Articles | Volume 8, issue 6
https://doi.org/10.5194/tc-8-2089-2014
https://doi.org/10.5194/tc-8-2089-2014
Research article
 | 
20 Nov 2014
Research article |  | 20 Nov 2014

Snowmelt onset over Arctic sea ice from passive microwave satellite data: 1979–2012

A. C. Bliss and M. R. Anderson

Related authors

The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows
Alek A. Petty, Julienne C. Stroeve, Paul R. Holland, Linette N. Boisvert, Angela C. Bliss, Noriaki Kimura, and Walter N. Meier
The Cryosphere, 12, 433–452, https://doi.org/10.5194/tc-12-433-2018,https://doi.org/10.5194/tc-12-433-2018, 2018
Short summary

Related subject area

Sea Ice
A collection of wet beam models for wave–ice interaction
Sasan Tavakoli and Alexander V. Babanin
The Cryosphere, 17, 939–958, https://doi.org/10.5194/tc-17-939-2023,https://doi.org/10.5194/tc-17-939-2023, 2023
Short summary
First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data
Christian Melsheimer, Gunnar Spreen, Yufang Ye, and Mohammed Shokr
The Cryosphere, 17, 105–126, https://doi.org/10.5194/tc-17-105-2023,https://doi.org/10.5194/tc-17-105-2023, 2023
Short summary
Analysis of micro-seismicity in sea ice with deep learning and Bayesian inference: application to high-resolution thickness monitoring
Ludovic Moreau, Léonard Seydoux, Jérôme Weiss, and Michel Campillo
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-212,https://doi.org/10.5194/tc-2022-212, 2022
Revised manuscript accepted for TC
Short summary
Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
EGUsphere, https://doi.org/10.5194/egusphere-2022-1122,https://doi.org/10.5194/egusphere-2022-1122, 2022
Short summary
Probabilistic spatiotemporal seasonal sea ice presence forecasting using sequence-to-sequence learning and ERA5 data in the Hudson Bay region
Nazanin Asadi, Philippe Lamontagne, Matthew King, Martin Richard, and K. Andrea Scott
The Cryosphere, 16, 3753–3773, https://doi.org/10.5194/tc-16-3753-2022,https://doi.org/10.5194/tc-16-3753-2022, 2022
Short summary

Cited articles

Abdalati, W., Steffen, K., Otto, C., and Jezek, K. C.: Comparison of Brightness Temperatures from SSMI Instruments on the DMSP F8 and F11 Satellites for Antarctica and the Greenland Ice Sheet, Int. J. Remote Sens., 16, 7, 1223–1229, https://doi.org/10.1080/01431169508954473, 1995.
Anderson, M. R. and Drobot, S. D.: Spatial and temporal variability in snowmelt onset over Arctic sea ice, Ann. Glaciol., 33, 74–78, 2001.
Anderson, M. R., Bliss, A. C., and Drobot, S. D.: Snow melt onset over Arctic sea ice from SMMR and SSM/I-SSMIS brightness temperatures, Version 3, 1979–2012, NASA DAAC at 15 the National Snow and Ice Data Center, Boulder, Colorado, USA, available at: http://nsidc.org/data/nsidc-0105.html, last access: 2 June 2014.
Belchansky, G. I., Douglas, D. C., and Platonov, N. G.: Duration of the Arctic sea ice melt season: regional and interannual variability 1979–2001, J. Climate, 17, 67–80, https://doi.org/10.1175/1520-0442(2004)017<0067:DOTASI>2.0.CO;2, 2004.
Cavalieri, D. J. and Parkinson, C. L.: Arctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 881–889, https://doi.org/10.5194/tc-6-881-2012, 2012.
Download
Short summary
A new version of the Snow Melt Onset Over Arctic Sea Ice from SMMR and SSM/I-SSMIS Brightness Temperatures is now available. From this data set, a statistical summary of melt onset (MO) dates on Arctic sea ice is presented. Significant trends indicate that MO is occurring 6.6days/decade earlier in the year for the Arctic while regional trends in MO are as great as 11.8days/decade earlier in the East Siberian Sea. The Bering Sea is an outlier where MO is occurring 3.1days/decade later.