Articles | Volume 10, issue 2
The Cryosphere, 10, 879–894, 2016
https://doi.org/10.5194/tc-10-879-2016
The Cryosphere, 10, 879–894, 2016
https://doi.org/10.5194/tc-10-879-2016

Research article 25 Apr 2016

Research article | 25 Apr 2016

Analyzing airflow in static ice caves by using the calcFLOW method

Christiane Meyer et al.

Related authors

Deep ice as a geochemical reactor: insights from iron speciation and mineralogy of dust in the Talos Dome ice core (East Antarctica)
Giovanni Baccolo, Barbara Delmonte, Elena Di Stefano, Giannantonio Cibin, Ilaria Crotti, Massimo Frezzotti, Dariush Hampai, Yoshinori Iizuka, Augusto Marcelli, and Valter Maggi
The Cryosphere, 15, 4807–4822, https://doi.org/10.5194/tc-15-4807-2021,https://doi.org/10.5194/tc-15-4807-2021, 2021
Short summary
Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021,https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Giant dust particles at Nevado Illimani: a proxy of summertime deep convection over the Bolivian Altiplano
Filipe G. L. Lindau, Jefferson C. Simões, Barbara Delmonte, Patrick Ginot, Giovanni Baccolo, Chiara I. Paleari, Elena Di Stefano, Elena Korotkikh, Douglas S. Introne, Valter Maggi, Eduardo Garzanti, and Sergio Andò
The Cryosphere, 15, 1383–1397, https://doi.org/10.5194/tc-15-1383-2021,https://doi.org/10.5194/tc-15-1383-2021, 2021
Short summary
GOCO06s – a satellite-only global gravity field model
Andreas Kvas, Jan Martin Brockmann, Sandro Krauss, Till Schubert, Thomas Gruber, Ulrich Meyer, Torsten Mayer-Gürr, Wolf-Dieter Schuh, Adrian Jäggi, and Roland Pail
Earth Syst. Sci. Data, 13, 99–118, https://doi.org/10.5194/essd-13-99-2021,https://doi.org/10.5194/essd-13-99-2021, 2021
Short summary
Benchmark data for verifying background model implementations in orbit and gravity field determination software
Martin Lasser, Ulrich Meyer, Adrian Jäggi, Torsten Mayer-Gürr, Andreas Kvas, Karl Hans Neumayer, Christoph Dahle, Frank Flechtner, Jean-Michel Lemoine, Igor Koch, Matthias Weigelt, and Jakob Flury
Adv. Geosci., 55, 1–11, https://doi.org/10.5194/adgeo-55-1-2020,https://doi.org/10.5194/adgeo-55-1-2020, 2020
Short summary

Related subject area

Climate Interactions
Evidence of elevation-dependent warming from the Chinese Tian Shan
Lu Gao, Haijun Deng, Xiangyong Lei, Jianhui Wei, Yaning Chen, Zhongqin Li, Miaomiao Ma, Xingwei Chen, Ying Chen, Meibing Liu, and Jianyun Gao
The Cryosphere, 15, 5765–5783, https://doi.org/10.5194/tc-15-5765-2021,https://doi.org/10.5194/tc-15-5765-2021, 2021
Short summary
The contribution of melt ponds to enhanced Arctic sea-ice melt during the Last Interglacial
Rachel Diamond, Louise C. Sime, David Schroeder, and Maria-Vittoria Guarino
The Cryosphere, 15, 5099–5114, https://doi.org/10.5194/tc-15-5099-2021,https://doi.org/10.5194/tc-15-5099-2021, 2021
Short summary
Significant additional Antarctic warming in atmospheric bias-corrected ARPEGE projections with respect to control run
Julien Beaumet, Michel Déqué, Gerhard Krinner, Cécile Agosta, Antoinette Alias, and Vincent Favier
The Cryosphere, 15, 3615–3635, https://doi.org/10.5194/tc-15-3615-2021,https://doi.org/10.5194/tc-15-3615-2021, 2021
Short summary
On the attribution of industrial-era glacier mass loss to anthropogenic climate change
Gerard H. Roe, John Erich Christian, and Ben Marzeion
The Cryosphere, 15, 1889–1905, https://doi.org/10.5194/tc-15-1889-2021,https://doi.org/10.5194/tc-15-1889-2021, 2021
Short summary
Snow conditions in northern Europe: the dynamics of interannual variability versus projected long-term change
Jouni Räisänen
The Cryosphere, 15, 1677–1696, https://doi.org/10.5194/tc-15-1677-2021,https://doi.org/10.5194/tc-15-1677-2021, 2021
Short summary

Cited articles

Bock, H.: Mathematisch-physikalische Untersuchung der Eishöhlen und Windröhren, in: Die Höhlen im Dachstein, Verein für Höhlenkunde in Österreich, Graz, 102–144, 1913.
Bögli, A.: Karsthydrographie und physische Speläologie, Berlin, 1978.
Crammer, H.: Eishöhlen- und Windröhren-Studien, in: Abhandlungen der K. K. geographischen Gesellschaft in Wien, Vol. 1, K. K. geographical society of Vienna, printed by Verlag Lechner, Wien, 1899.
Fugger, E.: Beobachtungen in den Eishöhlen des Untersberges bei Salzburg, Mitteilungen der Gesellschaft für Salzburger Landeskunde (MGSLK), Salzburg, 28, 65–144, 1888.
Grebe, C.: Eishöhlenforschung vom 16. Jahrhundert bis in die Moderne – vom Phänomen zur aktuellen Forschung, MS thesis, unpublished, Bochum, Germany, 2010.
Download
Short summary
In the paper a new method to calculate airflow speeds in static ice caves by using air temperature data is presented. As most study sites are in very remote places, where it is often not possible to use sonic anemometers and other devices for the analysis of the cave climate, we show how one can use the given database for calculating airflow speeds. Understanding/quantifying all elements of the specific cave climate is indispensable for understanding the evolution of the ice body in ice caves.