Articles | Volume 11, issue 4
https://doi.org/10.5194/tc-11-1933-2017
https://doi.org/10.5194/tc-11-1933-2017
Research article
 | 
23 Aug 2017
Research article |  | 23 Aug 2017

Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing

Liyun Dai, Tao Che, Yongjian Ding, and Xiaohua Hao

Related authors

Towards large-scale daily snow density mapping with spatiotemporally aware model and multi-source data
Huadong Wang, Xueliang Zhang, Pengfeng Xiao, Tao Che, Zhaojun Zheng, Liyun Dai, and Wenbo Luan
The Cryosphere, 17, 33–50, https://doi.org/10.5194/tc-17-33-2023,https://doi.org/10.5194/tc-17-33-2023, 2023
Short summary
A new snow depth data set over northern China derived using GNSS interferometric reflectometry from a continuously operating network (GSnow-CHINA v1.0, 2013–2022)
Wei Wan, Jie Zhang, Liyun Dai, Hong Liang, Ting Yang, Baojian Liu, Zhizhou Guo, Heng Hu, and Limin Zhao
Earth Syst. Sci. Data, 14, 3549–3571, https://doi.org/10.5194/essd-14-3549-2022,https://doi.org/10.5194/essd-14-3549-2022, 2022
Short summary
Microwave radiometry experiment for snow in Altay, China: time series of in situ data for electromagnetic and physical features of snowpack
Liyun Dai, Tao Che, Yang Zhang, Zhiguo Ren, Junlei Tan, Meerzhan Akynbekkyzy, Lin Xiao, Shengnan Zhou, Yuna Yan, Yan Liu, Hongyi Li, and Lifu Wang
Earth Syst. Sci. Data, 14, 3509–3530, https://doi.org/10.5194/essd-14-3509-2022,https://doi.org/10.5194/essd-14-3509-2022, 2022
Short summary
A long-term daily gridded snow depth dataset for the Northern Hemisphere from 1980 to 2019 based on machine learning
Yanxing Hu, Tao Che, Liyun Dai, Yu Zhu, Lin Xiao, Jie Deng, and Xin Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-63,https://doi.org/10.5194/essd-2022-63, 2022
Preprint withdrawn
Short summary
Suitability analysis of ski areas in China: an integrated study based on natural and socioeconomic conditions
Jie Deng, Tao Che, Cunde Xiao, Shijin Wang, Liyun Dai, and Akynbekkyzy Meerzhan
The Cryosphere, 13, 2149–2167, https://doi.org/10.5194/tc-13-2149-2019,https://doi.org/10.5194/tc-13-2149-2019, 2019
Short summary

Related subject area

Remote Sensing
New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023,https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary
GLAcier Feature Tracking testkit (GLAFT): a statistically and physically based framework for evaluating glacier velocity products derived from optical satellite image feature tracking
Whyjay Zheng, Shashank Bhushan, Maximillian Van Wyk De Vries, William Kochtitzky, David Shean, Luke Copland, Christine Dow, Renette Jones-Ivey, and Fernando Pérez
The Cryosphere, 17, 4063–4078, https://doi.org/10.5194/tc-17-4063-2023,https://doi.org/10.5194/tc-17-4063-2023, 2023
Short summary
Evaluating the utility of active microwave observations as a snow mission concept using observing system simulation experiments
Eunsang Cho, Carrie M. Vuyovich, Sujay V. Kumar, Melissa L. Wrzesien, and Rhae Sung Kim
The Cryosphere, 17, 3915–3931, https://doi.org/10.5194/tc-17-3915-2023,https://doi.org/10.5194/tc-17-3915-2023, 2023
Short summary
Relevance of warm air intrusions for Arctic satellite sea ice concentration time series
Philip Rostosky and Gunnar Spreen
The Cryosphere, 17, 3867–3881, https://doi.org/10.5194/tc-17-3867-2023,https://doi.org/10.5194/tc-17-3867-2023, 2023
Short summary
Observing the evolution of summer melt on multiyear sea ice with ICESat-2 and Sentinel-2
Ellen M. Buckley, Sinéad L. Farrell, Ute C. Herzfeld, Melinda A. Webster, Thomas Trantow, Oliwia N. Baney, Kyle A. Duncan, Huilin Han, and Matthew Lawson
The Cryosphere, 17, 3695–3719, https://doi.org/10.5194/tc-17-3695-2023,https://doi.org/10.5194/tc-17-3695-2023, 2023
Short summary

Cited articles

Armstrong, R. L. and Brodzik, M. J.: Hemispheric-scale comparison and evaluation of passive-microwave snow algorithms, Ann. Glaciol., 34, 38–44, 2002.
Ashcroft, P. and Wentz, F.: Algorithm Theoretical Basis Document for the AMSR Level-2A Algorithm, Remote Sensing Systems, Santa Rosa, California, USA, 2000.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, 2005.
Brodzik, M. J. and Knowles, K. W.: EASE-Grid: A Versatile Set of Equal-Area Projections and Grids, in: Discrete Global Grids, edited by: Goodchild, M., National Center for Geographic Information & Analysis, Santa Barbara, California, USA, 2002.
Brown, R. D. and Robinson, D. A.: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty, The Cryosphere, 5, 219–229, https://doi.org/10.5194/tc-5-219-2011, 2011.
Download
Short summary
Snow depth over QTP plays a very important role in the climate and hydrological system, but there are uncertainties on the snow depth products derived from passive microwave remote sensing data. In this study, we evaluated the ability of passive microwave to detect snow cover and snow depth over QTP, presented the accuracy of passive microwave snow cover and snow depth products over QTP, and analyzed the possible reasons causing the uncertainties.