Articles | Volume 10, issue 2
https://doi.org/10.5194/tc-10-585-2016
https://doi.org/10.5194/tc-10-585-2016
Research article
 | 
14 Mar 2016
Research article |  | 14 Mar 2016

Error assessment of satellite-derived lead fraction in the Arctic

Natalia Ivanova, Pierre Rampal, and Sylvain Bouillon

Related authors

The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations
Stefan Kern, Anja Rösel, Leif Toudal Pedersen, Natalia Ivanova, Roberto Saldo, and Rasmus Tage Tonboe
The Cryosphere, 10, 2217–2239, https://doi.org/10.5194/tc-10-2217-2016,https://doi.org/10.5194/tc-10-2217-2016, 2016
Short summary
Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations
N. Ivanova, L. T. Pedersen, R. T. Tonboe, S. Kern, G. Heygster, T. Lavergne, A. Sørensen, R. Saldo, G. Dybkjær, L. Brucker, and M. Shokr
The Cryosphere, 9, 1797–1817, https://doi.org/10.5194/tc-9-1797-2015,https://doi.org/10.5194/tc-9-1797-2015, 2015
Short summary
Uncertainties in Arctic sea ice thickness and volume: new estimates and implications for trends
M. Zygmuntowska, P. Rampal, N. Ivanova, and L. H. Smedsrud
The Cryosphere, 8, 705–720, https://doi.org/10.5194/tc-8-705-2014,https://doi.org/10.5194/tc-8-705-2014, 2014

Related subject area

Sea Ice
Seasonal evolution of the sea ice floe size distribution in the Beaufort Sea from 2 decades of MODIS data
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024,https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024,https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
National Weather Service Alaska Sea Ice Program: Gridded ice concentration maps for the Alaskan Arctic
Astrid Pacini, Michael Steele, and Mary-Beth Schreck
EGUsphere, https://doi.org/10.5194/egusphere-2024-1813,https://doi.org/10.5194/egusphere-2024-1813, 2024
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024,https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024,https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary

Cited articles

ASAR Product Handbook: Issue 2.2, European Space Agency, available at: https://earth.esa.int/handbooks/asar/CNTR.html (last access: January 2014), 2007.
Beitsch, A., Kaleschke, L., and Kern, S.: Investigating High-Resolution AMSR2 Sea Ice Concentrations during the February 2013 Fracture Event in the Beaufort Sea, Remote Sens., 6, 3841–3856, https://doi.org/10.3390/rs6053841, 2014.
Berg, A. and Eriksson, L. E. B.: SAR Algorithm for Sea Ice Concentration—Evaluation for the Baltic Sea, IEEE Geosci. Remote S., 9, 938–942, 2012.
Bouillon, S. and Rampal, P.: Presentation of the dynamical core of neXtSIM, a new sea ice model, Ocean Mod., 91, 23–37, https://doi.org/10.1016/j.ocemod.2015.04.005, 2015.
Bröhan, D. and Kaleschke, L.: A Nine-Year Climatology of Arctic Sea Ice Lead Orientation and Frequency from AMSR-E, Remote Sens., 6, 1451–1475, https://doi.org/10.3390/rs6021451, 2014.
Download
Short summary
Accurate observations of lead fraction are of high importance for model evaluation and/or assimilation into models. In this work, consistent quantitative error estimation of an existing lead fraction data set obtained from passive microwave observations is completed using Synthetic Aperture Radar data. A significant bias in the data set is found, and possible improvement in the methodology is suggested, so that the pixel-wise error is reduced by a factor of 2 on average.