Articles | Volume 8, issue 6
The Cryosphere, 8, 2135–2145, 2014
https://doi.org/10.5194/tc-8-2135-2014
The Cryosphere, 8, 2135–2145, 2014
https://doi.org/10.5194/tc-8-2135-2014
Research article
 | Highlight paper
24 Nov 2014
Research article  | Highlight paper | 24 Nov 2014

Detailed ice loss pattern in the northern Antarctic Peninsula: widespread decline driven by ice front retreats

T. A. Scambos et al.

Related authors

Weakening of the pinning point buttressing Thwaites Glacier, West Antarctica
Christian T. Wild, Karen E. Alley, Atsuhiro Muto, Martin Truffer, Ted A. Scambos, and Erin C. Pettit
The Cryosphere, 16, 397–417, https://doi.org/10.5194/tc-16-397-2022,https://doi.org/10.5194/tc-16-397-2022, 2022
Short summary
Two decades of dynamic change and progressive destabilization on the Thwaites Eastern Ice Shelf
Karen E. Alley, Christian T. Wild, Adrian Luckman, Ted A. Scambos, Martin Truffer, Erin C. Pettit, Atsuhiro Muto, Bruce Wallin, Marin Klinger, Tyler Sutterley, Sarah F. Child, Cyrus Hulen, Jan T. M. Lenaerts, Michelle Maclennan, Eric Keenan, and Devon Dunmire
The Cryosphere, 15, 5187–5203, https://doi.org/10.5194/tc-15-5187-2021,https://doi.org/10.5194/tc-15-5187-2021, 2021
Short summary
Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: approaches to spectrally discriminate red and green communities and their impact on snowmelt
Alia L. Khan, Heidi M. Dierssen, Ted A. Scambos, Juan Höfer, and Raul R. Cordero
The Cryosphere, 15, 133–148, https://doi.org/10.5194/tc-15-133-2021,https://doi.org/10.5194/tc-15-133-2021, 2021
Short summary
Brief communication: Mapping Greenland's perennial firn aquifers using enhanced-resolution L-band brightness temperature image time series
Julie Z. Miller, David G. Long, Kenneth C. Jezek, Joel T. Johnson, Mary J. Brodzik, Christopher A. Shuman, Lora S. Koenig, and Ted A. Scambos
The Cryosphere, 14, 2809–2817, https://doi.org/10.5194/tc-14-2809-2020,https://doi.org/10.5194/tc-14-2809-2020, 2020
Extracting recent short-term glacier velocity evolution over southern Alaska and the Yukon from a large collection of Landsat data
Bas Altena, Ted Scambos, Mark Fahnestock, and Andreas Kääb
The Cryosphere, 13, 795–814, https://doi.org/10.5194/tc-13-795-2019,https://doi.org/10.5194/tc-13-795-2019, 2019
Short summary

Related subject area

Antarctic
An evaluation of Antarctic sea-ice thickness from the Global Ice-Ocean Modeling and Assimilation System based on in situ and satellite observations
Sutao Liao, Hao Luo, Jinfei Wang, Qian Shi, Jinlun Zhang, and Qinghua Yang
The Cryosphere, 16, 1807–1819, https://doi.org/10.5194/tc-16-1807-2022,https://doi.org/10.5194/tc-16-1807-2022, 2022
Short summary
Review article: Existing and potential evidence for Holocene grounding line retreat and readvance in Antarctica
Joanne S. Johnson, Ryan A. Venturelli, Greg Balco, Claire S. Allen, Scott Braddock, Seth Campbell, Brent M. Goehring, Brenda L. Hall, Peter D. Neff, Keir A. Nichols, Dylan H. Rood, Elizabeth R. Thomas, and John Woodward
The Cryosphere, 16, 1543–1562, https://doi.org/10.5194/tc-16-1543-2022,https://doi.org/10.5194/tc-16-1543-2022, 2022
Short summary
Mass evolution of the Antarctic Peninsula over the last 2 decades from a joint Bayesian inversion
Stephen J. Chuter, Andrew Zammit-Mangion, Jonathan Rougier, Geoffrey Dawson, and Jonathan L. Bamber
The Cryosphere, 16, 1349–1367, https://doi.org/10.5194/tc-16-1349-2022,https://doi.org/10.5194/tc-16-1349-2022, 2022
Short summary
Rectification and validation of a daily satellite-derived Antarctic sea ice velocity product
Tian R. Tian, Alexander D. Fraser, Noriaki Kimura, Chen Zhao, and Petra Heil
The Cryosphere, 16, 1299–1314, https://doi.org/10.5194/tc-16-1299-2022,https://doi.org/10.5194/tc-16-1299-2022, 2022
Short summary
Net effect of ice-sheet–atmosphere interactions reduces simulated transient Miocene Antarctic ice-sheet variability
Lennert B. Stap, Constantijn J. Berends, Meike D. W. Scherrenberg, Roderik S. W. van de Wal, and Edward G. W. Gasson
The Cryosphere, 16, 1315–1332, https://doi.org/10.5194/tc-16-1315-2022,https://doi.org/10.5194/tc-16-1315-2022, 2022
Short summary

Cited articles

Barrand, N. E., Vaughan, D. G., Steiner, N., Tedesco, M., Kuipers Munneke, P., van den Broeke, M. J., and Hosking, J. S.: Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling, J. Geophys Res., 118, 315–330, https://doi.org/10.1029/2012JF002559, 2013.
Berthier, E., Scambos, T. A., and Shuman, C. A.: Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002, Geophys. Res. Lett., 39 L13501, https://doi.org/10.1029/2012GL051755, 2012.
Christ, A., Talia-Murray, M., Elking, N., Domack, E., Leventer, A., Lavoie, C., Brachfield, S., Yoo, K.-C., Gilbert, R., Jeong, S.-M., Petrushak, S., and Wellner, J.: Late Holocene glacial advance and ice shelf growth in Barilari 1Bay, Graham Land, west Antarctic Peninsula, Geol. Soc. Am. Bull., https://doi.org/10.1130/B31035.1, online first, 2014.
Cook, A. J. and Vaughan, D. G.: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years, The Cryosphere, 4, 77–98, https://doi.org/10.5194/tc-4-77-2010, 2010.
Cook, A. J., Fox, A. J., Vaughan, D. G., and Ferrigno, J. G.: Retreating glacier fronts on the Antarctic Peninsula over the past half-century, Science, 308, 541–544, 2005.
Download
Short summary
This study of one of the most rapidly changing glacier regions on earth -- the Antarctic Peninsula -- uses two types of satellite data to measure the rates of ice loss in detail for the individual glaciers. The satellite data is laser altimetry from ICESat and stereo image DEM differences. The results show that 24..9 ± 7.8 billion tons of ice are lost from the region north of 66°S on the peninsula each year. The majority of the data cover 2003-2008.