Volume 9, 2015

Volume 9, 2015

06 Jan 2015
UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet
J. C. Ryan, A. L. Hubbard, J. E. Box, J. Todd, P. Christoffersen, J. R. Carr, T. O. Holt, and N. Snooke
The Cryosphere, 9, 1–11, https://doi.org/10.5194/tc-9-1-2015,https://doi.org/10.5194/tc-9-1-2015, 2015
Short summary
06 Jan 2015
Independent evaluation of the SNODAS snow depth product using regional-scale lidar-derived measurements
A. Hedrick, H.-P. Marshall, A. Winstral, K. Elder, S. Yueh, and D. Cline
The Cryosphere, 9, 13–23, https://doi.org/10.5194/tc-9-13-2015,https://doi.org/10.5194/tc-9-13-2015, 2015
06 Jan 2015
Quantifying mass balance processes on the Southern Patagonia Icefield
M. Schaefer, H. Machguth, M. Falvey, G. Casassa, and E. Rignot
The Cryosphere, 9, 25–35, https://doi.org/10.5194/tc-9-25-2015,https://doi.org/10.5194/tc-9-25-2015, 2015
Short summary
06 Jan 2015
The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise
S. Kern, K. Khvorostovsky, H. Skourup, E. Rinne, Z. S. Parsakhoo, V. Djepa, P. Wadhams, and S. Sandven
The Cryosphere, 9, 37–52, https://doi.org/10.5194/tc-9-37-2015,https://doi.org/10.5194/tc-9-37-2015, 2015
Short summary
07 Jan 2015
Recent summer Arctic atmospheric circulation anomalies in a historical perspective
A. Belleflamme, X. Fettweis, and M. Erpicum
The Cryosphere, 9, 53–64, https://doi.org/10.5194/tc-9-53-2015,https://doi.org/10.5194/tc-9-53-2015, 2015
Short summary
07 Jan 2015
Glacier change in the Cariboo Mountains, British Columbia, Canada (1952–2005)
M. J. Beedle, B. Menounos, and R. Wheate
The Cryosphere, 9, 65–80, https://doi.org/10.5194/tc-9-65-2015,https://doi.org/10.5194/tc-9-65-2015, 2015
08 Jan 2015
Corrigendum to "Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness" published in The Cryosphere, 8, 1839–1854, 2014
J. Stroeve, A. Barrett, M. Serreze, and A. Schweiger
The Cryosphere, 9, 81–81, https://doi.org/10.5194/tc-9-81-2015,https://doi.org/10.5194/tc-9-81-2015, 2015
08 Jan 2015
Stable climate and surface mass balance in Svalbard over 1979–2013 despite the Arctic warming
C. Lang, X. Fettweis, and M. Erpicum
The Cryosphere, 9, 83–101, https://doi.org/10.5194/tc-9-83-2015,https://doi.org/10.5194/tc-9-83-2015, 2015
Short summary
15 Jan 2015
Brief Communication: Sudden drainage of a subglacial lake beneath the Greenland Ice Sheet
I. M. Howat, C. Porter, M. J. Noh, B. E. Smith, and S. Jeong
The Cryosphere, 9, 103–108, https://doi.org/10.5194/tc-9-103-2015,https://doi.org/10.5194/tc-9-103-2015, 2015
Short summary
16 Jan 2015
Thermal characteristics of permafrost in the steep alpine rock walls of the Aiguille du Midi (Mont Blanc Massif, 3842 m a.s.l)
F. Magnin, P. Deline, L. Ravanel, J. Noetzli, and P. Pogliotti
The Cryosphere, 9, 109–121, https://doi.org/10.5194/tc-9-109-2015,https://doi.org/10.5194/tc-9-109-2015, 2015
22 Jan 2015
Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland
C. C. Clason, D. W. F. Mair, P. W. Nienow, I. D. Bartholomew, A. Sole, S. Palmer, and W. Schwanghart
The Cryosphere, 9, 123–138, https://doi.org/10.5194/tc-9-123-2015,https://doi.org/10.5194/tc-9-123-2015, 2015
27 Jan 2015
Mass changes in Arctic ice caps and glaciers: implications of regionalizing elevation changes
J. Nilsson, L. Sandberg Sørensen, V. R. Barletta, and R. Forsberg
The Cryosphere, 9, 139–150, https://doi.org/10.5194/tc-9-139-2015,https://doi.org/10.5194/tc-9-139-2015, 2015
Short summary
28 Jan 2015
Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction
F. Günther, P. P. Overduin, I. A. Yakshina, T. Opel, A. V. Baranskaya, and M. N. Grigoriev
The Cryosphere, 9, 151–178, https://doi.org/10.5194/tc-9-151-2015,https://doi.org/10.5194/tc-9-151-2015, 2015
Short summary
05 Feb 2015
| Highlight paper
Simulating the Greenland ice sheet under present-day and palaeo constraints including a new discharge parameterization
R. Calov, A. Robinson, M. Perrette, and A. Ganopolski
The Cryosphere, 9, 179–196, https://doi.org/10.5194/tc-9-179-2015,https://doi.org/10.5194/tc-9-179-2015, 2015
Short summary
05 Feb 2015
Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt
T. Dunse, T. Schellenberger, J. O. Hagen, A. Kääb, T. V. Schuler, and C. H. Reijmer
The Cryosphere, 9, 197–215, https://doi.org/10.5194/tc-9-197-2015,https://doi.org/10.5194/tc-9-197-2015, 2015
06 Feb 2015
Enthalpy benchmark experiments for numerical ice sheet models
T. Kleiner, M. Rückamp, J. H. Bondzio, and A. Humbert
The Cryosphere, 9, 217–228, https://doi.org/10.5194/tc-9-217-2015,https://doi.org/10.5194/tc-9-217-2015, 2015
Short summary
06 Feb 2015
Snow depth mapping in high-alpine catchments using digital photogrammetry
Y. Bühler, M. Marty, L. Egli, J. Veitinger, T. Jonas, P. Thee, and C. Ginzler
The Cryosphere, 9, 229–243, https://doi.org/10.5194/tc-9-229-2015,https://doi.org/10.5194/tc-9-229-2015, 2015
Short summary
09 Feb 2015
Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming
M. P. Lüthi, C. Ryser, L. C. Andrews, G. A. Catania, M. Funk, R. L. Hawley, M. J. Hoffman, and T. A. Neumann
The Cryosphere, 9, 245–253, https://doi.org/10.5194/tc-9-245-2015,https://doi.org/10.5194/tc-9-245-2015, 2015
Short summary
09 Feb 2015
Regional melt-pond fraction and albedo of thin Arctic first-year drift ice in late summer
D. V. Divine, M. A. Granskog, S. R. Hudson, C. A. Pedersen, T. I. Karlsen, S. A. Divina, A. H. H. Renner, and S. Gerland
The Cryosphere, 9, 255–268, https://doi.org/10.5194/tc-9-255-2015,https://doi.org/10.5194/tc-9-255-2015, 2015
Short summary
10 Feb 2015
Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations
R. Lindsay and A. Schweiger
The Cryosphere, 9, 269–283, https://doi.org/10.5194/tc-9-269-2015,https://doi.org/10.5194/tc-9-269-2015, 2015
Short summary
11 Feb 2015
Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica
I. V. Gorodetskaya, S. Kneifel, M. Maahn, K. Van Tricht, W. Thiery, J. H. Schween, A. Mangold, S. Crewell, and N. P. M. Van Lipzig
The Cryosphere, 9, 285–304, https://doi.org/10.5194/tc-9-285-2015,https://doi.org/10.5194/tc-9-285-2015, 2015
Short summary
11 Feb 2015
A 1-D modelling study of Arctic sea-ice salinity
P. J. Griewank and D. Notz
The Cryosphere, 9, 305–329, https://doi.org/10.5194/tc-9-305-2015,https://doi.org/10.5194/tc-9-305-2015, 2015
12 Feb 2015
Measurements of light-absorbing particles on the glaciers in the Cordillera Blanca, Peru
C. G. Schmitt, J. D. All, J. P. Schwarz, W. P. Arnott, R. J. Cole, E. Lapham, and A. Celestian
The Cryosphere, 9, 331–340, https://doi.org/10.5194/tc-9-331-2015,https://doi.org/10.5194/tc-9-331-2015, 2015
Short summary
13 Feb 2015
Seasonal changes in surface albedo of Himalayan glaciers from MODIS data and links with the annual mass balance
F. Brun, M. Dumont, P. Wagnon, E. Berthier, M. F. Azam, J. M. Shea, P. Sirguey, A. Rabatel, and Al. Ramanathan
The Cryosphere, 9, 341–355, https://doi.org/10.5194/tc-9-341-2015,https://doi.org/10.5194/tc-9-341-2015, 2015
17 Feb 2015
Comparing C- and L-band SAR images for sea ice motion estimation
J. Lehtiranta, S. Siiriä, and J. Karvonen
The Cryosphere, 9, 357–366, https://doi.org/10.5194/tc-9-357-2015,https://doi.org/10.5194/tc-9-357-2015, 2015
Short summary
20 Feb 2015
Seismic wave propagation in anisotropic ice – Part 1: Elasticity tensor and derived quantities from ice-core properties
A. Diez and O. Eisen
The Cryosphere, 9, 367–384, https://doi.org/10.5194/tc-9-367-2015,https://doi.org/10.5194/tc-9-367-2015, 2015
20 Feb 2015
Seismic wave propagation in anisotropic ice – Part 2: Effects of crystal anisotropy in geophysical data
A. Diez, O. Eisen, C. Hofstede, A. Lambrecht, C. Mayer, H. Miller, D. Steinhage, T. Binder, and I. Weikusat
The Cryosphere, 9, 385–398, https://doi.org/10.5194/tc-9-385-2015,https://doi.org/10.5194/tc-9-385-2015, 2015
20 Feb 2015
Assessment of sea ice simulations in the CMIP5 models
Q. Shu, Z. Song, and F. Qiao
The Cryosphere, 9, 399–409, https://doi.org/10.5194/tc-9-399-2015,https://doi.org/10.5194/tc-9-399-2015, 2015
Short summary
24 Feb 2015
Large-area land surface simulations in heterogeneous terrain driven by global data sets: application to mountain permafrost
J. Fiddes, S. Endrizzi, and S. Gruber
The Cryosphere, 9, 411–426, https://doi.org/10.5194/tc-9-411-2015,https://doi.org/10.5194/tc-9-411-2015, 2015
Short summary
02 Mar 2015
Low below-ground organic carbon storage in a subarctic Alpine permafrost environment
M. Fuchs, P. Kuhry, and G. Hugelius
The Cryosphere, 9, 427–438, https://doi.org/10.5194/tc-9-427-2015,https://doi.org/10.5194/tc-9-427-2015, 2015
04 Mar 2015
Stratigraphy of Lake Vida, Antarctica: hydrologic implications of 27 m of ice
H. A. Dugan, P. T. Doran, B. Wagner, F. Kenig, C. H. Fritsen, S. A. Arcone, E. Kuhn, N. E. Ostrom, J. P. Warnock, and A. E. Murray
The Cryosphere, 9, 439–450, https://doi.org/10.5194/tc-9-439-2015,https://doi.org/10.5194/tc-9-439-2015, 2015
Short summary
04 Mar 2015
Snow-cover reconstruction methodology for mountainous regions based on historic in situ observations and recent remote sensing data
A. Gafurov, S. Vorogushyn, D. Farinotti, D. Duethmann, A. Merkushkin, and B. Merz
The Cryosphere, 9, 451–463, https://doi.org/10.5194/tc-9-451-2015,https://doi.org/10.5194/tc-9-451-2015, 2015
Short summary
04 Mar 2015
Geophysical mapping of palsa peatland permafrost
Y. Sjöberg, P. Marklund, R. Pettersson, and S. W. Lyon
The Cryosphere, 9, 465–478, https://doi.org/10.5194/tc-9-465-2015,https://doi.org/10.5194/tc-9-465-2015, 2015
Short summary
06 Mar 2015
Editorial: Organic carbon pools in permafrost regions on the Qinghai–Xizang (Tibetan) Plateau
C. Mu, T. Zhang, Q. Wu, X. Peng, B. Cao, X. Zhang, B. Cao, and G. Cheng
The Cryosphere, 9, 479–486, https://doi.org/10.5194/tc-9-479-2015,https://doi.org/10.5194/tc-9-479-2015, 2015
06 Mar 2015
Seasonal changes of ice surface characteristics and productivity in the ablation zone of the Greenland Ice Sheet
D. M. Chandler, J. D. Alcock, J. L. Wadham, S. L. Mackie, and J. Telling
The Cryosphere, 9, 487–504, https://doi.org/10.5194/tc-9-487-2015,https://doi.org/10.5194/tc-9-487-2015, 2015
Short summary
16 Mar 2015
Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga–Sikkim area, eastern Himalaya
A. E. Racoviteanu, Y. Arnaud, M. W. Williams, and W. F. Manley
The Cryosphere, 9, 505–523, https://doi.org/10.5194/tc-9-505-2015,https://doi.org/10.5194/tc-9-505-2015, 2015
Short summary
17 Mar 2015
Surface elevation and mass changes of all Swiss glaciers 1980–2010
M. Fischer, M. Huss, and M. Hoelzle
The Cryosphere, 9, 525–540, https://doi.org/10.5194/tc-9-525-2015,https://doi.org/10.5194/tc-9-525-2015, 2015
17 Mar 2015
Influence of freshwater input on the skill of decadal forecast of sea ice in the Southern Ocean
V. Zunz and H. Goosse
The Cryosphere, 9, 541–556, https://doi.org/10.5194/tc-9-541-2015,https://doi.org/10.5194/tc-9-541-2015, 2015
19 Mar 2015
Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya
A. Kääb, D. Treichler, C. Nuth, and E. Berthier
The Cryosphere, 9, 557–564, https://doi.org/10.5194/tc-9-557-2015,https://doi.org/10.5194/tc-9-557-2015, 2015
Short summary
19 Mar 2015
Changes in the southeast Vatnajökull ice cap, Iceland, between ~ 1890 and 2010
H. Hannesdóttir, H. Björnsson, F. Pálsson, G. Aðalgeirsdóttir, and Sv. Guðmundsson
The Cryosphere, 9, 565–585, https://doi.org/10.5194/tc-9-565-2015,https://doi.org/10.5194/tc-9-565-2015, 2015
27 Mar 2015
Verification of analysed and forecasted winter precipitation in complex terrain
M. Schirmer and B. Jamieson
The Cryosphere, 9, 587–601, https://doi.org/10.5194/tc-9-587-2015,https://doi.org/10.5194/tc-9-587-2015, 2015
Short summary
01 Apr 2015
Self-regulation of ice flow varies across the ablation area in south-west Greenland
R. S. W. van de Wal, C. J. P. P. Smeets, W. Boot, M. Stoffelen, R. van Kampen, S. H. Doyle, F. Wilhelms, M. R. van den Broeke, C. H. Reijmer, J. Oerlemans, and A. Hubbard
The Cryosphere, 9, 603–611, https://doi.org/10.5194/tc-9-603-2015,https://doi.org/10.5194/tc-9-603-2015, 2015
Short summary
01 Apr 2015
Configuration of the Northern Antarctic Peninsula Ice Sheet at LGM based on a new synthesis of seabed imagery
C. Lavoie, E. W. Domack, E. C. Pettit, T. A. Scambos, R. D. Larter, H.-W. Schenke, K. C. Yoo, J. Gutt, J. Wellner, M. Canals, J. B. Anderson, and D. Amblas
The Cryosphere, 9, 613–629, https://doi.org/10.5194/tc-9-613-2015,https://doi.org/10.5194/tc-9-613-2015, 2015
02 Apr 2015
Interaction of marine ice-sheet instabilities in two drainage basins: simple scaling of geometry and transition time
J. Feldmann and A. Levermann
The Cryosphere, 9, 631–645, https://doi.org/10.5194/tc-9-631-2015,https://doi.org/10.5194/tc-9-631-2015, 2015
08 Apr 2015
Warming permafrost and active layer variability at Cime Bianche, Western European Alps
P. Pogliotti, M. Guglielmin, E. Cremonese, U. Morra di Cella, G. Filippa, C. Pellet, and C. Hauck
The Cryosphere, 9, 647–661, https://doi.org/10.5194/tc-9-647-2015,https://doi.org/10.5194/tc-9-647-2015, 2015
Short summary
09 Apr 2015
| Highlight paper
On producing sea ice deformation data sets from SAR-derived sea ice motion
S. Bouillon and P. Rampal
The Cryosphere, 9, 663–673, https://doi.org/10.5194/tc-9-663-2015,https://doi.org/10.5194/tc-9-663-2015, 2015
Short summary
13 Apr 2015
Thermal structure and basal sliding parametrisation at Pine Island Glacier – a 3-D full-Stokes model study
N. Wilkens, J. Behrens, T. Kleiner, D. Rippin, M. Rückamp, and A. Humbert
The Cryosphere, 9, 675–690, https://doi.org/10.5194/tc-9-675-2015,https://doi.org/10.5194/tc-9-675-2015, 2015
14 Apr 2015
Quantifying meltwater refreezing along a transect of sites on the Greenland ice sheet
C. Cox, N. Humphrey, and J. Harper
The Cryosphere, 9, 691–701, https://doi.org/10.5194/tc-9-691-2015,https://doi.org/10.5194/tc-9-691-2015, 2015
Short summary
15 Apr 2015
Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ∼1975 and 2007 derived from remote sensing data
D. H. Shangguan, T. Bolch, Y. J. Ding, M. Kröhnert, T. Pieczonka, H. U. Wetzel, and S. Y. Liu
The Cryosphere, 9, 703–717, https://doi.org/10.5194/tc-9-703-2015,https://doi.org/10.5194/tc-9-703-2015, 2015
Short summary
17 Apr 2015
Future permafrost conditions along environmental gradients in Zackenberg, Greenland
S. Westermann, B. Elberling, S. Højlund Pedersen, M. Stendel, B. U. Hansen, and G. E. Liston
The Cryosphere, 9, 719–735, https://doi.org/10.5194/tc-9-719-2015,https://doi.org/10.5194/tc-9-719-2015, 2015
Short summary
20 Apr 2015
Dissolved organic carbon (DOC) in Arctic ground ice
M. Fritz, T. Opel, G. Tanski, U. Herzschuh, H. Meyer, A. Eulenburg, and H. Lantuit
The Cryosphere, 9, 737–752, https://doi.org/10.5194/tc-9-737-2015,https://doi.org/10.5194/tc-9-737-2015, 2015
Short summary
27 Apr 2015
Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria
A. Fischer, B. Seiser, M. Stocker Waldhuber, C. Mitterer, and J. Abermann
The Cryosphere, 9, 753–766, https://doi.org/10.5194/tc-9-753-2015,https://doi.org/10.5194/tc-9-753-2015, 2015
Short summary
27 Apr 2015
A model study of Abrahamsenbreen, a surging glacier in northern Spitsbergen
J. Oerlemans and W. J. J. van Pelt
The Cryosphere, 9, 767–779, https://doi.org/10.5194/tc-9-767-2015,https://doi.org/10.5194/tc-9-767-2015, 2015
Short summary
27 Apr 2015
Sensitivity of airborne geophysical data to sublacustrine and near-surface permafrost thaw
B. J. Minsley, T. P. Wellman, M. A. Walvoord, and A. Revil
The Cryosphere, 9, 781–794, https://doi.org/10.5194/tc-9-781-2015,https://doi.org/10.5194/tc-9-781-2015, 2015
27 Apr 2015
Influence of weak layer heterogeneity and slab properties on slab tensile failure propensity and avalanche release area
J. Gaume, G. Chambon, N. Eckert, M. Naaim, and J. Schweizer
The Cryosphere, 9, 795–804, https://doi.org/10.5194/tc-9-795-2015,https://doi.org/10.5194/tc-9-795-2015, 2015
Short summary
30 Apr 2015
Simultaneous solution for mass trends on the West Antarctic Ice Sheet
N. Schoen, A. Zammit-Mangion, J. C. Rougier, T. Flament, F. Rémy, S. Luthcke, and J. L. Bamber
The Cryosphere, 9, 805–819, https://doi.org/10.5194/tc-9-805-2015,https://doi.org/10.5194/tc-9-805-2015, 2015
Short summary
04 May 2015
How do icebergs affect the Greenland ice sheet under pre-industrial conditions? – a model study with a fully coupled ice-sheet–climate model
M. Bügelmayer, D. M. Roche, and H. Renssen
The Cryosphere, 9, 821–835, https://doi.org/10.5194/tc-9-821-2015,https://doi.org/10.5194/tc-9-821-2015, 2015
04 May 2015
A process-based approach to estimate point snow instability
B. Reuter, J. Schweizer, and A. van Herwijnen
The Cryosphere, 9, 837–847, https://doi.org/10.5194/tc-9-837-2015,https://doi.org/10.5194/tc-9-837-2015, 2015
Short summary
06 May 2015
| Highlight paper
The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers
T. Nuimura, A. Sakai, K. Taniguchi, H. Nagai, D. Lamsal, S. Tsutaki, A. Kozawa, Y. Hoshina, S. Takenaka, S. Omiya, K. Tsunematsu, P. Tshering, and K. Fujita
The Cryosphere, 9, 849–864, https://doi.org/10.5194/tc-9-849-2015,https://doi.org/10.5194/tc-9-849-2015, 2015
Short summary
06 May 2015
Climate regime of Asian glaciers revealed by GAMDAM glacier inventory
A. Sakai, T. Nuimura, K. Fujita, S. Takenaka, H. Nagai, and D. Lamsal
The Cryosphere, 9, 865–880, https://doi.org/10.5194/tc-9-865-2015,https://doi.org/10.5194/tc-9-865-2015, 2015
Short summary
06 May 2015
Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project
B. de Boer, A. M. Dolan, J. Bernales, E. Gasson, H. Goelzer, N. R. Golledge, J. Sutter, P. Huybrechts, G. Lohmann, I. Rogozhina, A. Abe-Ouchi, F. Saito, and R. S. W. van de Wal
The Cryosphere, 9, 881–903, https://doi.org/10.5194/tc-9-881-2015,https://doi.org/10.5194/tc-9-881-2015, 2015
Short summary
07 May 2015
Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet
S. E. Moustafa, A. K. Rennermalm, L. C. Smith, M. A. Miller, J. R. Mioduszewski, L. S. Koenig, M. G. Hom, and C. A. Shuman
The Cryosphere, 9, 905–923, https://doi.org/10.5194/tc-9-905-2015,https://doi.org/10.5194/tc-9-905-2015, 2015
07 May 2015
Climatic signals from 76 shallow firn cores in Dronning Maud Land, East Antarctica
S. Altnau, E. Schlosser, E. Isaksson, and D. Divine
The Cryosphere, 9, 925–944, https://doi.org/10.5194/tc-9-925-2015,https://doi.org/10.5194/tc-9-925-2015, 2015
Short summary
07 May 2015
Future climate and surface mass balance of Svalbard glaciers in an RCP8.5 climate scenario: a study with the regional climate model MAR forced by MIROC5
C. Lang, X. Fettweis, and M. Erpicum
The Cryosphere, 9, 945–956, https://doi.org/10.5194/tc-9-945-2015,https://doi.org/10.5194/tc-9-945-2015, 2015
Short summary
09 May 2015
Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013
J. Wuite, H. Rott, M. Hetzenecker, D. Floricioiu, J. De Rydt, G. H. Gudmundsson, T. Nagler, and M. Kern
The Cryosphere, 9, 957–969, https://doi.org/10.5194/tc-9-957-2015,https://doi.org/10.5194/tc-9-957-2015, 2015
Short summary
11 May 2015
Numerical simulation of extreme snowmelt observed at the SIGMA-A site, northwest Greenland, during summer 2012
M. Niwano, T. Aoki, S. Matoba, S. Yamaguchi, T. Tanikawa, K. Kuchiki, and H. Motoyama
The Cryosphere, 9, 971–988, https://doi.org/10.5194/tc-9-971-2015,https://doi.org/10.5194/tc-9-971-2015, 2015
Short summary
12 May 2015
Modelling the impact of submarine frontal melting and ice mélange on glacier dynamics
J. Krug, G. Durand, O. Gagliardini, and J. Weiss
The Cryosphere, 9, 989–1003, https://doi.org/10.5194/tc-9-989-2015,https://doi.org/10.5194/tc-9-989-2015, 2015
13 May 2015
Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning
P. R. Holland, A. Brisbourne, H. F. J. Corr, D. McGrath, K. Purdon, J. Paden, H. A. Fricker, F. S. Paolo, and A. H. Fleming
The Cryosphere, 9, 1005–1024, https://doi.org/10.5194/tc-9-1005-2015,https://doi.org/10.5194/tc-9-1005-2015, 2015
Short summary
20 May 2015
The influence of surface characteristics, topography and continentality on mountain permafrost in British Columbia
A. Hasler, M. Geertsema, V. Foord, S. Gruber, and J. Noetzli
The Cryosphere, 9, 1025–1038, https://doi.org/10.5194/tc-9-1025-2015,https://doi.org/10.5194/tc-9-1025-2015, 2015
Short summary
20 May 2015
Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming
J. J. Fürst, H. Goelzer, and P. Huybrechts
The Cryosphere, 9, 1039–1062, https://doi.org/10.5194/tc-9-1039-2015,https://doi.org/10.5194/tc-9-1039-2015, 2015
21 May 2015
Thin-ice dynamics and ice production in the Storfjorden polynya for winter seasons 2002/2003–2013/2014 using MODIS thermal infrared imagery
A. Preußer, S. Willmes, G. Heinemann, and S. Paul
The Cryosphere, 9, 1063–1073, https://doi.org/10.5194/tc-9-1063-2015,https://doi.org/10.5194/tc-9-1063-2015, 2015
Short summary
21 May 2015
Unlocking annual firn layer water equivalents from ground-penetrating radar data on an Alpine glacier
L. Sold, M. Huss, A. Eichler, M. Schwikowski, and M. Hoelzle
The Cryosphere, 9, 1075–1087, https://doi.org/10.5194/tc-9-1075-2015,https://doi.org/10.5194/tc-9-1075-2015, 2015
Short summary
22 May 2015
Constraints on the δ2H diffusion rate in firn from field measurements at Summit, Greenland
L. G. van der Wel, H. A. Been, R. S. W. van de Wal, C. J. P. P. Smeets, and H. A. J. Meijer
The Cryosphere, 9, 1089–1103, https://doi.org/10.5194/tc-9-1089-2015,https://doi.org/10.5194/tc-9-1089-2015, 2015
Short summary
27 May 2015
| Highlight paper
Modelling glacier change in the Everest region, Nepal Himalaya
J. M. Shea, W. W. Immerzeel, P. Wagnon, C. Vincent, and S. Bajracharya
The Cryosphere, 9, 1105–1128, https://doi.org/10.5194/tc-9-1105-2015,https://doi.org/10.5194/tc-9-1105-2015, 2015
Short summary
27 May 2015
Air temperature variability over three glaciers in the Ortles–Cevedale (Italian Alps): effects of glacier fragmentation, comparison of calculation methods, and impacts on mass balance modeling
L. Carturan, F. Cazorzi, F. De Blasi, and G. Dalla Fontana
The Cryosphere, 9, 1129–1146, https://doi.org/10.5194/tc-9-1129-2015,https://doi.org/10.5194/tc-9-1129-2015, 2015
Short summary
02 Jun 2015
| Highlight paper
Snowfall in the Himalayas: an uncertain future from a little-known past
E. Viste and A. Sorteberg
The Cryosphere, 9, 1147–1167, https://doi.org/10.5194/tc-9-1147-2015,https://doi.org/10.5194/tc-9-1147-2015, 2015
Short summary
04 Jun 2015
Evolution of ice-shelf channels in Antarctic ice shelves
R. Drews
The Cryosphere, 9, 1169–1181, https://doi.org/10.5194/tc-9-1169-2015,https://doi.org/10.5194/tc-9-1169-2015, 2015
Short summary
05 Jun 2015
Winter speed-up of quiescent surge-type glaciers in Yukon, Canada
T. Abe and M. Furuya
The Cryosphere, 9, 1183–1190, https://doi.org/10.5194/tc-9-1183-2015,https://doi.org/10.5194/tc-9-1183-2015, 2015
Short summary
05 Jun 2015
User requirements for the snow and land ice services – CryoLand
E. Malnes, A. Buanes, T. Nagler, G. Bippus, D. Gustafsson, C. Schiller, S. Metsämäki, J. Pulliainen, K. Luojus, H. E. Larsen, R. Solberg, A. Diamandi, and A. Wiesmann
The Cryosphere, 9, 1191–1202, https://doi.org/10.5194/tc-9-1191-2015,https://doi.org/10.5194/tc-9-1191-2015, 2015
Short summary
11 Jun 2015
Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming
S. de la Peña, I. M. Howat, P. W. Nienow, M. R. van den Broeke, E. Mosley-Thompson, S. F. Price, D. Mair, B. Noël, and A. J. Sole
The Cryosphere, 9, 1203–1211, https://doi.org/10.5194/tc-9-1203-2015,https://doi.org/10.5194/tc-9-1203-2015, 2015
Short summary
15 Jun 2015
Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records
S. Kang, F. Wang, U. Morgenstern, Y. Zhang, B. Grigholm, S. Kaspari, M. Schwikowski, J. Ren, T. Yao, D. Qin, and P. A. Mayewski
The Cryosphere, 9, 1213–1222, https://doi.org/10.5194/tc-9-1213-2015,https://doi.org/10.5194/tc-9-1213-2015, 2015
Short summary
15 Jun 2015
| Highlight paper
Brief Communication: Newly developing rift in Larsen C Ice Shelf presents significant risk to stability
D. Jansen, A. J. Luckman, A. Cook, S. Bevan, B. Kulessa, B. Hubbard, and P. R. Holland
The Cryosphere, 9, 1223–1227, https://doi.org/10.5194/tc-9-1223-2015,https://doi.org/10.5194/tc-9-1223-2015, 2015
Short summary
17 Jun 2015
Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013)
F. Salerno, N. Guyennon, S. Thakuri, G. Viviano, E. Romano, E. Vuillermoz, P. Cristofanelli, P. Stocchi, G. Agrillo, Y. Ma, and G. Tartari
The Cryosphere, 9, 1229–1247, https://doi.org/10.5194/tc-9-1229-2015,https://doi.org/10.5194/tc-9-1229-2015, 2015
Short summary
19 Jun 2015
Theoretical analysis of errors when estimating snow distribution through point measurements
E. Trujillo and M. Lehning
The Cryosphere, 9, 1249–1264, https://doi.org/10.5194/tc-9-1249-2015,https://doi.org/10.5194/tc-9-1249-2015, 2015
Short summary
22 Jun 2015
Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra
F. Domine, M. Barrere, D. Sarrazin, S. Morin, and L. Arnaud
The Cryosphere, 9, 1265–1276, https://doi.org/10.5194/tc-9-1265-2015,https://doi.org/10.5194/tc-9-1265-2015, 2015
Short summary
23 Jun 2015
Parameterization of single-scattering properties of snow
P. Räisänen, A. Kokhanovsky, G. Guyot, O. Jourdan, and T. Nousiainen
The Cryosphere, 9, 1277–1301, https://doi.org/10.5194/tc-9-1277-2015,https://doi.org/10.5194/tc-9-1277-2015, 2015
Short summary
23 Jun 2015
| Highlight paper
A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data
S. Westermann, T. I. Østby, K. Gisnås, T. V. Schuler, and B. Etzelmüller
The Cryosphere, 9, 1303–1319, https://doi.org/10.5194/tc-9-1303-2015,https://doi.org/10.5194/tc-9-1303-2015, 2015
Short summary
24 Jun 2015
Changes in the timing and duration of the near-surface soil freeze/thaw status from 1956 to 2006 across China
K. Wang, T. Zhang, and X. Zhong
The Cryosphere, 9, 1321–1331, https://doi.org/10.5194/tc-9-1321-2015,https://doi.org/10.5194/tc-9-1321-2015, 2015
13 Jul 2015
Wintertime storage of water in buried supraglacial lakes across the Greenland Ice Sheet
L. S. Koenig, D. J. Lampkin, L. N. Montgomery, S. L. Hamilton, J. B. Turrin, C. A. Joseph, S. E. Moutsafa, B. Panzer, K. A. Casey, J. D. Paden, C. Leuschen, and P. Gogineni
The Cryosphere, 9, 1333–1342, https://doi.org/10.5194/tc-9-1333-2015,https://doi.org/10.5194/tc-9-1333-2015, 2015
Short summary
22 Jul 2015
Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes
A. Ekici, S. Chadburn, N. Chaudhary, L. H. Hajdu, A. Marmy, S. Peng, J. Boike, E. Burke, A. D. Friend, C. Hauck, G. Krinner, M. Langer, P. A. Miller, and C. Beer
The Cryosphere, 9, 1343–1361, https://doi.org/10.5194/tc-9-1343-2015,https://doi.org/10.5194/tc-9-1343-2015, 2015
Short summary
30 Jul 2015
Tomography-based monitoring of isothermal snow metamorphism under advective conditions
P. P. Ebner, M. Schneebeli, and A. Steinfeld
The Cryosphere, 9, 1363–1371, https://doi.org/10.5194/tc-9-1363-2015,https://doi.org/10.5194/tc-9-1363-2015, 2015
Short summary
30 Jul 2015
Comparison between observed and simulated aeolian snow mass fluxes in Adélie Land, East Antarctica
C. Amory, A. Trouvilliez, H. Gallée, V. Favier, F. Naaim-Bouvet, C. Genthon, C. Agosta, L. Piard, and H. Bellot
The Cryosphere, 9, 1373–1383, https://doi.org/10.5194/tc-9-1373-2015,https://doi.org/10.5194/tc-9-1373-2015, 2015
30 Jul 2015
The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier
J. Gabbi, M. Huss, A. Bauder, F. Cao, and M. Schwikowski
The Cryosphere, 9, 1385–1400, https://doi.org/10.5194/tc-9-1385-2015,https://doi.org/10.5194/tc-9-1385-2015, 2015
Short summary
31 Jul 2015
Modelling annual mass balances of eight Scandinavian glaciers using statistical models
M. Trachsel and A. Nesje
The Cryosphere, 9, 1401–1414, https://doi.org/10.5194/tc-9-1401-2015,https://doi.org/10.5194/tc-9-1401-2015, 2015
Short summary
04 Aug 2015
Numerical simulations and observations of the role of katabatic winds in the creation and maintenance of Scharffenbergbotnen blue ice area, Antarctica
T. Zwinger, T. Malm, M. Schäfer, R. Stenberg, and J. C. Moore
The Cryosphere, 9, 1415–1426, https://doi.org/10.5194/tc-9-1415-2015,https://doi.org/10.5194/tc-9-1415-2015, 2015
Short summary
04 Aug 2015
Assimilation of Antarctic velocity observations provides evidence for uncharted pinning points
J. J. Fürst, G. Durand, F. Gillet-Chaulet, N. Merino, L. Tavard, J. Mouginot, N. Gourmelen, and O. Gagliardini
The Cryosphere, 9, 1427–1443, https://doi.org/10.5194/tc-9-1427-2015,https://doi.org/10.5194/tc-9-1427-2015, 2015
Short summary
05 Aug 2015
| Highlight paper
Mapping snow depth from manned aircraft on landscape scales at centimeter resolution using structure-from-motion photogrammetry
M. Nolan, C. Larsen, and M. Sturm
The Cryosphere, 9, 1445–1463, https://doi.org/10.5194/tc-9-1445-2015,https://doi.org/10.5194/tc-9-1445-2015, 2015
Short summary
06 Aug 2015
Response of the large-scale subglacial drainage system of Northeast Greenland to surface elevation changes
N. B. Karlsson and D. Dahl-Jensen
The Cryosphere, 9, 1465–1479, https://doi.org/10.5194/tc-9-1465-2015,https://doi.org/10.5194/tc-9-1465-2015, 2015
06 Aug 2015
Recent changes in north-west Greenland climate documented by NEEM shallow ice core data and simulations, and implications for past-temperature reconstructions
V. Masson-Delmotte, H. C. Steen-Larsen, P. Ortega, D. Swingedouw, T. Popp, B. M. Vinther, H. Oerter, A. E. Sveinbjornsdottir, H. Gudlaugsdottir, J. E. Box, S. Falourd, X. Fettweis, H. Gallée, E. Garnier, V. Gkinis, J. Jouzel, A. Landais, B. Minster, N. Paradis, A. Orsi, C. Risi, M. Werner, and J. W. C. White
The Cryosphere, 9, 1481–1504, https://doi.org/10.5194/tc-9-1481-2015,https://doi.org/10.5194/tc-9-1481-2015, 2015
Short summary
07 Aug 2015
| Highlight paper
Impact of model developments on present and future simulations of permafrost in a global land-surface model
S. E. Chadburn, E. J. Burke, R. L. H. Essery, J. Boike, M. Langer, M. Heikenfeld, P. M. Cox, and P. Friedlingstein
The Cryosphere, 9, 1505–1521, https://doi.org/10.5194/tc-9-1505-2015,https://doi.org/10.5194/tc-9-1505-2015, 2015
Short summary
07 Aug 2015
Meteorological, elevation, and slope effects on surface hoar formation
S. Horton, M. Schirmer, and B. Jamieson
The Cryosphere, 9, 1523–1533, https://doi.org/10.5194/tc-9-1523-2015,https://doi.org/10.5194/tc-9-1523-2015, 2015
Short summary
07 Aug 2015
Area, elevation and mass changes of the two southernmost ice caps of the Canadian Arctic Archipelago between 1952 and 2014
C. Papasodoro, E. Berthier, A. Royer, C. Zdanowicz, and A. Langlois
The Cryosphere, 9, 1535–1550, https://doi.org/10.5194/tc-9-1535-2015,https://doi.org/10.5194/tc-9-1535-2015, 2015
Short summary
12 Aug 2015
Melt pond fraction and spectral sea ice albedo retrieval from MERIS data – Part 1: Validation against in situ, aerial, and ship cruise data
L. Istomina, G. Heygster, M. Huntemann, P. Schwarz, G. Birnbaum, R. Scharien, C. Polashenski, D. Perovich, E. Zege, A. Malinka, A. Prikhach, and I. Katsev
The Cryosphere, 9, 1551–1566, https://doi.org/10.5194/tc-9-1551-2015,https://doi.org/10.5194/tc-9-1551-2015, 2015
12 Aug 2015
Melt pond fraction and spectral sea ice albedo retrieval from MERIS data – Part 2: Case studies and trends of sea ice albedo and melt ponds in the Arctic for years 2002–2011
L. Istomina, G. Heygster, M. Huntemann, H. Marks, C. Melsheimer, E. Zege, A. Malinka, A. Prikhach, and I. Katsev
The Cryosphere, 9, 1567–1578, https://doi.org/10.5194/tc-9-1567-2015,https://doi.org/10.5194/tc-9-1567-2015, 2015
18 Aug 2015
| Highlight paper
Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate
S. L. Cornford, D. F. Martin, A. J. Payne, E. G. Ng, A. M. Le Brocq, R. M. Gladstone, T. L. Edwards, S. R. Shannon, C. Agosta, M. R. van den Broeke, H. H. Hellmer, G. Krinner, S. R. M. Ligtenberg, R. Timmermann, and D. G. Vaughan
The Cryosphere, 9, 1579–1600, https://doi.org/10.5194/tc-9-1579-2015,https://doi.org/10.5194/tc-9-1579-2015, 2015
Short summary
20 Aug 2015
Estimation and calibration of the water isotope differential diffusion length in ice core records
G. van der Wel, H. Fischer, H. Oerter, H. Meyer, and H. A. J. Meijer
The Cryosphere, 9, 1601–1616, https://doi.org/10.5194/tc-9-1601-2015,https://doi.org/10.5194/tc-9-1601-2015, 2015
Short summary
20 Aug 2015
Impact of debris cover on glacier ablation and atmosphere–glacier feedbacks in the Karakoram
E. Collier, F. Maussion, L. I. Nicholson, T. Mölg, W. W. Immerzeel, and A. B. G. Bush
The Cryosphere, 9, 1617–1632, https://doi.org/10.5194/tc-9-1617-2015,https://doi.org/10.5194/tc-9-1617-2015, 2015
Short summary
20 Aug 2015
| Highlight paper
Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core
J.-L. Tison, M. de Angelis, G. Littot, E. Wolff, H. Fischer, M. Hansson, M. Bigler, R. Udisti, A. Wegner, J. Jouzel, B. Stenni, S. Johnsen, V. Masson-Delmotte, A. Landais, V. Lipenkov, L. Loulergue, J.-M. Barnola, J.-R. Petit, B. Delmonte, G. Dreyfus, D. Dahl-Jensen, G. Durand, B. Bereiter, A. Schilt, R. Spahni, K. Pol, R. Lorrain, R. Souchez, and D. Samyn
The Cryosphere, 9, 1633–1648, https://doi.org/10.5194/tc-9-1633-2015,https://doi.org/10.5194/tc-9-1633-2015, 2015
Short summary
21 Aug 2015
Temporal variations in the flow of a large Antarctic ice stream controlled by tidally induced changes in the subglacial water system
S. H. R. Rosier, G. H. Gudmundsson, and J. A. M. Green
The Cryosphere, 9, 1649–1661, https://doi.org/10.5194/tc-9-1649-2015,https://doi.org/10.5194/tc-9-1649-2015, 2015
Short summary
21 Aug 2015
ENSO influence on surface energy and mass balance at Shallap Glacier, Cordillera Blanca, Peru
F. Maussion, W. Gurgiser, M. Großhauser, G. Kaser, and B. Marzeion
The Cryosphere, 9, 1663–1683, https://doi.org/10.5194/tc-9-1663-2015,https://doi.org/10.5194/tc-9-1663-2015, 2015
Short summary
21 Aug 2015
Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: observations and modeling of the impact on snow albedo, melting, and radiative forcing
H.-W. Jacobi, S. Lim, M. Ménégoz, P. Ginot, P. Laj, P. Bonasoni, P. Stocchi, A. Marinoni, and Y. Arnaud
The Cryosphere, 9, 1685–1699, https://doi.org/10.5194/tc-9-1685-2015,https://doi.org/10.5194/tc-9-1685-2015, 2015
Short summary
25 Aug 2015
Winter observations of CO2 exchange between sea ice and the atmosphere in a coastal fjord environment
J. Sievers, L. L. Sørensen, T. Papakyriakou, B. Else, M. K. Sejr, D. Haubjerg Søgaard, D. Barber, and S. Rysgaard
The Cryosphere, 9, 1701–1713, https://doi.org/10.5194/tc-9-1701-2015,https://doi.org/10.5194/tc-9-1701-2015, 2015
26 Aug 2015
Brief Communication: Future avenues for permafrost science from the perspective of early career researchers
M. Fritz, B. N. Deshpande, F. Bouchard, E. Högström, J. Malenfant-Lepage, A. Morgenstern, A. Nieuwendam, M. Oliva, M. Paquette, A. C. A. Rudy, M. B. Siewert, Y. Sjöberg, and S. Weege
The Cryosphere, 9, 1715–1720, https://doi.org/10.5194/tc-9-1715-2015,https://doi.org/10.5194/tc-9-1715-2015, 2015
Short summary
27 Aug 2015
Exploring the utility of quantitative network design in evaluating Arctic sea ice thickness sampling strategies
T. Kaminski, F. Kauker, H. Eicken, and M. Karcher
The Cryosphere, 9, 1721–1733, https://doi.org/10.5194/tc-9-1721-2015,https://doi.org/10.5194/tc-9-1721-2015, 2015
Short summary
31 Aug 2015
Improving Arctic sea ice edge forecasts by assimilating high horizontal resolution sea ice concentration data into the US Navy's ice forecast systems
P. G. Posey, E. J. Metzger, A. J. Wallcraft, D. A. Hebert, R. A. Allard, O. M. Smedstad, M. W. Phelps, F. Fetterer, J. S. Stewart, W. N. Meier, and S. R. Helfrich
The Cryosphere, 9, 1735–1745, https://doi.org/10.5194/tc-9-1735-2015,https://doi.org/10.5194/tc-9-1735-2015, 2015
Short summary
04 Sep 2015
Improving semi-automated glacier mapping with a multi-method approach: applications in central Asia
T. Smith, B. Bookhagen, and F. Cannon
The Cryosphere, 9, 1747–1759, https://doi.org/10.5194/tc-9-1747-2015,https://doi.org/10.5194/tc-9-1747-2015, 2015
Short summary
04 Sep 2015
Quantifying the resolution level where the GRACE satellites can separate Greenland's glacial mass balance from surface mass balance
J. A. Bonin and D. P. Chambers
The Cryosphere, 9, 1761–1772, https://doi.org/10.5194/tc-9-1761-2015,https://doi.org/10.5194/tc-9-1761-2015, 2015
Short summary
08 Sep 2015
Evolution of Ossoue Glacier (French Pyrenees) since the end of the Little Ice Age
R. Marti, S. Gascoin, T. Houet, O. Ribière, D. Laffly, T. Condom, S. Monnier, M. Schmutz, C. Camerlynck, J. P. Tihay, J. M. Soubeyroux, and P. René
The Cryosphere, 9, 1773–1795, https://doi.org/10.5194/tc-9-1773-2015,https://doi.org/10.5194/tc-9-1773-2015, 2015
Short summary
15 Sep 2015
Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations
N. Ivanova, L. T. Pedersen, R. T. Tonboe, S. Kern, G. Heygster, T. Lavergne, A. Sørensen, R. Saldo, G. Dybkjær, L. Brucker, and M. Shokr
The Cryosphere, 9, 1797–1817, https://doi.org/10.5194/tc-9-1797-2015,https://doi.org/10.5194/tc-9-1797-2015, 2015
Short summary
17 Sep 2015
Thermal energy in dry snow avalanches
W. Steinkogler, B. Sovilla, and M. Lehning
The Cryosphere, 9, 1819–1830, https://doi.org/10.5194/tc-9-1819-2015,https://doi.org/10.5194/tc-9-1819-2015, 2015
Short summary
18 Sep 2015
Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet
B. Noël, W. J. van de Berg, E. van Meijgaard, P. Kuipers Munneke, R. S. W. van de Wal, and M. R. van den Broeke
The Cryosphere, 9, 1831–1844, https://doi.org/10.5194/tc-9-1831-2015,https://doi.org/10.5194/tc-9-1831-2015, 2015
Short summary
22 Sep 2015
Ice sheet mass loss caused by dust and black carbon accumulation
T. Goelles, C. E. Bøggild, and R. Greve
The Cryosphere, 9, 1845–1856, https://doi.org/10.5194/tc-9-1845-2015,https://doi.org/10.5194/tc-9-1845-2015, 2015
Short summary
23 Sep 2015
A macroscale mixture theory analysis of deposition and sublimation rates during heat and mass transfer in dry snow
A. C. Hansen and W. E. Foslien
The Cryosphere, 9, 1857–1878, https://doi.org/10.5194/tc-9-1857-2015,https://doi.org/10.5194/tc-9-1857-2015, 2015
Short summary
24 Sep 2015
Satellite observations of changes in snow-covered land surface albedo during spring in the Northern Hemisphere
K. Atlaskina, F. Berninger, and G. de Leeuw
The Cryosphere, 9, 1879–1893, https://doi.org/10.5194/tc-9-1879-2015,https://doi.org/10.5194/tc-9-1879-2015, 2015
Short summary
25 Sep 2015
CryoSat-2 delivers monthly and inter-annual surface elevation change for Arctic ice caps
L. Gray, D. Burgess, L. Copland, M. N. Demuth, T. Dunse, K. Langley, and T. V. Schuler
The Cryosphere, 9, 1895–1913, https://doi.org/10.5194/tc-9-1895-2015,https://doi.org/10.5194/tc-9-1895-2015, 2015
Short summary
08 Oct 2015
Modeling of crack propagation in weak snowpack layers using the discrete element method
J. Gaume, A. van Herwijnen, G. Chambon, K. W. Birkeland, and J. Schweizer
The Cryosphere, 9, 1915–1932, https://doi.org/10.5194/tc-9-1915-2015,https://doi.org/10.5194/tc-9-1915-2015, 2015
Short summary
08 Oct 2015
Photopolarimetric retrievals of snow properties
M. Ottaviani, B. van Diedenhoven, and B. Cairns
The Cryosphere, 9, 1933–1942, https://doi.org/10.5194/tc-9-1933-2015,https://doi.org/10.5194/tc-9-1933-2015, 2015
13 Oct 2015
Projected 21st century changes in snow water equivalent over Northern Hemisphere landmasses from the CMIP5 model ensemble
H. X. Shi and C. H. Wang
The Cryosphere, 9, 1943–1953, https://doi.org/10.5194/tc-9-1943-2015,https://doi.org/10.5194/tc-9-1943-2015, 2015
15 Oct 2015
Lead detection in Arctic sea ice from CryoSat-2: quality assessment, lead area fraction and width distribution
A. Wernecke and L. Kaleschke
The Cryosphere, 9, 1955–1968, https://doi.org/10.5194/tc-9-1955-2015,https://doi.org/10.5194/tc-9-1955-2015, 2015
Short summary
20 Oct 2015
Microstructure-based modeling of snow mechanics: a discrete element approach
P. Hagenmuller, G. Chambon, and M. Naaim
The Cryosphere, 9, 1969–1982, https://doi.org/10.5194/tc-9-1969-2015,https://doi.org/10.5194/tc-9-1969-2015, 2015
Short summary
22 Oct 2015
Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China
S. Yang and Y. Shi
The Cryosphere, 9, 1983–1993, https://doi.org/10.5194/tc-9-1983-2015,https://doi.org/10.5194/tc-9-1983-2015, 2015
28 Oct 2015
Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau
R. Chen, J. Liu, E. Kang, Y. Yang, C. Han, Z. Liu, Y. Song, W. Qing, and P. Zhu
The Cryosphere, 9, 1995–2008, https://doi.org/10.5194/tc-9-1995-2015,https://doi.org/10.5194/tc-9-1995-2015, 2015
Short summary
02 Nov 2015
Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014
P. Kuipers Munneke, S. R. M. Ligtenberg, B. P. Y. Noël, I. M. Howat, J. E. Box, E. Mosley-Thompson, J. R. McConnell, K. Steffen, J. T. Harper, S. B. Das, and M. R. van den Broeke
The Cryosphere, 9, 2009–2025, https://doi.org/10.5194/tc-9-2009-2015,https://doi.org/10.5194/tc-9-2009-2015, 2015
Short summary
09 Nov 2015
Long-term coastal-polynya dynamics in the southern Weddell Sea from MODIS thermal-infrared imagery
S. Paul, S. Willmes, and G. Heinemann
The Cryosphere, 9, 2027–2041, https://doi.org/10.5194/tc-9-2027-2015,https://doi.org/10.5194/tc-9-2027-2015, 2015
Short summary
09 Nov 2015
| Highlight paper
Reducing uncertainties in projections of Antarctic ice mass loss
G. Durand and F. Pattyn
The Cryosphere, 9, 2043–2055, https://doi.org/10.5194/tc-9-2043-2015,https://doi.org/10.5194/tc-9-2043-2015, 2015
Short summary
10 Nov 2015
The global land shortwave cryosphere radiative effect during the MODIS era
D. Singh, M. G. Flanner, and J. Perket
The Cryosphere, 9, 2057–2070, https://doi.org/10.5194/tc-9-2057-2015,https://doi.org/10.5194/tc-9-2057-2015, 2015
Short summary
10 Nov 2015
Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data
N. Holzer, S. Vijay, T. Yao, B. Xu, M. Buchroithner, and T. Bolch
The Cryosphere, 9, 2071–2088, https://doi.org/10.5194/tc-9-2071-2015,https://doi.org/10.5194/tc-9-2071-2015, 2015
Short summary
11 Nov 2015
Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth
M.-O. Schmid, P. Baral, S. Gruber, S. Shahi, T. Shrestha, D. Stumm, and P. Wester
The Cryosphere, 9, 2089–2099, https://doi.org/10.5194/tc-9-2089-2015,https://doi.org/10.5194/tc-9-2089-2015, 2015
Short summary
16 Nov 2015
Microwave scattering coefficient of snow in MEMLS and DMRT-ML revisited: the relevance of sticky hard spheres and tomography-based estimates of stickiness
H. Löwe and G. Picard
The Cryosphere, 9, 2101–2117, https://doi.org/10.5194/tc-9-2101-2015,https://doi.org/10.5194/tc-9-2101-2015, 2015
Short summary
18 Nov 2015
A prognostic model of the sea-ice floe size and thickness distribution
C. Horvat and E. Tziperman
The Cryosphere, 9, 2119–2134, https://doi.org/10.5194/tc-9-2119-2015,https://doi.org/10.5194/tc-9-2119-2015, 2015
Short summary
18 Nov 2015
From Doktor Kurowski's Schneegrenze to our modern glacier equilibrium line altitude (ELA)
R. J. Braithwaite
The Cryosphere, 9, 2135–2148, https://doi.org/10.5194/tc-9-2135-2015,https://doi.org/10.5194/tc-9-2135-2015, 2015
Short summary
18 Nov 2015
Comparison of a coupled snow thermodynamic and radiative transfer model with in situ active microwave signatures of snow-covered smooth first-year sea ice
M. C. Fuller, T. Geldsetzer, J. Yackel, and J. P. S. Gill
The Cryosphere, 9, 2149–2161, https://doi.org/10.5194/tc-9-2149-2015,https://doi.org/10.5194/tc-9-2149-2015, 2015
Short summary
18 Nov 2015
Changing surface–atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland
C. Charalampidis, D. van As, J. E. Box, M. R. van den Broeke, W. T. Colgan, S. H. Doyle, A. L. Hubbard, M. MacFerrin, H. Machguth, and C. J. P. P. Smeets
The Cryosphere, 9, 2163–2181, https://doi.org/10.5194/tc-9-2163-2015,https://doi.org/10.5194/tc-9-2163-2015, 2015
20 Nov 2015
A new methodology to simulate subglacial deformation of water-saturated granular material
A. Damsgaard, D. L. Egholm, J. A. Piotrowski, S. Tulaczyk, N. K. Larsen, and C. F. Brædstrup
The Cryosphere, 9, 2183–2200, https://doi.org/10.5194/tc-9-2183-2015,https://doi.org/10.5194/tc-9-2183-2015, 2015
Short summary
26 Nov 2015
Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram
F. Paul
The Cryosphere, 9, 2201–2214, https://doi.org/10.5194/tc-9-2201-2015,https://doi.org/10.5194/tc-9-2201-2015, 2015
Short summary
01 Dec 2015
Brief communication: Getting Greenland's glaciers right – a new data set of all official Greenlandic glacier names
A. A. Bjørk, L. M. Kruse, and P. B. Michaelsen
The Cryosphere, 9, 2215–2218, https://doi.org/10.5194/tc-9-2215-2015,https://doi.org/10.5194/tc-9-2215-2015, 2015
Short summary
01 Dec 2015
Observations of seasonal and diurnal glacier velocities at Mount Rainier, Washington, using terrestrial radar interferometry
K. E. Allstadt, D. E. Shean, A. Campbell, M. Fahnestock, and S. D. Malone
The Cryosphere, 9, 2219–2235, https://doi.org/10.5194/tc-9-2219-2015,https://doi.org/10.5194/tc-9-2219-2015, 2015
Short summary
04 Dec 2015
Improved Arctic sea ice thickness projections using bias-corrected CMIP5 simulations
N. Melia, K. Haines, and E. Hawkins
The Cryosphere, 9, 2237–2251, https://doi.org/10.5194/tc-9-2237-2015,https://doi.org/10.5194/tc-9-2237-2015, 2015
Short summary
04 Dec 2015
Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia
V. Mikhalenko, S. Sokratov, S. Kutuzov, P. Ginot, M. Legrand, S. Preunkert, I. Lavrentiev, A. Kozachek, A. Ekaykin, X. Faïn, S. Lim, U. Schotterer, V. Lipenkov, and P. Toropov
The Cryosphere, 9, 2253–2270, https://doi.org/10.5194/tc-9-2253-2015,https://doi.org/10.5194/tc-9-2253-2015, 2015
Short summary
07 Dec 2015
Verification of the multi-layer SNOWPACK model with different water transport schemes
N. Wever, L. Schmid, A. Heilig, O. Eisen, C. Fierz, and M. Lehning
The Cryosphere, 9, 2271–2293, https://doi.org/10.5194/tc-9-2271-2015,https://doi.org/10.5194/tc-9-2271-2015, 2015
Short summary
07 Dec 2015
Debris-covered glacier energy balance model for Imja–Lhotse Shar Glacier in the Everest region of Nepal
D. R. Rounce, D. J. Quincey, and D. C. McKinney
The Cryosphere, 9, 2295–2310, https://doi.org/10.5194/tc-9-2295-2015,https://doi.org/10.5194/tc-9-2295-2015, 2015
Short summary
07 Dec 2015
Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance
C. Agosta, X. Fettweis, and R. Datta
The Cryosphere, 9, 2311–2321, https://doi.org/10.5194/tc-9-2311-2015,https://doi.org/10.5194/tc-9-2311-2015, 2015
Short summary
11 Dec 2015
Soot on Snow experiment: bidirectional reflectance factor measurements of contaminated snow
J. I. Peltoniemi, M. Gritsevich, T. Hakala, P. Dagsson-Waldhauserová, Ó. Arnalds, K. Anttila, H.-R. Hannula, N. Kivekäs, H. Lihavainen, O. Meinander, J. Svensson, A. Virkkula, and G. de Leeuw
The Cryosphere, 9, 2323–2337, https://doi.org/10.5194/tc-9-2323-2015,https://doi.org/10.5194/tc-9-2323-2015, 2015
Short summary
15 Dec 2015
Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking
T. Schellenberger, T. Dunse, A. Kääb, J. Kohler, and C. H. Reijmer
The Cryosphere, 9, 2339–2355, https://doi.org/10.5194/tc-9-2339-2015,https://doi.org/10.5194/tc-9-2339-2015, 2015
Short summary
15 Dec 2015
Measurements and modelling of snow particle size and shortwave infrared albedo over a melting Antarctic ice sheet
R. Pirazzini, P. Räisänen, T. Vihma, M. Johansson, and E.-M. Tastula
The Cryosphere, 9, 2357–2381, https://doi.org/10.5194/tc-9-2357-2015,https://doi.org/10.5194/tc-9-2357-2015, 2015
Short summary
15 Dec 2015
Summertime evolution of snow specific surface area close to the surface on the Antarctic Plateau
Q. Libois, G. Picard, L. Arnaud, M. Dumont, M. Lafaysse, S. Morin, and E. Lefebvre
The Cryosphere, 9, 2383–2398, https://doi.org/10.5194/tc-9-2383-2015,https://doi.org/10.5194/tc-9-2383-2015, 2015
Short summary
17 Dec 2015
Brief Communication: Global reconstructions of glacier mass change during the 20th century are consistent
B. Marzeion, P. W. Leclercq, J. G. Cogley, and A. H. Jarosch
The Cryosphere, 9, 2399–2404, https://doi.org/10.5194/tc-9-2399-2015,https://doi.org/10.5194/tc-9-2399-2015, 2015
Short summary
21 Dec 2015
Tropical and mid-latitude forcing of continental Antarctic temperatures
C. S. M. Turney, C. J. Fogwill, A. R. Klekociuk, T. D. van Ommen, M. A. J. Curran, A. D. Moy, and J. G. Palmer
The Cryosphere, 9, 2405–2415, https://doi.org/10.5194/tc-9-2405-2015,https://doi.org/10.5194/tc-9-2405-2015, 2015
Short summary
21 Dec 2015
Inconsistency in precipitation measurements across the Alaska–Yukon border
L. Scaff, D. Yang, Y. Li, and E. Mekis
The Cryosphere, 9, 2417–2428, https://doi.org/10.5194/tc-9-2417-2015,https://doi.org/10.5194/tc-9-2417-2015, 2015
Short summary
21 Dec 2015
| Highlight paper
Committed retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibration
D. N. Goldberg, P. Heimbach, I. Joughin, and B. Smith
The Cryosphere, 9, 2429–2446, https://doi.org/10.5194/tc-9-2429-2015,https://doi.org/10.5194/tc-9-2429-2015, 2015
Short summary
CC BY 4.0