Articles | Volume 8, issue 1
https://doi.org/10.5194/tc-8-209-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-8-209-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Brief Communication: Further summer speedup of Jakobshavn Isbræ
I. Joughin
Polar Science Center, Applied Physics Lab, University of Washington, 1013 NE 40th St., Seattle, WA 98105-6698, USA
B. E. Smith
Polar Science Center, Applied Physics Lab, University of Washington, 1013 NE 40th St., Seattle, WA 98105-6698, USA
D. E. Shean
Polar Science Center, Applied Physics Lab, University of Washington, 1013 NE 40th St., Seattle, WA 98105-6698, USA
Earth & Space Sciences, University of Washington, Seattle, WA 98195, USA
D. Floricioiu
German Aerospace Center (DLR), Remote Sensing Technology Institute, SAR Signal Processing, Muenchenerstr. 20, 82230 Wessling, Germany
Related authors
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Daniel R. Shapero, Jessica A. Badgeley, Andrew O. Hoffman, and Ian R. Joughin
Geosci. Model Dev., 14, 4593–4616, https://doi.org/10.5194/gmd-14-4593-2021, https://doi.org/10.5194/gmd-14-4593-2021, 2021
Short summary
Short summary
This paper describes a new software package called "icepack" for modeling the flow of ice sheets and glaciers. Glaciologists use tools like icepack to better understand how ice sheets flow, what role they have played in shaping Earth's climate, and how much sea level rise we can expect in the coming decades to centuries. The icepack package includes several innovations to help researchers describe and solve interesting glaciological problems and to experiment with the underlying model physics.
Bryan Riel, Brent Minchew, and Ian Joughin
The Cryosphere, 15, 407–429, https://doi.org/10.5194/tc-15-407-2021, https://doi.org/10.5194/tc-15-407-2021, 2021
Short summary
Short summary
The availability of large volumes of publicly available remote sensing data over terrestrial glaciers provides new opportunities for studying the response of glaciers to a changing climate. We present an efficient method for tracking changes in glacier speeds at high spatial and temporal resolutions from surface observations, demonstrating the recovery of traveling waves over Jakobshavn Isbræ, Greenland. Quantification of wave properties may ultimately enhance understanding of glacier dynamics.
Ian Joughin, David E. Shean, Benjamin E. Smith, and Dana Floricioiu
The Cryosphere, 14, 211–227, https://doi.org/10.5194/tc-14-211-2020, https://doi.org/10.5194/tc-14-211-2020, 2020
Short summary
Short summary
Jakobshavn Isbræ, considered to be Greenland's fastest glacier, has varied its speed and thinned dramatically since the 1990s. Here we examine the glacier's behaviour over the last decade to better understand this behaviour. We find that when the floating ice (mélange) in front of the glacier freezes in place during the winter, it can control the glacier's speed and thinning rate. A recently colder ocean has strengthened this mélange, allowing the glacier to recoup some of its previous losses.
David E. Shean, Ian R. Joughin, Pierre Dutrieux, Benjamin E. Smith, and Etienne Berthier
The Cryosphere, 13, 2633–2656, https://doi.org/10.5194/tc-13-2633-2019, https://doi.org/10.5194/tc-13-2633-2019, 2019
Short summary
Short summary
We produced an 8-year, high-resolution DEM record for Pine Island Glacier (PIG), a site of substantial Antarctic mass loss in recent decades. We developed methods to study the spatiotemporal evolution of ice shelf basal melting, which is responsible for ~ 60 % of PIG mass loss. We present shelf-wide basal melt rates and document relative melt rates for kilometer-scale basal channels and keels, offering new indirect observations of ice–ocean interaction beneath a vulnerable ice shelf.
Ian Joughin, Ben E. Smith, and Ian Howat
The Cryosphere, 12, 2211–2227, https://doi.org/10.5194/tc-12-2211-2018, https://doi.org/10.5194/tc-12-2211-2018, 2018
Short summary
Short summary
We describe several new ice velocity maps produced using Landsat 8 and Copernicus Sentinel 1A/B data. We focus on several sites where we analyse these data in conjunction with earlier data from this project, which extend back to the year 2000. In particular, we find that Jakobshavn Isbræ began slowing substantially in 2017. The growing duration of these records will allow more robust analyses of the processes controlling fast flow and how they are affected by climate and other forcings.
Adriano Lemos, Andrew Shepherd, Malcolm McMillan, Anna E. Hogg, Emma Hatton, and Ian Joughin
The Cryosphere, 12, 2087–2097, https://doi.org/10.5194/tc-12-2087-2018, https://doi.org/10.5194/tc-12-2087-2018, 2018
Short summary
Short summary
We present time-series of ice surface velocities on four key outlet glaciers in Greenland, derived from sequential satellite imagery acquired between October 2014 and February 2017. We demonstrate it is possible to resolve seasonal and inter-annual changes in outlet glacier with an estimated certainty of 10 %. These datasets are key for the timely identification of emerging signals of dynamic imbalance and for understanding the processes driving ice velocity change.
David A. Lilien, Ian Joughin, Benjamin Smith, and David E. Shean
The Cryosphere, 12, 1415–1431, https://doi.org/10.5194/tc-12-1415-2018, https://doi.org/10.5194/tc-12-1415-2018, 2018
Short summary
Short summary
We used remotely sensed data and a numerical model to study the processes controlling the stability of two rapidly changing ice shelves in West Antarctica. Both these ice shelves have been losing mass since at least 1996, primarily as a result of ocean-forced melt. We find that this imbalance likely results from changes initiated around 1970 or earlier. Our results also show that the shelves’ differing speedup is controlled by the strength of their margins and their grounding-line positions.
David E. Shean, Knut Christianson, Kristine M. Larson, Stefan R. M. Ligtenberg, Ian R. Joughin, Ben E. Smith, C. Max Stevens, Mitchell Bushuk, and David M. Holland
The Cryosphere, 11, 2655–2674, https://doi.org/10.5194/tc-11-2655-2017, https://doi.org/10.5194/tc-11-2655-2017, 2017
Short summary
Short summary
We used long-term GPS data and interferometric reflectometry (GPS-IR) to measure velocity, strain rate and surface elevation for the PIG ice shelf – a site of significant mass loss in recent decades. We combined these observations with high-res DEMs and firn model output to constrain surface mass balance and basal melt rates. We document notable spatial variability in basal melt rates but limited temporal variability from 2012 to 2014 despite significant changes in sub-shelf ocean heat content.
Benjamin E. Smith, Noel Gourmelen, Alexander Huth, and Ian Joughin
The Cryosphere, 11, 451–467, https://doi.org/10.5194/tc-11-451-2017, https://doi.org/10.5194/tc-11-451-2017, 2017
Short summary
Short summary
In this paper we investigate elevation changes of Thwaites Glacier, West Antarctica, one of the main sources of excess ice discharge into the ocean. We find that in early 2013, four subglacial lakes separated by 100 km drained suddenly, discharging more than 3 km3 of water under the fastest part of the glacier in less than 6 months. Concurrent ice-speed measurements show only minor changes, suggesting that ice dynamics are not strongly sensitive to changes in water flow.
D. N. Goldberg, P. Heimbach, I. Joughin, and B. Smith
The Cryosphere, 9, 2429–2446, https://doi.org/10.5194/tc-9-2429-2015, https://doi.org/10.5194/tc-9-2429-2015, 2015
Short summary
Short summary
We calibrate a time-dependent ice model through optimal fit to transient observations of surface elevation and velocity, a novel procedure in glaciology and in particular for an ice stream with a dynamic grounding line. We show this procedure gives a level of confidence in model projections that cannot be achieved through more commonly used glaciological data assimilation methods. We show that Smith Glacier is in a state of retreat regardless of climatic forcing for the next several decades.
R. T. W. L. Hurkmans, J. L. Bamber, C. H. Davis, I. R. Joughin, K. S. Khvorostovsky, B. S. Smith, and N. Schoen
The Cryosphere, 8, 1725–1740, https://doi.org/10.5194/tc-8-1725-2014, https://doi.org/10.5194/tc-8-1725-2014, 2014
B. Medley, I. Joughin, B. E. Smith, S. B. Das, E. J. Steig, H. Conway, S. Gogineni, C. Lewis, A. S. Criscitiello, J. R. McConnell, M. R. van den Broeke, J. T. M. Lenaerts, D. H. Bromwich, J. P. Nicolas, and C. Leuschen
The Cryosphere, 8, 1375–1392, https://doi.org/10.5194/tc-8-1375-2014, https://doi.org/10.5194/tc-8-1375-2014, 2014
P. Dutrieux, D. G. Vaughan, H. F. J. Corr, A. Jenkins, P. R. Holland, I. Joughin, and A. H. Fleming
The Cryosphere, 7, 1543–1555, https://doi.org/10.5194/tc-7-1543-2013, https://doi.org/10.5194/tc-7-1543-2013, 2013
A. P. Ahlstrøm, S. B. Andersen, M. L. Andersen, H. Machguth, F. M. Nick, I. Joughin, C. H. Reijmer, R. S. W. van de Wal, J. P. Merryman Boncori, J. E. Box, M. Citterio, D. van As, R. S. Fausto, and A. Hubbard
Earth Syst. Sci. Data, 5, 277–287, https://doi.org/10.5194/essd-5-277-2013, https://doi.org/10.5194/essd-5-277-2013, 2013
I. Joughin, S. B. Das, G. E. Flowers, M. D. Behn, R. B. Alley, M. A. King, B. E. Smith, J. L. Bamber, M. R. van den Broeke, and J. H. van Angelen
The Cryosphere, 7, 1185–1192, https://doi.org/10.5194/tc-7-1185-2013, https://doi.org/10.5194/tc-7-1185-2013, 2013
George Brencher, Scott Henderson, and David Shean
EGUsphere, https://doi.org/10.5194/egusphere-2024-3196, https://doi.org/10.5194/egusphere-2024-3196, 2024
Short summary
Short summary
Glacial lakes are often dammed by moraines, which can fail, causing floods. Traditional methods of measuring moraine dam structure are not feasible for thousands of lakes. We instead developed a method to measure moraine dam movement with satellite radar data and applied this approach to the Imja Lake moraine dam in Nepal. We found that the moraine dam moved ~90 cm from 2017–2024, providing information about its internal structure. These data can help guide limited hazard remediation resources.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Whyjay Zheng, Shashank Bhushan, Maximillian Van Wyk De Vries, William Kochtitzky, David Shean, Luke Copland, Christine Dow, Renette Jones-Ivey, and Fernando Pérez
The Cryosphere, 17, 4063–4078, https://doi.org/10.5194/tc-17-4063-2023, https://doi.org/10.5194/tc-17-4063-2023, 2023
Short summary
Short summary
We design and propose a method that can evaluate the quality of glacier velocity maps. The method includes two numbers that we can calculate for each velocity map. Based on statistics and ice flow physics, velocity maps with numbers close to the recommended values are considered to have good quality. We test the method using the data from Kaskawulsh Glacier, Canada, and release an open-sourced software tool called GLAcier Feature Tracking testkit (GLAFT) to help users assess their velocity maps.
César Deschamps-Berger, Simon Gascoin, David Shean, Hannah Besso, Ambroise Guiot, and Juan Ignacio López-Moreno
The Cryosphere, 17, 2779–2792, https://doi.org/10.5194/tc-17-2779-2023, https://doi.org/10.5194/tc-17-2779-2023, 2023
Short summary
Short summary
The estimation of the snow depth in mountains is hard, despite the importance of the snowpack for human societies and ecosystems. We measured the snow depth in mountains by comparing the elevation of points measured with snow from the high-precision altimetric satellite ICESat-2 to the elevation without snow from various sources. Snow depths derived only from ICESat-2 were too sparse, but using external airborne/satellite products results in spatially richer and sufficiently precise snow depths.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Maximillian Van Wyk de Vries, Shashank Bhushan, Mylène Jacquemart, César Deschamps-Berger, Etienne Berthier, Simon Gascoin, David E. Shean, Dan H. Shugar, and Andreas Kääb
Nat. Hazards Earth Syst. Sci., 22, 3309–3327, https://doi.org/10.5194/nhess-22-3309-2022, https://doi.org/10.5194/nhess-22-3309-2022, 2022
Short summary
Short summary
On 7 February 2021, a large rock–ice avalanche occurred in Chamoli, Indian Himalaya. The resulting debris flow swept down the nearby valley, leaving over 200 people dead or missing. We use a range of satellite datasets to investigate how the collapse area changed prior to collapse. We show that signs of instability were visible as early 5 years prior to collapse. However, it would likely not have been possible to predict the timing of the event from current satellite datasets.
Daniel R. Shapero, Jessica A. Badgeley, Andrew O. Hoffman, and Ian R. Joughin
Geosci. Model Dev., 14, 4593–4616, https://doi.org/10.5194/gmd-14-4593-2021, https://doi.org/10.5194/gmd-14-4593-2021, 2021
Short summary
Short summary
This paper describes a new software package called "icepack" for modeling the flow of ice sheets and glaciers. Glaciologists use tools like icepack to better understand how ice sheets flow, what role they have played in shaping Earth's climate, and how much sea level rise we can expect in the coming decades to centuries. The icepack package includes several innovations to help researchers describe and solve interesting glaciological problems and to experiment with the underlying model physics.
Joachim Meyer, McKenzie Skiles, Jeffrey Deems, Kat Boremann, and David Shean
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-281, https://doi.org/10.5194/hess-2021-281, 2021
Revised manuscript not accepted
Short summary
Short summary
Seasonally accumulated snow in the mountains forms a natural water reservoir which is challenging to measure in the rugged and remote terrain. Here, we use overlapping aerial images that model surface elevations using software to map snow depth by calculating the difference in surface elevations between two dates, one with snow and one without. Results demonstrate the utility of aerial images to improve our ability to capture the amount of water held as snow in remote and inaccessible locations.
Joachim Meyer, S. McKenzie Skiles, Jeffrey Deems, Kat Bormann, and David Shean
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-34, https://doi.org/10.5194/tc-2021-34, 2021
Manuscript not accepted for further review
Short summary
Short summary
Snow that accumulates seasonally in mountains forms a natural water reservoir and is difficult to measure in the rugged and remote landscapes. Here, we use modern software that models surface elevations from overlapping aerial images to map snow depth by calculating the difference in surface elevations between two dates, one with snow and one without. Results demonstrate the potential value of aerial images for understanding the amount of water held as snow in remote and inaccessible locations.
Bryan Riel, Brent Minchew, and Ian Joughin
The Cryosphere, 15, 407–429, https://doi.org/10.5194/tc-15-407-2021, https://doi.org/10.5194/tc-15-407-2021, 2021
Short summary
Short summary
The availability of large volumes of publicly available remote sensing data over terrestrial glaciers provides new opportunities for studying the response of glaciers to a changing climate. We present an efficient method for tracking changes in glacier speeds at high spatial and temporal resolutions from surface observations, demonstrating the recovery of traveling waves over Jakobshavn Isbræ, Greenland. Quantification of wave properties may ultimately enhance understanding of glacier dynamics.
César Deschamps-Berger, Simon Gascoin, Etienne Berthier, Jeffrey Deems, Ethan Gutmann, Amaury Dehecq, David Shean, and Marie Dumont
The Cryosphere, 14, 2925–2940, https://doi.org/10.5194/tc-14-2925-2020, https://doi.org/10.5194/tc-14-2925-2020, 2020
Short summary
Short summary
We evaluate a recent method to map snow depth based on satellite photogrammetry. We compare it with accurate airborne laser-scanning measurements in the Sierra Nevada, USA. We find that satellite data capture the relationship between snow depth and elevation at the catchment scale and also small-scale features like snow drifts and avalanche deposits. We conclude that satellite photogrammetry stands out as a convenient method to estimate the spatial distribution of snow depth in high mountains.
Ian Joughin, David E. Shean, Benjamin E. Smith, and Dana Floricioiu
The Cryosphere, 14, 211–227, https://doi.org/10.5194/tc-14-211-2020, https://doi.org/10.5194/tc-14-211-2020, 2020
Short summary
Short summary
Jakobshavn Isbræ, considered to be Greenland's fastest glacier, has varied its speed and thinned dramatically since the 1990s. Here we examine the glacier's behaviour over the last decade to better understand this behaviour. We find that when the floating ice (mélange) in front of the glacier freezes in place during the winter, it can control the glacier's speed and thinning rate. A recently colder ocean has strengthened this mélange, allowing the glacier to recoup some of its previous losses.
David E. Shean, Ian R. Joughin, Pierre Dutrieux, Benjamin E. Smith, and Etienne Berthier
The Cryosphere, 13, 2633–2656, https://doi.org/10.5194/tc-13-2633-2019, https://doi.org/10.5194/tc-13-2633-2019, 2019
Short summary
Short summary
We produced an 8-year, high-resolution DEM record for Pine Island Glacier (PIG), a site of substantial Antarctic mass loss in recent decades. We developed methods to study the spatiotemporal evolution of ice shelf basal melting, which is responsible for ~ 60 % of PIG mass loss. We present shelf-wide basal melt rates and document relative melt rates for kilometer-scale basal channels and keels, offering new indirect observations of ice–ocean interaction beneath a vulnerable ice shelf.
Ian Joughin, Ben E. Smith, and Ian Howat
The Cryosphere, 12, 2211–2227, https://doi.org/10.5194/tc-12-2211-2018, https://doi.org/10.5194/tc-12-2211-2018, 2018
Short summary
Short summary
We describe several new ice velocity maps produced using Landsat 8 and Copernicus Sentinel 1A/B data. We focus on several sites where we analyse these data in conjunction with earlier data from this project, which extend back to the year 2000. In particular, we find that Jakobshavn Isbræ began slowing substantially in 2017. The growing duration of these records will allow more robust analyses of the processes controlling fast flow and how they are affected by climate and other forcings.
Adriano Lemos, Andrew Shepherd, Malcolm McMillan, Anna E. Hogg, Emma Hatton, and Ian Joughin
The Cryosphere, 12, 2087–2097, https://doi.org/10.5194/tc-12-2087-2018, https://doi.org/10.5194/tc-12-2087-2018, 2018
Short summary
Short summary
We present time-series of ice surface velocities on four key outlet glaciers in Greenland, derived from sequential satellite imagery acquired between October 2014 and February 2017. We demonstrate it is possible to resolve seasonal and inter-annual changes in outlet glacier with an estimated certainty of 10 %. These datasets are key for the timely identification of emerging signals of dynamic imbalance and for understanding the processes driving ice velocity change.
David A. Lilien, Ian Joughin, Benjamin Smith, and David E. Shean
The Cryosphere, 12, 1415–1431, https://doi.org/10.5194/tc-12-1415-2018, https://doi.org/10.5194/tc-12-1415-2018, 2018
Short summary
Short summary
We used remotely sensed data and a numerical model to study the processes controlling the stability of two rapidly changing ice shelves in West Antarctica. Both these ice shelves have been losing mass since at least 1996, primarily as a result of ocean-forced melt. We find that this imbalance likely results from changes initiated around 1970 or earlier. Our results also show that the shelves’ differing speedup is controlled by the strength of their margins and their grounding-line positions.
David E. Shean, Knut Christianson, Kristine M. Larson, Stefan R. M. Ligtenberg, Ian R. Joughin, Ben E. Smith, C. Max Stevens, Mitchell Bushuk, and David M. Holland
The Cryosphere, 11, 2655–2674, https://doi.org/10.5194/tc-11-2655-2017, https://doi.org/10.5194/tc-11-2655-2017, 2017
Short summary
Short summary
We used long-term GPS data and interferometric reflectometry (GPS-IR) to measure velocity, strain rate and surface elevation for the PIG ice shelf – a site of significant mass loss in recent decades. We combined these observations with high-res DEMs and firn model output to constrain surface mass balance and basal melt rates. We document notable spatial variability in basal melt rates but limited temporal variability from 2012 to 2014 despite significant changes in sub-shelf ocean heat content.
Benjamin E. Smith, Noel Gourmelen, Alexander Huth, and Ian Joughin
The Cryosphere, 11, 451–467, https://doi.org/10.5194/tc-11-451-2017, https://doi.org/10.5194/tc-11-451-2017, 2017
Short summary
Short summary
In this paper we investigate elevation changes of Thwaites Glacier, West Antarctica, one of the main sources of excess ice discharge into the ocean. We find that in early 2013, four subglacial lakes separated by 100 km drained suddenly, discharging more than 3 km3 of water under the fastest part of the glacier in less than 6 months. Concurrent ice-speed measurements show only minor changes, suggesting that ice dynamics are not strongly sensitive to changes in water flow.
A. Pope, T. A. Scambos, M. Moussavi, M. Tedesco, M. Willis, D. Shean, and S. Grigsby
The Cryosphere, 10, 15–27, https://doi.org/10.5194/tc-10-15-2016, https://doi.org/10.5194/tc-10-15-2016, 2016
Short summary
Short summary
Liquid water stored on the surface of ice sheets and glaciers, such as that in surface (supraglacial) lakes, plays a key role in the glacial hydrological system. Multispectral remote sensing can be used to detect lakes and estimate their depth. Here, we use in situ data to assess lake depth retrieval using the recently launched Landsat 8. We validate Landsat 8-derived depths and provide suggestions for future applications. We apply our method to a case study are in Greenland for summer 2014.
D. N. Goldberg, P. Heimbach, I. Joughin, and B. Smith
The Cryosphere, 9, 2429–2446, https://doi.org/10.5194/tc-9-2429-2015, https://doi.org/10.5194/tc-9-2429-2015, 2015
Short summary
Short summary
We calibrate a time-dependent ice model through optimal fit to transient observations of surface elevation and velocity, a novel procedure in glaciology and in particular for an ice stream with a dynamic grounding line. We show this procedure gives a level of confidence in model projections that cannot be achieved through more commonly used glaciological data assimilation methods. We show that Smith Glacier is in a state of retreat regardless of climatic forcing for the next several decades.
J. Wuite, H. Rott, M. Hetzenecker, D. Floricioiu, J. De Rydt, G. H. Gudmundsson, T. Nagler, and M. Kern
The Cryosphere, 9, 957–969, https://doi.org/10.5194/tc-9-957-2015, https://doi.org/10.5194/tc-9-957-2015, 2015
Short summary
Short summary
We present new analysis of satellite data showing the variability of glacier velocities in the Larsen B area, Antarctic Peninsula, back to 1995. Velocity data and estimates of ice thickness are used to derive ice discharge at different epochs. Velocities of the glaciers remain to date well above the velocities of the pre-collapse period. The response of individual glaciers differs, and velocities show significant temporal fluctuations, implying major variations in ice discharge and mass balance.
R. T. W. L. Hurkmans, J. L. Bamber, C. H. Davis, I. R. Joughin, K. S. Khvorostovsky, B. S. Smith, and N. Schoen
The Cryosphere, 8, 1725–1740, https://doi.org/10.5194/tc-8-1725-2014, https://doi.org/10.5194/tc-8-1725-2014, 2014
B. Medley, I. Joughin, B. E. Smith, S. B. Das, E. J. Steig, H. Conway, S. Gogineni, C. Lewis, A. S. Criscitiello, J. R. McConnell, M. R. van den Broeke, J. T. M. Lenaerts, D. H. Bromwich, J. P. Nicolas, and C. Leuschen
The Cryosphere, 8, 1375–1392, https://doi.org/10.5194/tc-8-1375-2014, https://doi.org/10.5194/tc-8-1375-2014, 2014
P. Dutrieux, D. G. Vaughan, H. F. J. Corr, A. Jenkins, P. R. Holland, I. Joughin, and A. H. Fleming
The Cryosphere, 7, 1543–1555, https://doi.org/10.5194/tc-7-1543-2013, https://doi.org/10.5194/tc-7-1543-2013, 2013
A. P. Ahlstrøm, S. B. Andersen, M. L. Andersen, H. Machguth, F. M. Nick, I. Joughin, C. H. Reijmer, R. S. W. van de Wal, J. P. Merryman Boncori, J. E. Box, M. Citterio, D. van As, R. S. Fausto, and A. Hubbard
Earth Syst. Sci. Data, 5, 277–287, https://doi.org/10.5194/essd-5-277-2013, https://doi.org/10.5194/essd-5-277-2013, 2013
I. Joughin, S. B. Das, G. E. Flowers, M. D. Behn, R. B. Alley, M. A. King, B. E. Smith, J. L. Bamber, M. R. van den Broeke, and J. H. van Angelen
The Cryosphere, 7, 1185–1192, https://doi.org/10.5194/tc-7-1185-2013, https://doi.org/10.5194/tc-7-1185-2013, 2013
Related subject area
Ice Sheets
Probabilistic projections of the Amery Ice Shelf catchment, Antarctica, under high ice-shelf basal melt conditions
Reconstructing dynamics of the Baltic Ice Stream Complex during deglaciation of the Last Scandinavian Ice Sheet
The influence of firn-layer material properties on surface crevasse propagation in glaciers and ice shelves
Assessing the potential for ice flow piracy between the Totten and Vanderford glaciers, East Antarctica
Stagnant ice and age modelling in the Dome C region, Antarctica
Polar firn properties in Greenland and Antarctica and related effects on microwave brightness temperatures
A model of the weathering crust and microbial activity on an ice-sheet surface
PISM-LakeCC: Implementing an adaptive proglacial lake boundary in an ice sheet model
Remapping of Greenland ice sheet surface mass balance anomalies for large ensemble sea-level change projections
Brief communication: On calculating the sea-level contribution in marine ice-sheet models
A simple stress-based cliff-calving law
Scaling of instability timescales of Antarctic outlet glaciers based on one-dimensional similitude analysis
A statistical fracture model for Antarctic ice shelves and glaciers
Modelled fracture and calving on the Totten Ice Shelf
Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison
Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years
Influence of temperature fluctuations on equilibrium
ice sheet volume
GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier ice shelf, Antarctica
Analysis of ice shelf flexure and its InSAR representation in the grounding zone of the southern McMurdo Ice Shelf
Boundary layer models for calving marine outlet glaciers
Liquid water content in ice estimated through a full-depth ground radar profile and borehole measurements in western Greenland
Dynamic influence of pinning points on marine ice-sheet stability: a numerical study in Dronning Maud Land, East Antarctica
Persistence and variability of ice-stream grounding lines on retrograde bed slopes
Similitude of ice dynamics against scaling of geometry and physical parameters
An ice-sheet-wide framework for englacial attenuation from ice-penetrating radar data
Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model
The influence of a model subglacial lake on ice dynamics and internal layering
Sheet, stream, and shelf flow as progressive ice-bed uncoupling: Byrd Glacier, Antarctica and Jakobshavn Isbrae, Greenland
SeaRISE experiments revisited: potential sources of spread in multi-model projections of the Greenland ice sheet
Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014
Ice sheet mass loss caused by dust and black carbon accumulation
Temporal variations in the flow of a large Antarctic ice stream controlled by tidally induced changes in the subglacial water system
Evolution of ice-shelf channels in Antarctic ice shelves
Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning
How do icebergs affect the Greenland ice sheet under pre-industrial conditions? – a model study with a fully coupled ice-sheet–climate model
Seismic wave propagation in anisotropic ice – Part 1: Elasticity tensor and derived quantities from ice-core properties
Seismic wave propagation in anisotropic ice – Part 2: Effects of crystal anisotropy in geophysical data
Simulating the Greenland ice sheet under present-day and palaeo constraints including a new discharge parameterization
Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2
The importance of insolation changes for paleo ice sheet modeling
Parameterization of basal friction near grounding lines in a one-dimensional ice sheet model
A range correction for ICESat and its potential impact on ice-sheet mass balance studies
Creep deformation and buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf
Scatter of mass changes estimates at basin scale for Greenland and Antarctica
Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow variability
Hindcasting to measure ice sheet model sensitivity to initial states
Surface undulations of Antarctic ice streams tightly controlled by bedrock topography
Manufactured solutions and the verification of three-dimensional Stokes ice-sheet models
Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model
Radar diagnosis of the subglacial conditions in Dronning Maud Land, East Antarctica
Sanket Jantre, Matthew J. Hoffman, Nathan M. Urban, Trevor Hillebrand, Mauro Perego, Stephen Price, and John D. Jakeman
EGUsphere, https://doi.org/10.5194/egusphere-2024-1677, https://doi.org/10.5194/egusphere-2024-1677, 2024
Short summary
Short summary
We investigate potential sea-level rise from Antarctica's Lambert Glacier, previously thought stable but now at risk from ocean warming by 2100. Combining statistical methods with limited supercomputer simulations, we calibrated our ice-sheet model using three observables. We find that under high greenhouse gas emissions, glacier retreat could raise sea levels by 46 to 133 mm by 2300. This study highlights the need to improve observations to reduce uncertainty in ice-sheet model projections.
Izabela Szuman, Jakub Z. Kalita, Christiaan R. Diemont, Stephen J. Livingstone, Chris D. Clark, and Martin Margold
The Cryosphere, 18, 2407–2428, https://doi.org/10.5194/tc-18-2407-2024, https://doi.org/10.5194/tc-18-2407-2024, 2024
Short summary
Short summary
A Baltic-wide glacial landform-based map is presented, filling in a geographical gap in the record that has been speculated about by palaeoglaciologists for over a century. Here we used newly available bathymetric data and provide landform evidence of corridors of fast ice flow that we interpret as ice streams. Where previous ice-sheet-scale investigations inferred a single ice source, our mapping identifies flow and ice margin geometries from both Swedish and Bothnian sources.
Theo Clayton, Ravindra Duddu, Tim Hageman, and Emilio Martinez-Paneda
EGUsphere, https://doi.org/10.5194/egusphere-2024-660, https://doi.org/10.5194/egusphere-2024-660, 2024
Short summary
Short summary
We develop and validate new analytical solutions that quantitatively consider how the properties of ice vary along the depth of ice shelves and can be readily used in existing ice sheet models. Depth-varying firn properties are found to have a profound impact on ice sheet fracture and calving events. Our results show that grounded glaciers are less vulnerable than previously anticipated while floating ice shelves are significantly more vulnerable to fracture and calving.
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023, https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Short summary
Changes in Antarctic surface elevation can cause changes in ice and basal water flow, impacting how much ice enters the ocean. We find that ice and basal water flow could divert from the Totten to the Vanderford Glacier, East Antarctica, under only small changes in the surface elevation, with implications for estimates of ice loss from this region. Further studies are needed to determine when this could occur and if similar diversions could occur elsewhere in Antarctica due to climate change.
Ailsa Chung, Frédéric Parrenin, Daniel Steinhage, Robert Mulvaney, Carlos Martín, Marie G. P. Cavitte, David A. Lilien, Veit Helm, Drew Taylor, Prasad Gogineni, Catherine Ritz, Massimo Frezzotti, Charles O'Neill, Heinrich Miller, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023, https://doi.org/10.5194/tc-17-3461-2023, 2023
Short summary
Short summary
We combined a numerical model with radar measurements in order to determine the age of ice in the Dome C region of Antarctica. Our results show that at the current ice core drilling sites on Little Dome C, the maximum age of the ice is almost 1.5 Ma. We also highlight a new potential drill site called North Patch with ice up to 2 Ma. Finally, we explore the nature of a stagnant ice layer at the base of the ice sheet which has been independently observed and modelled but is not well understood.
Haokui Xu, Brooke Medley, Leung Tsang, Joel T. Johnson, Kenneth C. Jezek, Macro Brogioni, and Lars Kaleschke
The Cryosphere, 17, 2793–2809, https://doi.org/10.5194/tc-17-2793-2023, https://doi.org/10.5194/tc-17-2793-2023, 2023
Short summary
Short summary
The density profile of polar ice sheets is a major unknown in estimating the mass loss using lidar tomography methods. In this paper, we show that combing the active radar data and passive radiometer data can provide an estimation of density properties using the new model we implemented in this paper. The new model includes the short and long timescale variations in the firn and also the refrozen layers which are not included in the previous modeling work.
Tilly Woods and Ian J. Hewitt
The Cryosphere, 17, 1967–1987, https://doi.org/10.5194/tc-17-1967-2023, https://doi.org/10.5194/tc-17-1967-2023, 2023
Short summary
Short summary
Solar radiation causes melting at and just below the surface of the Greenland ice sheet, forming a porous surface layer known as the weathering crust. The weathering crust is home to many microbes, and the growth of these microbes is linked to the melting of the weathering crust and vice versa. We use a mathematical model to investigate what controls the size and structure of the weathering crust, the number of microbes within it, and its sensitivity to climate change.
Sebastian Hinck, Evan J. Gowan, Xu Zhang, and Gerrit Lohmann
The Cryosphere, 16, 941–965, https://doi.org/10.5194/tc-16-941-2022, https://doi.org/10.5194/tc-16-941-2022, 2022
Short summary
Short summary
Proglacial lakes were pervasive along the retreating continental ice margins after the Last Glacial Maximum. Similarly to the marine ice boundary, interactions at the ice-lake interface impact ice sheet dynamics and mass balance. Previous numerical ice sheet modeling studies did not include a dynamical lake boundary. We describe the implementation of an adaptive lake boundary condition in PISM and apply the model to the glacial retreat of the Laurentide Ice Sheet.
Heiko Goelzer, Brice P. Y. Noël, Tamsin L. Edwards, Xavier Fettweis, Jonathan M. Gregory, William H. Lipscomb, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 14, 1747–1762, https://doi.org/10.5194/tc-14-1747-2020, https://doi.org/10.5194/tc-14-1747-2020, 2020
Short summary
Short summary
Future sea-level change projections with process-based ice sheet models are typically driven with surface mass balance forcing derived from climate models. In this work we address the problems arising from a mismatch of the modelled ice sheet geometry with the one used by the climate model. The proposed remapping method reproduces the original forcing data closely when applied to the original geometry and produces a physically meaningful forcing when applied to different modelled geometries.
Heiko Goelzer, Violaine Coulon, Frank Pattyn, Bas de Boer, and Roderik van de Wal
The Cryosphere, 14, 833–840, https://doi.org/10.5194/tc-14-833-2020, https://doi.org/10.5194/tc-14-833-2020, 2020
Short summary
Short summary
In our ice-sheet modelling experience and from exchange with colleagues in different groups, we found that it is not always clear how to calculate the sea-level contribution from a marine ice-sheet model. This goes hand in hand with a lack of documentation and transparency in the published literature on how the sea-level contribution is estimated in different models. With this brief communication, we hope to stimulate awareness and discussion in the community to improve on this situation.
Tanja Schlemm and Anders Levermann
The Cryosphere, 13, 2475–2488, https://doi.org/10.5194/tc-13-2475-2019, https://doi.org/10.5194/tc-13-2475-2019, 2019
Short summary
Short summary
We provide a simple stress-based parameterization for cliff calving of ice sheets. According to the resulting increasing dependence of the calving rate on ice thickness, the parameterization might lead to a runaway ice loss in large parts of Greenland and Antarctica.
Anders Levermann and Johannes Feldmann
The Cryosphere, 13, 1621–1633, https://doi.org/10.5194/tc-13-1621-2019, https://doi.org/10.5194/tc-13-1621-2019, 2019
Short summary
Short summary
Using scaling analysis we propose that the currently observed marine ice-sheet instability in the Amundsen Sea sector might be faster than all other potential instabilities in Antarctica.
Veronika Emetc, Paul Tregoning, Mathieu Morlighem, Chris Borstad, and Malcolm Sambridge
The Cryosphere, 12, 3187–3213, https://doi.org/10.5194/tc-12-3187-2018, https://doi.org/10.5194/tc-12-3187-2018, 2018
Short summary
Short summary
The paper includes a model that can be used to predict zones of fracture formation in both floating and grounded ice in Antarctica. We used observations and a statistics-based model to predict fractures in most ice shelves in Antarctica as an alternative to the damage-based approach. We can predict the location of observed fractures with an average success rate of 84% for grounded ice and 61% for floating ice and mean overestimation error of 26% and 20%, respectively.
Sue Cook, Jan Åström, Thomas Zwinger, Benjamin Keith Galton-Fenzi, Jamin Stevens Greenbaum, and Richard Coleman
The Cryosphere, 12, 2401–2411, https://doi.org/10.5194/tc-12-2401-2018, https://doi.org/10.5194/tc-12-2401-2018, 2018
Short summary
Short summary
The growth of fractures on Antarctic ice shelves is important because it controls the amount of ice lost as icebergs. We use a model constructed of multiple interconnected blocks to predict the locations where fractures will form on the Totten Ice Shelf in East Antarctica. The results show that iceberg calving is controlled not only by fractures forming near the front of the ice shelf but also by fractures which formed many kilometres upstream.
Heiko Goelzer, Sophie Nowicki, Tamsin Edwards, Matthew Beckley, Ayako Abe-Ouchi, Andy Aschwanden, Reinhard Calov, Olivier Gagliardini, Fabien Gillet-Chaulet, Nicholas R. Golledge, Jonathan Gregory, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Joseph H. Kennedy, Eric Larour, William H. Lipscomb, Sébastien Le clec'h, Victoria Lee, Mathieu Morlighem, Frank Pattyn, Antony J. Payne, Christian Rodehacke, Martin Rückamp, Fuyuki Saito, Nicole Schlegel, Helene Seroussi, Andrew Shepherd, Sainan Sun, Roderik van de Wal, and Florian A. Ziemen
The Cryosphere, 12, 1433–1460, https://doi.org/10.5194/tc-12-1433-2018, https://doi.org/10.5194/tc-12-1433-2018, 2018
Short summary
Short summary
We have compared a wide spectrum of different initialisation techniques used in the ice sheet modelling community to define the modelled present-day Greenland ice sheet state as a starting point for physically based future-sea-level-change projections. Compared to earlier community-wide comparisons, we find better agreement across different models, which implies overall improvement of our understanding of what is needed to produce such initial states.
Alex S. Gardner, Geir Moholdt, Ted Scambos, Mark Fahnstock, Stefan Ligtenberg, Michiel van den Broeke, and Johan Nilsson
The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, https://doi.org/10.5194/tc-12-521-2018, 2018
Short summary
Short summary
We map present-day Antarctic surface velocities from Landsat imagery and compare to earlier estimates from radar. Flow accelerations across the grounding lines of West Antarctica's Amundsen Sea Embayment, Getz Ice Shelf and the western Antarctic Peninsula, account for 89 % of the observed increase in ice discharge. In contrast, glaciers draining the East Antarctic have been remarkably stable. Our work suggests that patterns of mass loss are part of a longer-term phase of enhanced flow.
ice sheet volume
Troels Bøgeholm Mikkelsen, Aslak Grinsted, and Peter Ditlevsen
The Cryosphere, 12, 39–47, https://doi.org/10.5194/tc-12-39-2018, https://doi.org/10.5194/tc-12-39-2018, 2018
Short summary
Short summary
The atmospheric temperature increase poses a real risk of ice sheets collapsing. We show that this risk might have been underestimated since variations in temperature will move the ice sheets to the tipping point of destabilization.
We show this by using a simple computer model of a large ice sheet and investigate what happens if the temperature varies from year to year. The total volume of the ice sheet decreases because a cold year followed by an equally warm year do not cancel out.
David E. Shean, Knut Christianson, Kristine M. Larson, Stefan R. M. Ligtenberg, Ian R. Joughin, Ben E. Smith, C. Max Stevens, Mitchell Bushuk, and David M. Holland
The Cryosphere, 11, 2655–2674, https://doi.org/10.5194/tc-11-2655-2017, https://doi.org/10.5194/tc-11-2655-2017, 2017
Short summary
Short summary
We used long-term GPS data and interferometric reflectometry (GPS-IR) to measure velocity, strain rate and surface elevation for the PIG ice shelf – a site of significant mass loss in recent decades. We combined these observations with high-res DEMs and firn model output to constrain surface mass balance and basal melt rates. We document notable spatial variability in basal melt rates but limited temporal variability from 2012 to 2014 despite significant changes in sub-shelf ocean heat content.
Wolfgang Rack, Matt A. King, Oliver J. Marsh, Christian T. Wild, and Dana Floricioiu
The Cryosphere, 11, 2481–2490, https://doi.org/10.5194/tc-11-2481-2017, https://doi.org/10.5194/tc-11-2481-2017, 2017
Short summary
Short summary
Predicting changes of the Antarctic Ice Sheet involves fully understanding ice dynamics at the transition between grounded and floating ice. We map tidal bending of ice by satellite using InSAR, and we use precise GPS measurements with assumptions of tidal elastic bending to better interpret the satellite signal. It allows us to better define the grounding-line position and to refine the shape of tidal flexure profiles.
Christian Schoof, Andrew D. Davis, and Tiberiu V. Popa
The Cryosphere, 11, 2283–2303, https://doi.org/10.5194/tc-11-2283-2017, https://doi.org/10.5194/tc-11-2283-2017, 2017
Short summary
Short summary
We show mathematically and computationally how discharge of ice from ocean-terminating glaciers is controlled by a combination of different forces acting on ice near the grounding line of a glacier and how that combination of forces is affected by the process of iceberg formation, which limits the length of floating ice tongues extending in front of the glacier. We show that a deeper fjord may lead to a longer ice tongue providing greater drag on the glacier, slowing the rate of ice discharge.
Joel Brown, Joel Harper, and Neil Humphrey
The Cryosphere, 11, 669–679, https://doi.org/10.5194/tc-11-669-2017, https://doi.org/10.5194/tc-11-669-2017, 2017
Short summary
Short summary
We use ground-penetrating radar surveys in conjunction with borehole depth and temperature data to estimate the liquid water content (wetness) of glacial ice in the ablation zone of an outlet glacier on the western side of the Greenland Ice Sheet. Our results show that the wetness of a warm basal ice layer is approximately 2.9 % to 4.6 % in our study region. This high level of wetness requires special attention when modelling ice dynamics or estimating ice thickness in the region.
Lionel Favier, Frank Pattyn, Sophie Berger, and Reinhard Drews
The Cryosphere, 10, 2623–2635, https://doi.org/10.5194/tc-10-2623-2016, https://doi.org/10.5194/tc-10-2623-2016, 2016
Short summary
Short summary
We demonstrate the short-term unstable retreat of an East Antarctic outlet glacier triggered by imposed sub-ice-shelf melt, compliant with current values, using a state-of-the-art ice-sheet model. We show that pinning points – topographic highs in contact with the ice-shelf base – have a major impact on ice-sheet stability and timing of grounding-line retreat. The study therefore calls for improving our knowledge of sub-ice-shelf bathymetry in order to reduce uncertainties in future ice loss.
Alexander A. Robel, Christian Schoof, and Eli Tziperman
The Cryosphere, 10, 1883–1896, https://doi.org/10.5194/tc-10-1883-2016, https://doi.org/10.5194/tc-10-1883-2016, 2016
Short summary
Short summary
Portions of the Antarctic Ice Sheet edge that rest on upward-sloping beds have the potential to collapse irreversibly and raise global sea level. Using a numerical model, we show that changes in the slipperiness of sediments beneath fast-flowing ice streams can cause them to persist on upward-sloping beds for hundreds to thousands of years before reversing direction. This type of behavior is important to consider as a possibility when interpreting observations of ongoing ice sheet change.
Johannes Feldmann and Anders Levermann
The Cryosphere, 10, 1753–1769, https://doi.org/10.5194/tc-10-1753-2016, https://doi.org/10.5194/tc-10-1753-2016, 2016
T. M. Jordan, J. L. Bamber, C. N. Williams, J. D. Paden, M. J. Siegert, P. Huybrechts, O. Gagliardini, and F. Gillet-Chaulet
The Cryosphere, 10, 1547–1570, https://doi.org/10.5194/tc-10-1547-2016, https://doi.org/10.5194/tc-10-1547-2016, 2016
Short summary
Short summary
Ice penetrating radar enables determination of the basal properties of ice sheets. Existing algorithms assume stationarity in the attenuation rate, which is not justifiable at an ice sheet scale. We introduce the first ice-sheet-wide algorithm for radar attenuation that incorporates spatial variability, using the temperature field from a numerical model as an initial guess. The study is a step toward ice-sheet-wide data products for basal properties and evaluation of model temperature fields.
Hongyu Zhu, Noemi Petra, Georg Stadler, Tobin Isaac, Thomas J. R. Hughes, and Omar Ghattas
The Cryosphere, 10, 1477–1494, https://doi.org/10.5194/tc-10-1477-2016, https://doi.org/10.5194/tc-10-1477-2016, 2016
Short summary
Short summary
We study how well the basal geothermal heat flux can be inferred from surface velocity observations using a thermomechanically coupled nonlinear Stokes ice sheet model. The prospects and limitations of this inversion is studied in two and three dimensional model problems. We also argue that a one-way coupled approach for the adjoint equations motivated by staggered solvers for forward multiphysics problems can lead to an incorrect gradient and premature termination of the optimization iteration.
Eythor Gudlaugsson, Angelika Humbert, Thomas Kleiner, Jack Kohler, and Karin Andreassen
The Cryosphere, 10, 751–760, https://doi.org/10.5194/tc-10-751-2016, https://doi.org/10.5194/tc-10-751-2016, 2016
Short summary
Short summary
This paper explores the influence of a subglacial lake on ice dynamics and internal layers by means of numerical modelling as well as simulating the effect of a subglacial drainage event on isochrones. We provide an explanation for characteristic dip and ridge features found at the edges of many subglacial lakes and conclude that draining lakes can result in travelling waves at depth within isochrones, thus indicating the possibility of detecting past drainage events with ice penetrating radar.
T. Hughes, A. Sargent, J. Fastook, K. Purdon, J. Li, J.-B. Yan, and S. Gogineni
The Cryosphere, 10, 193–225, https://doi.org/10.5194/tc-10-193-2016, https://doi.org/10.5194/tc-10-193-2016, 2016
Short summary
Short summary
The Antarctic and Greenland ice sheets are drained primarily by fast ice streams that end as ice shelves if they become afloat. Smooth transitions from slow sheet flow to fast stream flow to confined shelf flow are obtained and applied to Byrd Glacier in Antarctica after two upstream subglacial lakes suddenly drained in 2006, and to Jakobshavn Isbrae in Greenland after a confined ice shelf suddenly disintegrated in 2002. Byrd Glacier quickly stabilized, but Jakobshavn Isbrae remains unstable.
F. Saito, A. Abe-Ouchi, K. Takahashi, and H. Blatter
The Cryosphere, 10, 43–63, https://doi.org/10.5194/tc-10-43-2016, https://doi.org/10.5194/tc-10-43-2016, 2016
Short summary
Short summary
This article, as the title denotes, is a follow-up study of an ice-sheet intercomparison project SeaRISE, which focuses on the response of the Greenland ice sheet to future global warming. The projections of the different SeaRISE prticipants show diversion, which has not been examined in detail to date. This study detects the main sources of the diversion by a number of sensitivity experiments and shows the importance of initialization methods as well as climate forcing methods.
P. Kuipers Munneke, S. R. M. Ligtenberg, B. P. Y. Noël, I. M. Howat, J. E. Box, E. Mosley-Thompson, J. R. McConnell, K. Steffen, J. T. Harper, S. B. Das, and M. R. van den Broeke
The Cryosphere, 9, 2009–2025, https://doi.org/10.5194/tc-9-2009-2015, https://doi.org/10.5194/tc-9-2009-2015, 2015
Short summary
Short summary
The snow layer on top of the Greenland Ice Sheet is changing: it is thickening in the high and cold interior due to increased snowfall, while it is thinning around the margins. The marginal thinning is caused by compaction, and by more melt.
This knowledge is important: there are satellites that measure volume change of the ice sheet. It can be caused by increased ice discharge, or by compaction of the snow layer. Here, we quantify the latter, so that we can translate volume to mass change.
T. Goelles, C. E. Bøggild, and R. Greve
The Cryosphere, 9, 1845–1856, https://doi.org/10.5194/tc-9-1845-2015, https://doi.org/10.5194/tc-9-1845-2015, 2015
Short summary
Short summary
Soot (black carbon) and dust particles darken the surface of ice sheets and glaciers as they accumulate. This causes more ice to melt, which releases more particles from within the ice. This positive feedback mechanism is studied with a new two-dimensional model, mimicking the conditions of Greenland, under different climate warming scenarios. In the warmest scenario, the additional ice sheet mass loss until the year 3000 is up to 7%.
S. H. R. Rosier, G. H. Gudmundsson, and J. A. M. Green
The Cryosphere, 9, 1649–1661, https://doi.org/10.5194/tc-9-1649-2015, https://doi.org/10.5194/tc-9-1649-2015, 2015
Short summary
Short summary
We use a full-Stokes model to investigate the long period modulation of Rutford Ice Stream flow by the ocean tide. We find that using a nonlinear sliding law cannot fully explain the measurements and an additional mechanism, whereby tidally induced subglacial pressure variations are transmitted upstream from the grounding line, is also required to match the large amplitude and decay length scale of the observations.
R. Drews
The Cryosphere, 9, 1169–1181, https://doi.org/10.5194/tc-9-1169-2015, https://doi.org/10.5194/tc-9-1169-2015, 2015
Short summary
Short summary
Floating ice shelves extend the continental ice of Antarctica seawards and mediate ice-ocean interactions. Many ice shelves are incised with channels where basal melting is enhanced. With data and modeling it is shown how the channel geometry depends on basal melting and along-flow advection (also for channels which are not freely floating), and how channel formation imprints the general flow pattern. This opens up the opportunity to map the channel formation from surface velocities only.
P. R. Holland, A. Brisbourne, H. F. J. Corr, D. McGrath, K. Purdon, J. Paden, H. A. Fricker, F. S. Paolo, and A. H. Fleming
The Cryosphere, 9, 1005–1024, https://doi.org/10.5194/tc-9-1005-2015, https://doi.org/10.5194/tc-9-1005-2015, 2015
Short summary
Short summary
Antarctic Peninsula ice shelves have collapsed in recent decades. The surface of Larsen C Ice Shelf is lowering, but the cause of this has not been understood. This study uses eight radar surveys to show that the lowering is caused by both ice loss and a loss of air from the ice shelf's snowpack. At least two different processes are causing the lowering. The stability of Larsen C may be at risk from an ungrounding of Bawden Ice Rise or ice-front retreat past a 'compressive arch' in strain rates.
M. Bügelmayer, D. M. Roche, and H. Renssen
The Cryosphere, 9, 821–835, https://doi.org/10.5194/tc-9-821-2015, https://doi.org/10.5194/tc-9-821-2015, 2015
A. Diez and O. Eisen
The Cryosphere, 9, 367–384, https://doi.org/10.5194/tc-9-367-2015, https://doi.org/10.5194/tc-9-367-2015, 2015
A. Diez, O. Eisen, C. Hofstede, A. Lambrecht, C. Mayer, H. Miller, D. Steinhage, T. Binder, and I. Weikusat
The Cryosphere, 9, 385–398, https://doi.org/10.5194/tc-9-385-2015, https://doi.org/10.5194/tc-9-385-2015, 2015
R. Calov, A. Robinson, M. Perrette, and A. Ganopolski
The Cryosphere, 9, 179–196, https://doi.org/10.5194/tc-9-179-2015, https://doi.org/10.5194/tc-9-179-2015, 2015
Short summary
Short summary
Ice discharge into the ocean from outlet glaciers is an important
component of mass loss of the Greenland ice sheet. Here, we present a
simple parameterization of ice discharge for coarse resolution ice
sheet models, suitable for large ensembles or long-term palaeo
simulations. This parameterization reproduces in a good approximation
the present-day ice discharge compared with estimates, and the
simulation of the present-day ice sheet elevation is considerably
improved.
V. Helm, A. Humbert, and H. Miller
The Cryosphere, 8, 1539–1559, https://doi.org/10.5194/tc-8-1539-2014, https://doi.org/10.5194/tc-8-1539-2014, 2014
A. Robinson and H. Goelzer
The Cryosphere, 8, 1419–1428, https://doi.org/10.5194/tc-8-1419-2014, https://doi.org/10.5194/tc-8-1419-2014, 2014
G. R. Leguy, X. S. Asay-Davis, and W. H. Lipscomb
The Cryosphere, 8, 1239–1259, https://doi.org/10.5194/tc-8-1239-2014, https://doi.org/10.5194/tc-8-1239-2014, 2014
A. A. Borsa, G. Moholdt, H. A. Fricker, and K. M. Brunt
The Cryosphere, 8, 345–357, https://doi.org/10.5194/tc-8-345-2014, https://doi.org/10.5194/tc-8-345-2014, 2014
C. P. Borstad, E. Rignot, J. Mouginot, and M. P. Schodlok
The Cryosphere, 7, 1931–1947, https://doi.org/10.5194/tc-7-1931-2013, https://doi.org/10.5194/tc-7-1931-2013, 2013
V. R. Barletta, L. S. Sørensen, and R. Forsberg
The Cryosphere, 7, 1411–1432, https://doi.org/10.5194/tc-7-1411-2013, https://doi.org/10.5194/tc-7-1411-2013, 2013
I. Joughin, S. B. Das, G. E. Flowers, M. D. Behn, R. B. Alley, M. A. King, B. E. Smith, J. L. Bamber, M. R. van den Broeke, and J. H. van Angelen
The Cryosphere, 7, 1185–1192, https://doi.org/10.5194/tc-7-1185-2013, https://doi.org/10.5194/tc-7-1185-2013, 2013
A. Aschwanden, G. Aðalgeirsdóttir, and C. Khroulev
The Cryosphere, 7, 1083–1093, https://doi.org/10.5194/tc-7-1083-2013, https://doi.org/10.5194/tc-7-1083-2013, 2013
J. De Rydt, G. H. Gudmundsson, H. F. J. Corr, and P. Christoffersen
The Cryosphere, 7, 407–417, https://doi.org/10.5194/tc-7-407-2013, https://doi.org/10.5194/tc-7-407-2013, 2013
W. Leng, L. Ju, M. Gunzburger, and S. Price
The Cryosphere, 7, 19–29, https://doi.org/10.5194/tc-7-19-2013, https://doi.org/10.5194/tc-7-19-2013, 2013
F. Gillet-Chaulet, O. Gagliardini, H. Seddik, M. Nodet, G. Durand, C. Ritz, T. Zwinger, R. Greve, and D. G. Vaughan
The Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012, https://doi.org/10.5194/tc-6-1561-2012, 2012
S. Fujita, P. Holmlund, K. Matsuoka, H. Enomoto, K. Fukui, F. Nakazawa, S. Sugiyama, and S. Surdyk
The Cryosphere, 6, 1203–1219, https://doi.org/10.5194/tc-6-1203-2012, https://doi.org/10.5194/tc-6-1203-2012, 2012
Cited articles
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Luethi, M. P., and Motyka, R. J.: Ice melange dynamics and implications for terminus stability, Jakobshavn Isbrae Greenland, J. Geophys. Res.-Earth, 115, F01005, https://doi.org/10.1029/2009JF001405, 2010.
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E., and Steinhage, D.: A new bed elevation dataset for Greenland, The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, 2013.
Echelmeyer, K. and Harrison, W. D.: Jakobshavns Isbræ, West Greenland: Seasonal variations in velocity-or lack thereof, J. Glaciol., 36, 82–88, 1990.
Holland, D. M., Thomas, R. H., De Young, B., Ribergaard, M. H., and Lyberth, B.: Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters, Nat. Geosci., 1, 659–664, https://doi.org/10.1038/ngeo316, 2008.
Howat, I. M., Joughin, I., Tulaczyk, S., and Gogineni, S.: Rapid retreat and acceleration of Helheim Glacier, east Greenland, Geophys. Res. Lett., 32, L22502, https://doi.org/10.1029/2005GL024737, 2005.
Howat, I. M., Joughin, I., Fahnestock, M., Smith, B. E., and Scambos, T. A.: Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–06: ice dynamics and coupling to climate, J. Glaciol., 54, 646–660, https://doi.org/10.3189/002214308786570908, 2008.
Howat, I. M., Ahn, Y., Joughin, I., Van Den Broeke, M. R., Lenaerts, J. T. M., and Smith, B.: Mass balance of Greenland's three largest outlet glaciers, 2000–2010, Geophys. Res. Lett., 38, L12501, https://doi.org/10.1029/2011GL047565, 2011.
Howat, I. M., Negrete, A., and Smith, B. E.: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation datasets, The Cryosphere Discuss., 8, 453–478, https://doi.org/10.5194/tcd-8-453-2014, 2014.
Joughin, I.: Ice-sheet velocity mapping: A combined interferometric and speckle-tracking approach, Ann. Glaciol., 34, 195–201, 2002.
Joughin, I., Abdalati, W., and Fahnestock, M.: Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier, Nature, 432, 608–610, https://doi.org/10.1038/nature03130, 2004.
Joughin, I., Howat, I. M., Fahnestock, M., Smith, B., Krabill, W., Alley, R. B., Stern, H., and Truffer, M.: Continued evolution of Jakobshavn Isbrae following its rapid speedup, J. Geophys. Res.-Earth, 113, F04006, https://doi.org/10.1029/2008JF001023, 2008.
Joughin, I., Smith, B. E., Howat, I. M., Floricioiu, D., Alley, R. B., Truffer, M., and Fahnestock, M.: Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and model-based analysis, J. Geophys. Res., 117, F02030, https://doi.org/10.1029/2011JF002110, 2012a.
Joughin, I., Alley, R. B., and Holland, D. M.: Ice-sheet response to oceanic forcing, Science, 338, 1172–1176, https://doi.org/10.1126/science.1226481, 2012b.
Krabill, W., Hanna, E., Huybrechts, P., Abdalati, W., Cappelen, J., Csatho, B., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., Thomas, R., and Yungel, J.: Greenland Ice Sheet: Increased coastal thinning, Geophys. Res. Lett., 31, L24402, https://doi.org/10.1029/2004GL021533, 2004.
Li, J.: Mapping of ice sheet deep layers and fast outlet glaciers with multi-channel-high-sensitivity radar, University of Kansas, Lawrence, 2009.
Luckman, A. and Murray, T.: Seasonal variation in velocity before retreat of Jakobshavn Isbrae, Greenland, Geophys Res Lett, 32, L08501, https://doi.org/10.1029/2005GL022519, 2005.
Moon, T., Joughin, I., Smith, B., and Howat, I.: 21st-Century evolution of Greenland outlet glacier velocities, Science, 336, 576–578, https://doi.org/10.1126/science.1219985, 2012.
Motyka, R. J., Truffer, M., Fahnestock, M., Mortensen, J., Rysgaard, S., and Howat, I.: Submarine melting of the 1985 Jakobshavn Isbrae floating tongue and the triggering of the current retreat, J. Geophys. Res.-Earth, 116, F01007, https://doi.org/10.1029/2009JF001632, 2011.
Nettles, M., Larsen, T. B., Elósegui, P., and Hamilton, G. S.: Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland, Geophys. Res. Lett, 35, L24503, https://doi.org/10.1029/2008GL036127, 2008.
Nick, F. M., Vieli, A., Howat, I. M., and Joughin, I.: Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus, Nat. Geosci., 2, 110–114, https://doi.org/10.1038/NGEO394, 2009.
Pelto, M. S., Hughes, T. J., and Brecher, H. H.: Equilibrium state of Jakobshavns Isbræ, West Greenland, Ann. Glaciol., 1989.
Pfeffer, W. T., Harper, J. T., and O'Neel, S.: Kinematic constraints on glacier contributions to 21st-century sea-level rise, Science, 321, 1340–1343, https://doi.org/10.1126/science.1159099, 2008.
Rignot, E. and Kanagaratnam, P.: Changes in the velocity structure of the Greenland ice sheet, Science, 311, 986–990, https://doi.org/10.1126/science.1121381, 2006.
Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S. S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sørensen, L. S., Scambos, T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg, W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally, H. J.: A reconciled estimate of ice-sheet mass balance, Science, 338, 1183–1189, https://doi.org/10.1126/science.1228102, 2012.
Thomas, R. H.: Force-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbræ, Greenland, J. Glaciol., 50, 57–66, 2004.
Thomas, R. H., Abdalati, W., Frederick, E., Krabill, W., Manizade, S., and Steffen, K.: Investigation of surface melting and dynamic thinning on Jakobshavn Isbrae, Greenland, J. Glaciol., 49, 231–239, 2003.
Thomas, R., Frederick, E., Li, J., Krabill, W., Manizade, S., Paden, J., Sonntag, J., Swift, R., and Yungel, J.: Accelerating ice loss from the fastest Greenland and Antarctic glaciers, Geophys. Res. Lett., 38, L10502, https://doi.org/10.1029/2011GL047304, 2011.
van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de Berg, W. J., van Meijgaard, E., Velicogna, I., and Wouters, B.: Partitioning recent Greenland mass loss, Science, 326, 984–986, https://doi.org/10.1126/science.1178176, 2009.
Van der Veen, C. J., Plummer, J. C., and Stearns, L. A.: Controls on the recent speed-up of Jakobshavn Isbrae, West Greenland, J. Glaciol., 57, 770–782, 2011.
Weertman, J.: Stability of the junction of an ice sheet and an ice shelf, J. Glaciol., 13, 3–11, 1974.