Articles | Volume 8, issue 6
https://doi.org/10.5194/tc-8-2089-2014
https://doi.org/10.5194/tc-8-2089-2014
Research article
 | 
20 Nov 2014
Research article |  | 20 Nov 2014

Snowmelt onset over Arctic sea ice from passive microwave satellite data: 1979–2012

A. C. Bliss and M. R. Anderson

Related authors

Spring 2021 sea ice transport in the southern Beaufort Sea occurred during coastal-lead opening events
MacKenzie E. Jewell, Jennifer K. Hutchings, and Angela C. Bliss
The Cryosphere, 19, 1413–1430, https://doi.org/10.5194/tc-19-1413-2025,https://doi.org/10.5194/tc-19-1413-2025, 2025
Short summary
The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows
Alek A. Petty, Julienne C. Stroeve, Paul R. Holland, Linette N. Boisvert, Angela C. Bliss, Noriaki Kimura, and Walter N. Meier
The Cryosphere, 12, 433–452, https://doi.org/10.5194/tc-12-433-2018,https://doi.org/10.5194/tc-12-433-2018, 2018
Short summary

Related subject area

Sea Ice
Spring 2021 sea ice transport in the southern Beaufort Sea occurred during coastal-lead opening events
MacKenzie E. Jewell, Jennifer K. Hutchings, and Angela C. Bliss
The Cryosphere, 19, 1413–1430, https://doi.org/10.5194/tc-19-1413-2025,https://doi.org/10.5194/tc-19-1413-2025, 2025
Short summary
National Weather Service Alaska Sea Ice Program: gridded ice concentration maps for the Alaskan Arctic
Astrid Pacini, Michael Steele, and Mary-Beth Schreck
The Cryosphere, 19, 1391–1411, https://doi.org/10.5194/tc-19-1391-2025,https://doi.org/10.5194/tc-19-1391-2025, 2025
Short summary
Seasonal evolution of the sea ice floe size distribution in the Beaufort Sea from 2 decades of MODIS data
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024,https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024,https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024,https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary

Cited articles

Abdalati, W., Steffen, K., Otto, C., and Jezek, K. C.: Comparison of Brightness Temperatures from SSMI Instruments on the DMSP F8 and F11 Satellites for Antarctica and the Greenland Ice Sheet, Int. J. Remote Sens., 16, 7, 1223–1229, https://doi.org/10.1080/01431169508954473, 1995.
Anderson, M. R. and Drobot, S. D.: Spatial and temporal variability in snowmelt onset over Arctic sea ice, Ann. Glaciol., 33, 74–78, 2001.
Anderson, M. R., Bliss, A. C., and Drobot, S. D.: Snow melt onset over Arctic sea ice from SMMR and SSM/I-SSMIS brightness temperatures, Version 3, 1979–2012, NASA DAAC at 15 the National Snow and Ice Data Center, Boulder, Colorado, USA, available at: http://nsidc.org/data/nsidc-0105.html, last access: 2 June 2014.
Belchansky, G. I., Douglas, D. C., and Platonov, N. G.: Duration of the Arctic sea ice melt season: regional and interannual variability 1979–2001, J. Climate, 17, 67–80, https://doi.org/10.1175/1520-0442(2004)017<0067:DOTASI>2.0.CO;2, 2004.
Cavalieri, D. J. and Parkinson, C. L.: Arctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 881–889, https://doi.org/10.5194/tc-6-881-2012, 2012.
Download
Short summary
A new version of the Snow Melt Onset Over Arctic Sea Ice from SMMR and SSM/I-SSMIS Brightness Temperatures is now available. From this data set, a statistical summary of melt onset (MO) dates on Arctic sea ice is presented. Significant trends indicate that MO is occurring 6.6days/decade earlier in the year for the Arctic while regional trends in MO are as great as 11.8days/decade earlier in the East Siberian Sea. The Bering Sea is an outlier where MO is occurring 3.1days/decade later.
Share