Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Volume 11, issue 4
The Cryosphere, 11, 1933–1948, 2017
https://doi.org/10.5194/tc-11-1933-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 11, 1933–1948, 2017
https://doi.org/10.5194/tc-11-1933-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 Aug 2017

Research article | 23 Aug 2017

Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing

Liyun Dai et al.

Related authors

Suitability analysis of ski areas in China: an integrated study based on natural and socioeconomic conditions
Jie Deng, Tao Che, Cunde Xiao, Shijin Wang, Liyun Dai, and Akynbekkyzy Meerzhan
The Cryosphere, 13, 2149–2167, https://doi.org/10.5194/tc-13-2149-2019,https://doi.org/10.5194/tc-13-2149-2019, 2019
Short summary

Related subject area

Remote Sensing
Variability in glacier albedo and links to annual mass balance for the gardens of Eden and Allah, Southern Alps, New Zealand
Angus J. Dowson, Pascal Sirguey, and Nicolas J. Cullen
The Cryosphere, 14, 3425–3448, https://doi.org/10.5194/tc-14-3425-2020,https://doi.org/10.5194/tc-14-3425-2020, 2020
Short summary
Estimating statistical errors in retrievals of ice velocity and deformation parameters from satellite images and buoy arrays
Wolfgang Dierking, Harry L. Stern, and Jennifer K. Hutchings
The Cryosphere, 14, 2999–3016, https://doi.org/10.5194/tc-14-2999-2020,https://doi.org/10.5194/tc-14-2999-2020, 2020
Short summary
Snow depth mapping from stereo satellite imagery in mountainous terrain: evaluation using airborne laser-scanning data
César Deschamps-Berger, Simon Gascoin, Etienne Berthier, Jeffrey Deems, Ethan Gutmann, Amaury Dehecq, David Shean, and Marie Dumont
The Cryosphere, 14, 2925–2940, https://doi.org/10.5194/tc-14-2925-2020,https://doi.org/10.5194/tc-14-2925-2020, 2020
Short summary
Brief Communication: Mesoscale and submesoscale dynamics in the marginal ice zone from sequential synthetic aperture radar observations
Igor E. Kozlov, Evgeny V. Plotnikov, and Georgy E. Manucharyan
The Cryosphere, 14, 2941–2947, https://doi.org/10.5194/tc-14-2941-2020,https://doi.org/10.5194/tc-14-2941-2020, 2020
Short summary
Brief communication: Mapping Greenland's perennial firn aquifers using enhanced-resolution L-band brightness temperature image time series
Julie Z. Miller, David G. Long, Kenneth C. Jezek, Joel T. Johnson, Mary J. Brodzik, Christopher A. Shuman, Lora S. Koenig, and Ted A. Scambos
The Cryosphere, 14, 2809–2817, https://doi.org/10.5194/tc-14-2809-2020,https://doi.org/10.5194/tc-14-2809-2020, 2020

Cited articles

Armstrong, R. L. and Brodzik, M. J.: Hemispheric-scale comparison and evaluation of passive-microwave snow algorithms, Ann. Glaciol., 34, 38–44, 2002.
Ashcroft, P. and Wentz, F.: Algorithm Theoretical Basis Document for the AMSR Level-2A Algorithm, Remote Sensing Systems, Santa Rosa, California, USA, 2000.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, 2005.
Brodzik, M. J. and Knowles, K. W.: EASE-Grid: A Versatile Set of Equal-Area Projections and Grids, in: Discrete Global Grids, edited by: Goodchild, M., National Center for Geographic Information & Analysis, Santa Barbara, California, USA, 2002.
Brown, R. D. and Robinson, D. A.: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty, The Cryosphere, 5, 219–229, https://doi.org/10.5194/tc-5-219-2011, 2011.
Publications Copernicus
Download
Short summary
Snow depth over QTP plays a very important role in the climate and hydrological system, but there are uncertainties on the snow depth products derived from passive microwave remote sensing data. In this study, we evaluated the ability of passive microwave to detect snow cover and snow depth over QTP, presented the accuracy of passive microwave snow cover and snow depth products over QTP, and analyzed the possible reasons causing the uncertainties.
Snow depth over QTP plays a very important role in the climate and hydrological system, but...
Citation