Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-3033-2025
https://doi.org/10.5194/tc-19-3033-2025
Research article
 | 
13 Aug 2025
Research article |  | 13 Aug 2025

Investigating the impact of reanalysis snow input on an observationally calibrated snow-on-sea-ice reconstruction

Alex Cabaj, Paul J. Kushner, and Alek A. Petty

Related authors

Near sea ice-free conditions in the northern route of the Northwest Passage at the end of the 2024 melt season
Stephen Howell, Alex Cabaj, David Babb, Jack Landy, Jackie Dawson, Mallik Mahmud, and Mike Brady
EGUsphere, https://doi.org/10.5194/egusphere-2025-2029,https://doi.org/10.5194/egusphere-2025-2029, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Winter Arctic sea ice thickness from ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection
Alek A. Petty, Nicole Keeney, Alex Cabaj, Paul Kushner, and Marco Bagnardi
The Cryosphere, 17, 127–156, https://doi.org/10.5194/tc-17-127-2023,https://doi.org/10.5194/tc-17-127-2023, 2023
Short summary

Related subject area

Discipline: Snow | Subject: Numerical Modelling
Quantifying radiative effects of light-absorbing particle deposition on snow at the SnowMIP sites
Enrico Zorzetto, Paul Ginoux, Sergey Malyshev, and Elena Shevliakova
The Cryosphere, 19, 1313–1334, https://doi.org/10.5194/tc-19-1313-2025,https://doi.org/10.5194/tc-19-1313-2025, 2025
Short summary
Improving large-scale snow albedo modeling using a climatology of light-absorbing particle deposition
Manon Gaillard, Vincent Vionnet, Matthieu Lafaysse, Marie Dumont, and Paul Ginoux
The Cryosphere, 19, 769–792, https://doi.org/10.5194/tc-19-769-2025,https://doi.org/10.5194/tc-19-769-2025, 2025
Short summary
Multi-physics ensemble modelling of Arctic tundra snowpack properties
Georgina J. Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Richard Essery, Philip Marsh, Rosamond Tutton, Branden Walker, Matthieu Lafaysse, and David Pritchard
The Cryosphere, 18, 5685–5711, https://doi.org/10.5194/tc-18-5685-2024,https://doi.org/10.5194/tc-18-5685-2024, 2024
Short summary
Modelling snowpack on ice surfaces with the ORCHIDEE land surface model: application to the Greenland ice sheet
Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, Nina Raoult, Xavier Fettweis, and Philippe Conesa
The Cryosphere, 18, 5067–5099, https://doi.org/10.5194/tc-18-5067-2024,https://doi.org/10.5194/tc-18-5067-2024, 2024
Short summary
Exploring the decision-making process in model development: focus on the Arctic snowpack
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024,https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary

Cited articles

Barrett, A. P., Stroeve, J. C., and Serreze, M. C.: Arctic Ocean Precipitation From Atmospheric Reanalyses and Comparisons With North Pole Drifting Station Records, J. Geophys. Res.-Oceans, 125, e2019JC015415, https://doi.org/10.1029/2019JC015415, 2020. a, b, c, d, e, f, g, h
Behrangi, A., Christensen, M., Richardson, M., Lebsock, M., Stephens, G., Huffman, G. J., Bolvin, D., Adler, R. F., Gardner, A., Lambrigtsen, B., and Fetzer, E.: Status of High-Latitude Precipitation Estimates from Observations and Reanalyses, J. Geophys. Res.-Atmos., 121, 4468–4486, https://doi.org/10.1002/2015JD024546, 2016. a, b
Blanchard-Wrigglesworth, E., Webster, M. A., Farrell, S. L., and Bitz, C. M.: Reconstruction of Snow on Arctic Sea Ice, J. Geophys. Res.-Oceans, 123, 3588–3602, https://doi.org/10.1002/2017JC013364, 2018. a, b
Boisvert, L. N., Webster, M. A., Petty, A. A., Markus, T., Bromwich, D. H., and Cullather, R. I.: Intercomparison of Precipitation Estimates over the Arctic Ocean and Its Peripheral Seas from Reanalyses, J. Climate, 31, 8441–8462, https://doi.org/10.1175/JCLI-D-18-0125.1, 2018. a, b, c, d
Brucker, L. and Markus, T.: Arctic-scale assessment of satellite passive microwave-derived snow depth on sea ice using Operation IceBridge airborne data, J. Geophys. Res.-Oceans, 118, 2892–2905, https://doi.org/10.1002/jgrc.20228, 2013. a
Download
Short summary
The output of snow-on-sea-ice models is influenced by the choice of snowfall input used. We ran such a model with different snowfall inputs and calibrated it to observations, produced a new calibrated snow product, and regionally compared the model outputs to outputs from another snow-on-sea-ice model. The two models agree best on the seasonal cycle of snow in the central Arctic Ocean. Observational comparisons highlight ongoing challenges in estimating the depth and density of snow on Arctic sea ice.
Share