogg
The Cryosphere, 17, 4421–4445, https://doi.org/10.5194/tc-17-4421-2023, https://doi.org/10.5194/tc-17-4421-2023, 2023
Short summary
Short summary
The presence of crevasses in Antarctica influences how the ice sheet behaves. It is important, therefore, to collect data on the spatial distribution of crevasses and how they are changing. We present a method of mapping crevasses from satellite radar imagery and apply it to 7.5 years of images, covering Antarctica's floating and grounded ice. We develop a method of measuring change in the density of crevasses and quantify increased fracturing in important parts of the West Antarctic Ice Sheet.
Anssi Rauhala, Leo-Juhani Meriö, Anton Kuzmin, Pasi Korpelainen, Pertti Ala-aho, Timo Kumpula, Bjørn Kløve, and Hannu Marttila
The Cryosphere, 17, 4343–4362, https://doi.org/10.5194/tc-17-4343-2023, https://doi.org/10.5194/tc-17-4343-2023, 2023
Short summary
Short summary
Snow conditions in the Northern Hemisphere are rapidly changing, and information on snow depth is important for decision-making. We present snow depth measurements using different drones throughout the winter at a subarctic site. Generally, all drones produced good estimates of snow depth in open areas. However, differences were observed in the accuracies produced by the different drones, and a reduction in accuracy was observed when moving from an open mire area to forest-covered areas.
Cited articles
Antonova, S., Kääb, A., Heim, B., Langer, M., and Boike, J.: Spatio-temporal variability of X-band radar backscatter and coherence over the Lena River Delta, Siberia, Remote Sens. Environ., 182, 169–191, https://doi.org/10.1016/j.rse.2016.05.003, Remote Sens. Environ., 2016.
Bartsch, A., Höfler, A., Kroisleitner, C., and Trofaier, A. M.: Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges, 8, 979, https://doi.org/10.3390/rs8120979, 2016.
Beck, I., Ludwig, R., Bernier, M., Strozzi, T., and Boike, J.: Vertical movements of frost mounds in subarctic permafrost regions analyzed using geodetic survey and satellite interferometry, Earth Surf. Dynam., 3, 409–421, https://doi.org/10.5194/esurf-3-409-2015, 2015.
Blok, D., Heijmans, M. M. P. D., Schaepman-Strub, G., Kononov, A. V., Maximov, T. C., and Berendse, F.: Shrub expansion may reduce summer permafrost thaw in Siberian tundra, Glob. Change Biol., 16, 1296–1305, https://doi.org/10.1111/j.1365-2486.2009.02110.x, 2010.
Bratsch, S., Epstein, H., Buchhorn, M., and Walker, D.: Differentiating among Four Arctic Tundra Plant Communities at Ivotuk, Alaska Using Field Spectroscopy, Remote Sensing, 8, 51, https://doi.org/10.3390/rs8010051, 2016.
Brown, J., Hinkel, K. M., and Nelson, F. E.: The circumpolar active layer monitoring (CALM) program: Research designs and initial results, Polar Geography, 24, 3, 2000.
DLR: TerraSAR-X Mission, brochure, Bonn-Oberkassel, Germany, 2009.
Domine, F., Barrere, M., and Morin, S.: The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime, Biogeosciences, 13, 6471–6486, https://doi.org/10.5194/bg-13-6471-2016, 2016.
Duguay, Y., Bernier, M., Lévesque, E., and Tremblay, B.: Potential of C and X Band SAR for Shrub Growth Monitoring in Sub-Arctic Environments, Remote Sensing, 7, 9410–9430, https://doi.org/10.3390/rs70709410, 2015.
Dvornikov, Y., Khomutov, A., Mullanurov, D., Ermokhina, K., Gubarkov, A., and Leibman, M.: GIS and field data based modelling of snow water equivalent in shrub tundra, Fennia, 193, 53–65, https://doi.org/10.11143/46363, 2015.
Dvornikov, Y., Leibman, M., Heim, B., Bartsch, A., Haas, A., Khomutov, A., Gubarkov, A., Mikhaylova, M., Mullanurov, D., Widhalm, B., Skorospekhova, T., and Irina, F.: Geodatabase and WebGIS project for long-term permafrost monitoring at the Vaskiny Dachi research station, Yamal, Russia, Polarforschung, 85, 107–115, https://doi.org/10.2312/polfor.2016.007, 2016.
Gangodagamage, C., Rowland, J. C., Hubbard, S. S., Brumby, S. P., Liljedahl, A. K., Wainwright, H., Wilson, C. J., Altmann, G. L., Dafflon, B., Peterson, J., Ulrich, C., Tweedie, C. E., and Wullschleger, S. D.: Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and NDVI data sets, Water Resour. Res., 50, 6339–6357, https://doi.org/10.1002/2013WR014283, 2014.
Gomersall, C. E. and Hinkel, K. M.: Estimating the Variability of Active-La yer Thaw Depth in Two Physiographic Regions of Northern Alaska, Geogr. Anal., 33, 141–155, 2001.
Gross, M. F., Hardisky, M. A., Doolittle, J. A., and Klemas, V.: Relationships among Depth to Frozen Soil, Soil Wetness, and Vegetation Type and Biomass in Tundra near Bethel, Alaska, USA, Arctic Alpine Res., 22, 275–282, 1990.
Harlan, R. and Nixon, J. F.: Geotechnical engineering for cold regions, chap. Ground thermal regime, McGraw-Hill Book Co., New York, N.Y., USA, 103–163, 1978.
Harris, S., French, H., Heginbottom, J., Johnston, G., Ladanyi, B., Sego, D., and van Everdingen, R.: Glossary of Permafrost and Related Ground-Ice Terms, National Research Council of Canada, Ottawa, Technical Memorandum 142, Ottawa, Ontario, Canada K1A 0R6, 1988.
Hinkel, K. M. and Nelson, F. E.: Spatial and temporal patterns of active-layer thickness at Circumpolar Active-Layer Monitoring (CALM) sites in Northern Alaska, 1995–2000, J. Geophys. Res., 108, 667–678, https://doi.org/10.1029/2001JD000927, 2003.
Huggett, R. J.: Fundamentals of Geomorphology, Routledge, 2 edn., New York, 2007.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324, 2013.
Kane, D. L., Hinzman, L. D., and Zarling, J.: Thermal Response of the Active Layer to Climatic Warming in a Permafrost Environment, Cold Reg. Sci. Technol., 19, 2, https://doi.org/10.1016/0165-232X(91)90002-X, 1991.
Kelley, A. M., Epstein, H. E., and Walker, D. A.: Role of vegetation and climate in permafrost active layer depth in arctic tundra of northern Alaska and Canada, J. Glaciol. Climatol., 26, 269–273, 2004.
Khomutov, A. and Leibman, M.: Landslides in Cold Regions in the Context of Climate Change, chap. Assessment of Landslide Hazards in a Typical Tundra of Central Yamal, Russia, Springer International Publishing, 271–290, https://doi.org/10.1007/978-3-319-00867-7_20, 2014.
Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M., and Zink, M.: TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry, IEEE T. Geosci. Remote, 45, 11, https://doi.org/10.1109/TGRS.2007.900693, 2007.
Kudryavtsev, V. A., Garagulia, L., Kondratyeva, K. A., and Melamed, V. G.: Fundamentals of Frost Forecasting in Geological Engineering Investigations, Nauka, Moscow. Draft Translation 606, Cold Regions Research And Engineering Lab Hanover N H, 1974.
Lawrence, D. M. and Swenson, S. C.: Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming, Environ. Res. Lett., 6, 4, https://doi.org/10.1088/1748-9326/6/4/045504, 2011.
Leibmann, M.: CALM SITE R5, https://www2.gwu.edu/~calm/data/webforms/r5_f.html (last access: 8 February 2017), 2016.
Leibman, M., Moskalenko, N., Orekhov, P., Khomutov, A., Gameev, I., Khitun, O., Walker, D., and Epstein, H.: Polar cryosphere of water and land, chap. Interrelation of cryogenic and biotic components of geosystems in cryolithozone of West Siberia on the Transect “Yamal”, Paulsen Publisher, Moscow, Russia, 171–192, 2011.
Leibman, M., Khomutov, A., Orekhov, P., Khitun, O., Epstein, H., Frost, G., and Walker, D.: Gradient of seasonal thaw depth along the Yamal transect, in: Proceedings of the tenth international conference on permafrost; translation of Russian contributions, edited by: Melnikov, V., Drozdov, D., and Romanovksy, V., 25–29 June 2012, Salekhard, Yamal-Nenets Autonomous District, Russia, 10, 237–242, 2012.
Leibman, M., Khomutov, A., Gubarkov, A., Mullanurov, D., and Dvornikov, Y.: The research station “Vaskiny Dachi”, Central Yamal, West Siberia, Russia – A review of 25 years of permafrost studies, Fennia, 193, 3–30, https://doi.org/10.11143/45201, 2015.
Leibman, M. O.: Thaw depth measurements in marine sailne sandy and clayey deposits of Yamal peninsula, Russia: procedure and interpretation of results, in: PERMAFROST – Seventh International Conference (Proceedings), Yellowknife, Canada, 23–27 June 1998, Collection Nordicana, 55, 635–639, 1998.
Leverington, D. W. and Duguay, C. R.: Evaluation of Three Supervised Classifiers in Mapping “Depth to Late-Summer Frozen Ground”, Central Yukon Territory, Can. J. Remote Sens., 22, 2, https://doi.org/10.1080/07038992.1996.10874650, 1996.
McMichael, C. E., Hope, A. S., Stow, D. A., and Fleming, J. B.: The relation between active layer depth and a spectral vegetation index in arctic tundra landscapes of the North Slope of Alaska, Int. J. Remote Sens., 18, 11, https://doi.org/10.1080/014311697217666, 1997.
Melnikov, E. S., Leibman, M. O., Moskalenko, N. G., and Vasiliev, A. A.: Active-Layer Monitoring in the Cryolithozone Of West Siberia, Polar Geography, 28, 267–285, https://doi.org/10.1080/789610206, 2004.
Myers-Smith, I. H. and Hik, D. S.: Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow-shrub interactions, Ecol. Evol., 3, 3683–3700, https://doi.org/10.1002/ece3.710, 2013.
Nelson, F. E., Shiklomanov, N. I., Mueller, G. R., Hinkel, K. M., Walker, D. A., and Bockheim, J. G.: Estimating Active-Layer Thickness over a Large Region: Kuparuk River Basin, Alaska, USA, Arctic Alpine Res., 29, 4, https://doi.org/10.2307/1551985, 1997.
Pearson, R. G., Phillips, S. J., Loranty, M. M., Beck, P. S. A., Damoulas, T., Knight, S. J., and Goetz, S. J.: Shifts in Arctic vegetation and associated feedbacks under climate change, Nat. Clim. Change, 3, https://doi.org/10.1038/nclimate1858, 2013.
Peddle, D. R. and Franklin, S. E.: Classification of permafrost active layer depth from remotely sensed and topographic evidence, Remote Sens. Environ., 44, 1, https://doi.org/10.1016/0034-4257(93)90103-5, 1993.
Permafrost Subcommittee, A. C. o. G. R.: Glossary of Permafrost and Related Ground-Ice Terms, Technical Memorandum, National Research Council of Canada, Ottawa, 1988.
Raynolds, M. K. and Walker, D. A.: Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011, Environ. Res. Lett., 11, https://doi.org/10.1088/1748-9326/11/8/085004, 2016.
Regmi, P., Grosse, G., Jones, M., Jones, B., and Anthony, K.: Characterizing post-drainage succession in thermokarst lake basins on the Seward Peninsula, Alaska with TerraSAR-X backscatter and Landsat-based NDVI Data, Remote Sensing, 4, 3741–3765, https://doi.org/10.3390/rs4123741, 2012.
Sazonova, T. S. and Romanovsky, V. E.: A model for regional-scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures, Permafrost Periglac., 14, 125–139, https://doi.org/10.1002/ppp.449, 2003.
Schaefer, K., Zhang, T., Bruhwiler, L., and Barrett, A. P.: Amount and timing of permafrost carbon release in response to climate warming, Tellus B, 63, 165–180, https://doi.org/10.1111/j.1600-0889.2011.00527.x, 2011.
Schaefer, K., Liu, L., Parsekian, A., Jafarov, E., Chen, A., Zhang, T., Gusmeroli, A., Panda, S., Zebker, H. A., and Schaefer, T.: Remotely Sensed Active Layer Thickness (ReSALT) at Barrow, Alaska Using Interferometric Synthetic Aperture Radar, Remote Sensing, 7, 3735–3759, https://doi.org/10.3390/rs70403735, 2015.
Schuur, E. A. G., McGuire, A. D., Schadel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Shiklomanov, N. I. and Nelson, F. E.: Analytic representation of the active layer thickness field, Kuparuk River Basin, Alaska, Ecol. Model., 123, 2–3, https://doi.org/10.1016/S0304-3800(99)00127-1, 1999.
Shiklomanov, N. I., Streletskiy, D. A., Nelson, F. E., Hollister, R. D., Romanovsky, V. E., Tweedie, C. E., Bockheim, J. G., and Brown, J.: Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska, J. Geophys. Res., 115, G00I04, https://doi.org/10.1029/2009JG001248, 2010.
Smith, M.: Potential Responses of Permafrost to Climatic Change, J. Cold Reg. Eng., 4, 29–37, 1990.
Ulaby, F. T., Moore, R. K., and Fung, A.: Microwave Remote Sensing – Active and Passive, vol. II, Artech House, Norwood, Mass., USA, 1982.
Ullmann, T., Schmitt, A., Roth, A., Duffe, J., Dech, S., Hubberten, H.-W., and Baumhauer, R.: Land Cover Characterization and Classification of Arctic Tundra Environments by Means of Polarized Synthetic Aperture X- and C-Band Radar (PolSAR) and Landsat 8 Multispectral Imagery – Richards Island, Canada, Remote Sensing, 6, 8565–8593, https://doi.org/10.3390/rs6098565, 2014.
Vasiliev, A. A., Leibman, M. O., and Moskalenko, N. G.: Active Layer Monitoring in West Siberia under the CALM II Program, in: Proceedings of the Ninth International Conference on Permafrost, edited by: Kane, D. L. and Hinkel, K. M., 2, 1815–1820, Institute of Northern Engineering, University of Alaska Fairbanks, USA, 28 June–3 July 2008, Fairbanks, Alaska, USA, 2008.
Walker, D., Epstein, H., Leibman, M., Moskalenko, N., Orekhov, P., Kuss, J., Matyshak, G., Kaarlejärvi, E., Forbes, B., Barbour, E., and Gobroski, K.: Data Report of the 2007 and 2008 Yamal Expeditions, Alaska Geobotany Center, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA, 121 pp., 2009.
Wang, C., Zhang, H., Wu, Q., Zhang, Z., and Xie, L.: Monitoring permafrost soil moisture with multi-temporal TERRASAR-X data in northern tibet, Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International, 10–15 July 2016, Beijing, China, https://doi.org/10.1109/IGARSS.2016.7730558, 2016.
Werninghaus, R., Balzer, W., Buckreuss, S., Mittermayer, J., and Mühlbauer, P.: The TerraSAR-X Mission, in: SPIE 5236, SAR Image Analysis, Modeling, and Techniques VI, https://doi.org/10.1117/12.511500, 2004.
Wessel, B.: TanDEM-X Ground Segment – DEM Products Specification Document, Projektbericht, EOC, DLR, Oberpfaffenhofen, Germany, Public Document TD-GS-PS-0021, Issue 3.0., 2013.
Widhalm, B., Bartsch, A., Siewert, M. B., Hugelius, G., Elberling, B., Leibman, M., Dvornikov, Y., and Khomutov, A.: Site scale wetness classification of tundra regions with C-band SAR satellite data, in: Proc. “Living Planet Symposium 2016”, Prague, Czech Republic, ESA SP-740, 9–13 May 2016.
Yershov, E. D.: General Geocryology, Cambridge University Press, Cambridge, UK, 1998.
Zhang, Z., Wang, C., Tang, Y., and Zhang, H.: Surface deformation monitoring using time series TerraSAR-X images over permafrost of Qinghai-Tibet Plateau, China, Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International, 10–15 July 2016, Beijing, China, https://doi.org/10.1109/IGARSS.2016.7730558, 2016.
Zwieback, S., Liu, X., Antonova, S., Heim, B., Bartsch, A., Boike, J., and Hajnsek, I.: A Statistical Test of Phase Closure to Detect Influences on DInSAR Deformation Estimates Besides Displacements and Decorrelation Noise: Two Case Studies in High-Latitude Regions, IEEE T. Geosci. Remote, 54, 5588–5601, https://doi.org/10.1109/TGRS.2016.2569435, 2016
Short summary
The active layer above the permafrost, which seasonally thaws during summer, is an important parameter for monitoring the state of permafrost. Its thickness is typically measured locally. The relationship between active-layer thickness (ALT) and X-band SAR backscatter of TerraSAR-X has been investigated in order to explore the possibility of delineating ALT with continuous and larger spatial coverage.
The active layer above the permafrost, which seasonally thaws during summer, is an important...