Articles | Volume 11, issue 6
https://doi.org/10.5194/tc-11-2799-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-11-2799-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A continuum model for meltwater flow through compacting snow
John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA 02138, USA
Ian J. Hewitt
Mathematical Institute, Woodstock Road, Oxford, OX2 6GG, UK
Related authors
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020, https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary
Short summary
In the vast interior of the Greenland ice sheet, snow accumulates into a thick and porous layer called firn. Each summer, the firn retains part of the meltwater generated at the surface and buffers sea-level rise. In this study, we compare nine firn models traditionally used to quantify this retention at four sites and evaluate their performance against a set of in situ observations. We highlight limitations of certain model designs and give perspectives for future model development.
Colin R. Meyer, Kaitlin M. Keegan, Ian Baker, and Robert L. Hawley
The Cryosphere, 14, 1449–1458, https://doi.org/10.5194/tc-14-1449-2020, https://doi.org/10.5194/tc-14-1449-2020, 2020
Short summary
Short summary
We describe snow compaction laboratory data with a new mathematical model. Using a compression device that is similar to a French press with snow instead of coffee grounds, Wang and Baker (2013) compacted numerous snow samples of different densities at a constant velocity to determine the force required for snow compaction. Our mathematical model for compaction includes airflow through snow and predicts the required force, in agreement with the experimental data.
Gabriel Cairns, Graham Benham, and Ian Hewitt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2880, https://doi.org/10.5194/egusphere-2024-2880, 2024
Short summary
Short summary
Thick layers of porous rock known as sedimentary basins lie underneath many glaciers in Antarctica that flow into the sea. These layers contain large amounts of groundwater, some of which is seawater. We use a mathematical model to predict how groundwater flows through these basins, finding that seawater can become trapped due to changes in the ice sheet over time. We also predict where water flows out of (or into) these basins, and we discuss possible implications for the glacier.
Tilly Woods and Ian J. Hewitt
The Cryosphere, 17, 1967–1987, https://doi.org/10.5194/tc-17-1967-2023, https://doi.org/10.5194/tc-17-1967-2023, 2023
Short summary
Short summary
Solar radiation causes melting at and just below the surface of the Greenland ice sheet, forming a porous surface layer known as the weathering crust. The weathering crust is home to many microbes, and the growth of these microbes is linked to the melting of the weathering crust and vice versa. We use a mathematical model to investigate what controls the size and structure of the weathering crust, the number of microbes within it, and its sensitivity to climate change.
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020, https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary
Short summary
In the vast interior of the Greenland ice sheet, snow accumulates into a thick and porous layer called firn. Each summer, the firn retains part of the meltwater generated at the surface and buffers sea-level rise. In this study, we compare nine firn models traditionally used to quantify this retention at four sites and evaluate their performance against a set of in situ observations. We highlight limitations of certain model designs and give perspectives for future model development.
Barry Hankin, Ian Hewitt, Graham Sander, Federico Danieli, Giuseppe Formetta, Alissa Kamilova, Ann Kretzschmar, Kris Kiradjiev, Clint Wong, Sam Pegler, and Rob Lamb
Nat. Hazards Earth Syst. Sci., 20, 2567–2584, https://doi.org/10.5194/nhess-20-2567-2020, https://doi.org/10.5194/nhess-20-2567-2020, 2020
Short summary
Short summary
With growing support for nature-based solutions to reduce flooding by local communities, government authorities and international organisations, it is still important to improve how we assess risk reduction. We demonstrate an efficient, simplified 1D network model that allows us to explore the
whole-systemresponse of numerous leaky barriers placed in different stream networks, whilst considering utilisation, synchronisation effects and cascade failure, and we provide advice on their siting.
Colin R. Meyer, Kaitlin M. Keegan, Ian Baker, and Robert L. Hawley
The Cryosphere, 14, 1449–1458, https://doi.org/10.5194/tc-14-1449-2020, https://doi.org/10.5194/tc-14-1449-2020, 2020
Short summary
Short summary
We describe snow compaction laboratory data with a new mathematical model. Using a compression device that is similar to a French press with snow instead of coffee grounds, Wang and Baker (2013) compacted numerous snow samples of different densities at a constant velocity to determine the force required for snow compaction. Our mathematical model for compaction includes airflow through snow and predicts the required force, in agreement with the experimental data.
Ian J. Hewitt and Christian Schoof
The Cryosphere, 11, 541–551, https://doi.org/10.5194/tc-11-541-2017, https://doi.org/10.5194/tc-11-541-2017, 2017
Short summary
Short summary
Many glaciers contain ice both below and at the melting temperature. Predicting the evolution of temperature and water content in such ice masses is important because they exert a strong control on the flow of the ice. We present two new models to calculate these quantities, demonstrate a number of example numerical calculations, and compare the results with existing methods. The novelty of the new methods is the inclusion of gravity-driven water transport within the ice.
Related subject area
Snow Hydrology
Impact of intercepted and sub-canopy snow microstructure on snowpack response to rain-on-snow events under a boreal canopy
Using Sentinel-1 wet snow maps to inform fully-distributed physically-based snowpack models
Towards large-scale daily snow density mapping with spatiotemporally aware model and multi-source data
Drone-based ground-penetrating radar (GPR) application to snow hydrology
Natural climate variability is an important aspect of future projections of snow water resources and rain-on-snow events
Two-dimensional liquid water flow through snow at the plot scale in continental snowpacks: simulations and field data comparisons
Fractional snow-covered area: scale-independent peak of winter parameterization
Seasonal components of freshwater runoff in Glacier Bay, Alaska: diverse spatial patterns and temporal change
Hydrologic flow path development varies by aspect during spring snowmelt in complex subalpine terrain
Snowmelt response to simulated warming across a large elevation gradient, southern Sierra Nevada, California
Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment
Bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada
Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments
A model for the spatial distribution of snow water equivalent parameterized from the spatial variability of precipitation
Multilevel spatiotemporal validation of snow/ice mass balance and runoff modeling in glacierized catchments
Bulk meltwater flow and liquid water content of snowpacks mapped using the electrical self-potential (SP) method
Topographic and vegetation effects on snow accumulation in the southern Sierra Nevada: a statistical summary from lidar data
Inconsistency in precipitation measurements across the Alaska–Yukon border
Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau
Independent evaluation of the SNODAS snow depth product using regional-scale lidar-derived measurements
Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence
Modeling bulk density and snow water equivalent using daily snow depth observations
Evaluation of the snow regime in dynamic vegetation land surface models using field measurements
Homogenisation of a gridded snow water equivalent climatology for Alpine terrain: methodology and applications
What drives basin scale spatial variability of snowpack properties in northern Colorado?
Micrometeorological processes driving snow ablation in an Alpine catchment
Understanding snow-transport processes shaping the mountain snow-cover
Freshwater flux to Sermilik Fjord, SE Greenland
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
The Cryosphere, 18, 2783–2807, https://doi.org/10.5194/tc-18-2783-2024, https://doi.org/10.5194/tc-18-2783-2024, 2024
Short summary
Short summary
Observations over several winters at two boreal sites in eastern Canada show that rain-on-snow (ROS) events lead to the formation of melt–freeze layers and that preferential flow is an important water transport mechanism in the sub-canopy snowpack. Simulations with SNOWPACK generally show good agreement with observations, except for the reproduction of melt–freeze layers. This was improved by simulating intercepted snow microstructure evolution, which also modulates ROS-induced runoff.
Bertrand Cluzet, Jan Magnusson, Louis Quéno, Giulia Mazzotti, Rebecca Mott, and Tobias Jonas
EGUsphere, https://doi.org/10.5194/egusphere-2024-209, https://doi.org/10.5194/egusphere-2024-209, 2024
Short summary
Short summary
We use novel wet snow maps from Sentinel-1 to evaluate simulations of a snow-hydrological model over Switzerland. These data are complementary to available in-situ snow depth observations as they capture a broad diversity of topographic conditions. Wet snow maps allow us to detect a delayed melt onset in the model, which we resolve thanks to an improved parametrization. This opens the way to further evaluation, calibration and data assimilation using wet snow maps.
Huadong Wang, Xueliang Zhang, Pengfeng Xiao, Tao Che, Zhaojun Zheng, Liyun Dai, and Wenbo Luan
The Cryosphere, 17, 33–50, https://doi.org/10.5194/tc-17-33-2023, https://doi.org/10.5194/tc-17-33-2023, 2023
Short summary
Short summary
The geographically and temporally weighted neural network (GTWNN) model is constructed for estimating large-scale daily snow density by integrating satellite, ground, and reanalysis data, which addresses the importance of spatiotemporal heterogeneity and a nonlinear relationship between snow density and impact variables, as well as allows us to understand the spatiotemporal pattern and heterogeneity of snow density in different snow periods and snow cover regions in China from 2013 to 2020.
Eole Valence, Michel Baraer, Eric Rosa, Florent Barbecot, and Chloe Monty
The Cryosphere, 16, 3843–3860, https://doi.org/10.5194/tc-16-3843-2022, https://doi.org/10.5194/tc-16-3843-2022, 2022
Short summary
Short summary
The internal properties of the snow cover shape the annual hygrogram of northern and alpine regions. This study develops a multi-method approach to measure the evolution of snowpack internal properties. The snowpack hydrological property evolution was evaluated with drone-based ground-penetrating radar (GPR) measurements. In addition, the combination of GPR observations and time domain reflectometry measurements is shown to be able to be adapted to monitor the snowpack moisture over winter.
Michael Schirmer, Adam Winstral, Tobias Jonas, Paolo Burlando, and Nadav Peleg
The Cryosphere, 16, 3469–3488, https://doi.org/10.5194/tc-16-3469-2022, https://doi.org/10.5194/tc-16-3469-2022, 2022
Short summary
Short summary
Rain is highly variable in time at a given location so that there can be both wet and dry climate periods. In this study, we quantify the effects of this natural climate variability and other sources of uncertainty on changes in flooding events due to rain on snow (ROS) caused by climate change. For ROS events with a significant contribution of snowmelt to runoff, the change due to climate was too small to draw firm conclusions about whether there are more ROS events of this important type.
Ryan W. Webb, Keith Jennings, Stefan Finsterle, and Steven R. Fassnacht
The Cryosphere, 15, 1423–1434, https://doi.org/10.5194/tc-15-1423-2021, https://doi.org/10.5194/tc-15-1423-2021, 2021
Short summary
Short summary
We simulate the flow of liquid water through snow and compare results to field experiments. This process is important because it controls how much and how quickly water will reach our streams and rivers in snowy regions. We found that water can flow large distances downslope through the snow even after the snow has stopped melting. Improved modeling of snowmelt processes will allow us to more accurately estimate available water resources, especially under changing climate conditions.
Nora Helbig, Yves Bühler, Lucie Eberhard, César Deschamps-Berger, Simon Gascoin, Marie Dumont, Jesus Revuelto, Jeff S. Deems, and Tobias Jonas
The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-615-2021, https://doi.org/10.5194/tc-15-615-2021, 2021
Short summary
Short summary
The spatial variability in snow depth in mountains is driven by interactions between topography, wind, precipitation and radiation. In applications such as weather, climate and hydrological predictions, this is accounted for by the fractional snow-covered area describing the fraction of the ground surface covered by snow. We developed a new description for model grid cell sizes larger than 200 m. An evaluation suggests that the description performs similarly well in most geographical regions.
Ryan L. Crumley, David F. Hill, Jordan P. Beamer, and Elizabeth R. Holzenthal
The Cryosphere, 13, 1597–1619, https://doi.org/10.5194/tc-13-1597-2019, https://doi.org/10.5194/tc-13-1597-2019, 2019
Short summary
Short summary
In this study we investigate the historical (1980–2015) and projection scenario (2070–2099) components of freshwater runoff to Glacier Bay, Alaska, using a modeling approach. We find that many of the historically snow-dominated watersheds in Glacier Bay National Park and Preserve may transition towards rainfall-dominated hydrographs in a projection scenario under RCP 8.5 conditions. The changes in timing and volume of freshwater entering Glacier Bay will affect bay ecology and hydrochemistry.
Ryan W. Webb, Steven R. Fassnacht, and Michael N. Gooseff
The Cryosphere, 12, 287–300, https://doi.org/10.5194/tc-12-287-2018, https://doi.org/10.5194/tc-12-287-2018, 2018
Short summary
Short summary
We observed how snowmelt is transported on a hillslope through multiple measurements of snow and soil moisture across a small headwater catchment. We found that snowmelt flows through the snow with less infiltration on north-facing slopes and infiltrates the ground on south-facing slopes. This causes an increase in snow water equivalent at the base of the north-facing slope by as much as 170 %. We present a conceptualization of flow path development to improve future investigations.
Keith N. Musselman, Noah P. Molotch, and Steven A. Margulis
The Cryosphere, 11, 2847–2866, https://doi.org/10.5194/tc-11-2847-2017, https://doi.org/10.5194/tc-11-2847-2017, 2017
Short summary
Short summary
We present a study of how melt rates in the California Sierra Nevada respond to a range of warming projected for this century. Snowfall and melt were simulated for historical and modified (warmer) snow seasons. Winter melt occurs more frequently and more intensely, causing an increase in extreme winter melt. In a warmer climate, less snow persists into the spring, causing spring melt to be substantially lower. The results offer insight into how snow water resources may respond to climate change.
Emmy E. Stigter, Niko Wanders, Tuomo M. Saloranta, Joseph M. Shea, Marc F. P. Bierkens, and Walter W. Immerzeel
The Cryosphere, 11, 1647–1664, https://doi.org/10.5194/tc-11-1647-2017, https://doi.org/10.5194/tc-11-1647-2017, 2017
Xicai Pan, Daqing Yang, Yanping Li, Alan Barr, Warren Helgason, Masaki Hayashi, Philip Marsh, John Pomeroy, and Richard J. Janowicz
The Cryosphere, 10, 2347–2360, https://doi.org/10.5194/tc-10-2347-2016, https://doi.org/10.5194/tc-10-2347-2016, 2016
Short summary
Short summary
This study demonstrates a robust procedure for accumulating precipitation gauge measurements and provides an analysis of bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada. It highlights the need for and importance of precipitation bias corrections at both research sites and operational networks for water balance assessment and the validation of global/regional climate–hydrology models.
Francesco Avanzi, Hiroyuki Hirashima, Satoru Yamaguchi, Takafumi Katsushima, and Carlo De Michele
The Cryosphere, 10, 2013–2026, https://doi.org/10.5194/tc-10-2013-2016, https://doi.org/10.5194/tc-10-2013-2016, 2016
Short summary
Short summary
We investigate capillary barriers and preferential flow in layered snow during nine cold laboratory experiments. The dynamics of each sample were replicated solving Richards equation within the 1-D multi-layer physically based SNOWPACK model. Results show that both processes affect the speed of water infiltration in stratified snow and are marked by a high degree of spatial variability at cm scale and complex 3-D patterns.
Thomas Skaugen and Ingunn H. Weltzien
The Cryosphere, 10, 1947–1963, https://doi.org/10.5194/tc-10-1947-2016, https://doi.org/10.5194/tc-10-1947-2016, 2016
Short summary
Short summary
In hydrological models it is important to properly simulate the spatial distribution of snow water equivalent (SWE) for the timing of spring melt floods and the accounting of energy fluxes. This paper describes a method for the spatial distribution of SWE which is parameterised from observed spatial variability of precipitation and has hence no calibration parameters. Results show improved simulation of SWE and the evolution of snow-free areas when compared with the standard method.
Florian Hanzer, Kay Helfricht, Thomas Marke, and Ulrich Strasser
The Cryosphere, 10, 1859–1881, https://doi.org/10.5194/tc-10-1859-2016, https://doi.org/10.5194/tc-10-1859-2016, 2016
Short summary
Short summary
The hydroclimatological model AMUNDSEN is set up to simulate snow and ice accumulation, ablation, and runoff for a study region in the Ötztal Alps (Austria) in the period 1997–2013. A new validation concept is introduced and demonstrated by evaluating the model performance using several independent data sets, e.g. snow depth measurements, satellite-derived snow maps, lidar data, glacier mass balances, and runoff measurements.
Sarah S. Thompson, Bernd Kulessa, Richard L. H. Essery, and Martin P. Lüthi
The Cryosphere, 10, 433–444, https://doi.org/10.5194/tc-10-433-2016, https://doi.org/10.5194/tc-10-433-2016, 2016
Short summary
Short summary
We show that strong electrical self-potential fields are generated in melting in in situ snowpacks at Rhone Glacier and Jungfraujoch Glacier, Switzerland. We conclude that the electrical self-potential method is a promising snow and firn hydrology sensor, owing to its suitability for sensing lateral and vertical liquid water flows directly and minimally invasively, complementing established observational programs and monitoring autonomously at a low cost.
Z. Zheng, P. B. Kirchner, and R. C. Bales
The Cryosphere, 10, 257–269, https://doi.org/10.5194/tc-10-257-2016, https://doi.org/10.5194/tc-10-257-2016, 2016
Short summary
Short summary
By analyzing high-resolution lidar products and using statistical methods, we quantified the snow depth dependency on elevation, slope and aspect of the terrain and also the surrounding vegetation in four catchment size sites in the southern Sierra Nevada during snow peak season. The relative importance of topographic and vegetation attributes varies with elevation and canopy, but all these attributes were found significant in affecting snow distribution in mountain basins.
L. Scaff, D. Yang, Y. Li, and E. Mekis
The Cryosphere, 9, 2417–2428, https://doi.org/10.5194/tc-9-2417-2015, https://doi.org/10.5194/tc-9-2417-2015, 2015
Short summary
Short summary
The bias corrections show significant errors in the gauge precipitation measurements over the northern regions. Monthly precipitation is closely correlated between the stations across the Alaska--Yukon border, particularly for the warm months. Double mass curves indicate changes in the cumulative precipitation due to bias corrections over the study period. Overall the bias corrections lead to a smaller and inverted precipitation gradient across the border, especially for snowfall.
R. Chen, J. Liu, E. Kang, Y. Yang, C. Han, Z. Liu, Y. Song, W. Qing, and P. Zhu
The Cryosphere, 9, 1995–2008, https://doi.org/10.5194/tc-9-1995-2015, https://doi.org/10.5194/tc-9-1995-2015, 2015
Short summary
Short summary
The catch ratio of Chinese standard precipitation gauge vs. wind speed relationship for different precipitation types was well quantified by cubic polynomials and exponential functions using 5-year field data in the high-mountain environment of the Tibetan Plateau. The daily precipitation measured by shielded gauges increases linearly with that of unshielded gauges. The pit gauge catches the most local precipitation in rainy season and could be used as a reference in most regions of China.
A. Hedrick, H.-P. Marshall, A. Winstral, K. Elder, S. Yueh, and D. Cline
The Cryosphere, 9, 13–23, https://doi.org/10.5194/tc-9-13-2015, https://doi.org/10.5194/tc-9-13-2015, 2015
J. Revuelto, J. I. López-Moreno, C. Azorin-Molina, and S. M. Vicente-Serrano
The Cryosphere, 8, 1989–2006, https://doi.org/10.5194/tc-8-1989-2014, https://doi.org/10.5194/tc-8-1989-2014, 2014
J. L. McCreight and E. E. Small
The Cryosphere, 8, 521–536, https://doi.org/10.5194/tc-8-521-2014, https://doi.org/10.5194/tc-8-521-2014, 2014
E. Kantzas, S. Quegan, M. Lomas, and E. Zakharova
The Cryosphere, 8, 487–502, https://doi.org/10.5194/tc-8-487-2014, https://doi.org/10.5194/tc-8-487-2014, 2014
S. Jörg-Hess, F. Fundel, T. Jonas, and M. Zappa
The Cryosphere, 8, 471–485, https://doi.org/10.5194/tc-8-471-2014, https://doi.org/10.5194/tc-8-471-2014, 2014
G. A. Sexstone and S. R. Fassnacht
The Cryosphere, 8, 329–344, https://doi.org/10.5194/tc-8-329-2014, https://doi.org/10.5194/tc-8-329-2014, 2014
R. Mott, L. Egli, T. Grünewald, N. Dawes, C. Manes, M. Bavay, and M. Lehning
The Cryosphere, 5, 1083–1098, https://doi.org/10.5194/tc-5-1083-2011, https://doi.org/10.5194/tc-5-1083-2011, 2011
R. Mott, M. Schirmer, M. Bavay, T. Grünewald, and M. Lehning
The Cryosphere, 4, 545–559, https://doi.org/10.5194/tc-4-545-2010, https://doi.org/10.5194/tc-4-545-2010, 2010
S. H. Mernild, I. M. Howat, Y. Ahn, G. E. Liston, K. Steffen, B. H. Jakobsen, B. Hasholt, B. Fog, and D. van As
The Cryosphere, 4, 453–465, https://doi.org/10.5194/tc-4-453-2010, https://doi.org/10.5194/tc-4-453-2010, 2010
Cited articles
Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.: In situ measurements of Antarctic snow compaction compared with predictions of models, J. Geophys. Res., 115, F03011, https://doi.org/10.1029/2009JF001306, 2010.
Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H.: An enthalpy formulation for glaciers and ice sheets, J. Glaciol., 58, 441–457, https://doi.org/10.3189/2012JoG11J088, 2012.
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002.
Bear, J.: Dynamics of flow in porous media, Dover, New York, 1972.
Colbeck, S. C.: A theory of water percolation in snow, J. Glaciol., 11, 369–385, 1972.
Colbeck, S. C.: The capillary effects on water percolation in homogeneous snow, J. Glaciol., 13, 85–97, 1974.
Colbeck, S. C.: An analysis of water flow in dry snow, Water Resour. Res., 12, 523–527, https://doi.org/10.1029/WR012i003p00523, 1976.
Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers, 4th Edn., Elsevier, Boston, MA, 2010.
Durey, M.: Modelling Snow and Ice Melt, Msc thesis, University of Oxford, Oxford, UK, 2014.
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., Angelen, J. H., and Broeke, M. R.: An improved mass budget for the Greenland ice sheet, Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014.
Forster, R. R., van den Broeke, M. R., Miège, C., Burgess, E. W., van Angelen, J. H., Lenaerts, J. T. M., Koenig, L. S., Paden, J., Lewis, C., Gogineni, S. P., et al.: Extensive liquid meltwater storage in firn within the Greenland ice sheet, Nat. Geosci., 7, 95–98, https://doi.org/10.1038/ngeo2043, 2014.
Gray, J. M. N. T.: Water movement in wet snow, Philos. T. R. Soc. A, 354, 465–500, https://doi.org/10.1098/rsta.1996.0017, 1996.
Gray, J. M. N. T. and Morland, L. W.: A dry snow pack model, Cold Reg. Sci. Technol., 22, 135–148, https://doi.org/10.1016/0165-232X(94)90025-6, 1994.
Gray, J. M. N. T. and Morland, L. W.: The compaction of polar snow packs, Cold Reg. Sci. Technol., 23, 109–119, https://doi.org/10.1016/0165-232X(94)00010-U, 1995.
Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J., and Fettweis, X.: Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn, Nature, 491, 240–243, https://doi.org/10.1038/nature11566, 2012.
Herron, M. M. and Langway, C. C.: Firn densification: an empirical model, J. Glaciol., 25, 373–385, https://doi.org/10.1017/S0022143000015239, 1980.
Hewitt, I. J. and Schoof, C.: Models for polythermal ice sheets and glaciers, The Cryosphere, 11, 541–551, https://doi.org/10.5194/tc-11-541-2017, 2017.
Humphrey, N. F., Harper, J. T., and Pfeffer, W. T.: Thermal tracking of meltwater retention in Greenland's accumulation area, J. Geophys. Res., 117, https://doi.org/10.1029/2011JF002083, 2012.
Hutter, K.: A mathematical model of polythermal glaciers and ice sheets, Geophys. Astro. Fluid, 21, 201–224, https://doi.org/10.1080/03091928208209013, 1982.
Koenig, L. S., Miège, C., Forster, R. R., and Brucker, L.: Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer, Geophys. Res. Lett., 41, 81–85, 2014.
Kuipers Munneke, P., Ligtenberg, S. R. M., Broeke, M. R., Angelen, J. H., and Forster, R. R.: Explaining the presence of perennial liquid water bodies in the firn of the Greenland Ice Sheet, Geophys. Res. Lett., 41, 476–483, https://doi.org/10.1002/2013GL058389, 2014.
Kuipers Munneke, P., Ligtenberg, S. R. M., Suder, E. A., and van den Broeke, M. R.: A model study of the response of dry and wet firn to climate change, Ann. Glaciol., 56, 1–8, https://doi.org/10.3189/2015AoG70A994, 2015.
Ligtenberg, S. R. M., Helsen, M. M., and van den Broeke, M. R.: An improved semi-empirical model for the densification of Antarctic firn, The Cryosphere, 5, 809–819, https://doi.org/10.5194/tc-5-809-2011, 2011.
Machguth, H., MacFerrin, M., van As, D., Charalampidis, C., Colgan, W., Fausto, R. S., Meijer, H. A. J., Mosley-Thompson, E., and van de Wal, R. S. W.: Greenland meltwater storage in firn limited by near-surface ice formation, Nature Climate Change, 6, 390–393, https://doi.org/10.1038/nclimate2899, 2016.
Morris, E. M. and Wingham, D. J.: Densification of polar snow: Measurements, modeling, and implications for altimetry, J. Geophys. Res., 119, 349–365, https://doi.org/10.1002/2013JF002898, 2014.
Reeh, N.: A nonsteady-state firn-densification model for the percolation zone of a glacier, J. Geophys. Res., 113, F03023, https://doi.org/10.1029/2007JF000746, 2008.
Schoof, C.: Ice sheet acceleration driven by melt supply variability, Nature, 468, 803–806, https://doi.org/10.1038/nature09618, 2010.
Steger, C. R., Reijmer, C. H., and van den Broeke, M. R.: The modelled liquid water balance of the Greenland Ice Sheet, The Cryosphere, 11, 2507–2526, https://doi.org/10.5194/tc-11-2507-2017, 2017a.
Steger, C. R., Reijmer, C. H., van den Broeke, M. R., Wever, N., Forster, R. R., Koenig, L. S., Kuipers Munneke, P., Lehning, M., Lhermitte, S., Ligtenberg, S. R. M., Miége, C., and No el, B. P. Y.: Firn Meltwater Retention on the Greenland Ice Sheet: A Model Comparison, Front. Earth Sci., 5, 1–16, https://doi.org/10.3389/feart.2017.00003, 2017b.
Tedstone, A. J., Nienow, P. W., Gourmelen, N., Dehecq, A., Goldberg, D., and Hanna, E.: Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet despite warming, Nature, 526, 692–695, https://doi.org/10.1038/nature15722, 2015.
van den Broeke, M. R., Smeets, C. J. P. P., and van de Wal, R. S. W.: The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet, The Cryosphere, 5, 377–390, https://doi.org/10.5194/tc-5-377-2011, 2011.
Wever, N., Fierz, C., Mitterer, C., Hirashima, H., and Lehning, M.: Solving Richards Equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model, The Cryosphere, 8, 257–274, https://doi.org/10.5194/tc-8-257-2014, 2014.
Zwally, H. J. and Li, J.: Seasonal and interannual variations of firn densification and ice-sheet surface elevation at the Greenland summit, J. Glaciol., 48, 199–207, https://doi.org/10.3189/172756502781831403, 2002.
Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen, K.: Surface melt-induced acceleration of Greenland ice-sheet flow, Science, 297, 218–222, https://doi.org/10.1126/science.1072708, 2002.
Short summary
We describe a new model for the evolution of snow temperature, density, and water content on the surface of glaciers and ice sheets. The model encompasses the surface hydrology of accumulation and ablation areas, allowing us to explore the transition from one to the other as thermal forcing varies. We predict year-round liquid water storage for intermediate values of the surface forcing. We also compare our model to data for the vertical percolation of meltwater in Greenland.
We describe a new model for the evolution of snow temperature, density, and water content on the...