Articles | Volume 10, issue 1
https://doi.org/10.5194/tc-10-465-2016
https://doi.org/10.5194/tc-10-465-2016
Research article
 | 
01 Mar 2016
Research article |  | 01 Mar 2016

The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics

Elchin Jafarov and Kevin Schaefer

Related authors

Estimation of above- and below-ground ecosystem parameters for the DVM-DOS-TEM v0.7.0 model using MADS v1.7.3: a synthetic case study
Elchin E. Jafarov, Helene Genet, Velimir V. Vesselinov, Valeria Briones, Aiza Kabeer, Andrew L. Mullen, Benjamin Maglio, Tobey Carman, Ruth Rutter, Joy Clein, Chu-Chun Chang, Dogukan Teber, Trevor Smith, Joshua M. Rady, Christina Schädel, Jennifer D. Watts, Brendan M. Rogers, and Susan M. Natali
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-158,https://doi.org/10.5194/gmd-2024-158, 2024
Preprint under review for GMD
Short summary
Thermal modeling of three lakes within the continuous permafrost zone in Alaska using the LAKE 2.0 model
Jason A. Clark, Elchin E. Jafarov, Ken D. Tape, Benjamin M. Jones, and Victor Stepanenko
Geosci. Model Dev., 15, 7421–7448, https://doi.org/10.5194/gmd-15-7421-2022,https://doi.org/10.5194/gmd-15-7421-2022, 2022
Short summary
The importance of freeze–thaw cycles for lateral tracer transport in ice-wedge polygons
Elchin E. Jafarov, Daniil Svyatsky, Brent Newman, Dylan Harp, David Moulton, and Cathy Wilson
The Cryosphere, 16, 851–862, https://doi.org/10.5194/tc-16-851-2022,https://doi.org/10.5194/tc-16-851-2022, 2022
Short summary
New insights into the drainage of inundated ice-wedge polygons using fundamental hydrologic principles
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Bob Busey, Sofia T. Avendaño, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, Cathy J. Wilson, and Katrina E. Bennett
The Cryosphere, 15, 4005–4029, https://doi.org/10.5194/tc-15-4005-2021,https://doi.org/10.5194/tc-15-4005-2021, 2021
Short summary
New insights into the drainage of inundated Arctic polygonal tundra using fundamental hydrologic principles
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, and Cathy J. Wilson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-100,https://doi.org/10.5194/tc-2020-100, 2020
Manuscript not accepted for further review
Short summary

Related subject area

Numerical Modelling
Two-way coupling between ice flow and channelized subglacial drainage enhances modeled marine-ice-sheet retreat
George Lu and Jonathan Kingslake
The Cryosphere, 18, 5301–5321, https://doi.org/10.5194/tc-18-5301-2024,https://doi.org/10.5194/tc-18-5301-2024, 2024
Short summary
Sensitivity of the future evolution of the Wilkes Subglacial Basin ice sheet to grounding-line melt parameterizations
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024,https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary
Modelling snowpack on ice surfaces with the ORCHIDEE land surface model: application to the Greenland ice sheet
Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, Nina Raoult, Xavier Fettweis, and Philippe Conesa
The Cryosphere, 18, 5067–5099, https://doi.org/10.5194/tc-18-5067-2024,https://doi.org/10.5194/tc-18-5067-2024, 2024
Short summary
Application of a regularised Coulomb sliding law to Jakobshavn Isbræ, western Greenland
Matt Trevers, Antony J. Payne, and Stephen L. Cornford
The Cryosphere, 18, 5101–5115, https://doi.org/10.5194/tc-18-5101-2024,https://doi.org/10.5194/tc-18-5101-2024, 2024
Short summary
Brief communication: Stalagmite damage by cave ice flow quantitatively assessed by fluid–structure interaction simulations
Alexander H. Jarosch, Paul Hofer, and Christoph Spötl
The Cryosphere, 18, 4811–4816, https://doi.org/10.5194/tc-18-4811-2024,https://doi.org/10.5194/tc-18-4811-2024, 2024
Short summary

Cited articles

Ball, J. T.: An analysis of stomatal conductance, Ph.D. thesis, Stanford Univ., Stanford, CA, 1988.
Bonan, G. B.: A Land Surface Model (LSM Version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and users guide, NCAR Tech. Note NCAR/TN-417+STR, Natl. Cent. for Atmos. Res., Boulder, CO, 1996.
Brown, J., Ferrians Jr., O. J., Heginbottom, J. A., and Melnikov, E. S. (Eds.): Circum-Arctic Map of Permafrost and Ground-Ice Conditions, U.S. Geological Survey in Cooperation with the Circum-Pacific Council for Energy and Mineral Resources, Circum-Pacific Map Series CP-45, scale 1 : 10 000 000, 1 sheet, 1997.
Brown, J., Hinkel, K.. and Nelson, F.: The 1 Circumpolar Active Layer Monitoring (CALM) program: Research designs and initial results, Polar Geogr., 24, 165–258, https://doi.org/10.1080/10889370009377698, 2000.
Burgess, M. M., Smith, S. L., Brown, J., Romanovsky, V., and Hinkel, K.: The Global Terrestrial Network for Permafrost (GTNet-P): Permafrost Monitoring Contributing to Global Climate Observations, available at: http://ftp2.cits.rncan.gc.ca/pub/geott/ess_pubs/211/211621/cr_2000_e14.pdf (last access: 25 February 2016), 2000.
Download
Short summary
To improve the uncertainty in modeling of the permafrost carbon emission associated with the predicted climate warming, it is important to improve the simulation of the current permafrost carbon stock. This work shows how simulation of the frozen carbon in land system models can be improved by better addressing the coupling between plant photosynthesis, soil biogeochemistry, and soil thermodynamics.