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Abstract. A key uncertainty in reanalysis-based snow-on-
sea-ice reconstructions is the choice of reanalysis product
used for snowfall input. Although reanalysis products have
many similarities in their precipitation output over the Arctic
Ocean, they nevertheless have relative biases that impact de-
rived snow-on-sea-ice estimates. In this study, snowfall from
the European Centre for Medium-range Weather Forecasts
(ECMWF) Reanalysis v5 (ERA5), the Japanese Meteorolog-
ical Agency’s Japanese 55-year Reanalysis (JRA-55), and
NASA’s Modern-Era Retrospective analysis for Research
and Applications, Version 2 (MERRA-2), is used as input
to the NASA Eulerian Snow On Sea Ice Model (NESOSIM).
A Markov chain Monte Carlo (MCMC) approach is used to
calibrate the wind packing and blowing snow parameters in
NESOSIM run with these different snowfall inputs. JRA-55
shows the largest departure from the previously used values
(Bayesian priors) when the MCMC calibration is run and
also has the largest posterior uncertainty due to parameter un-
certainties. The MCMC calibration reconciles snow depths
between NESOSIM run with different reanalysis snowfall in-
puts but produces larger discrepancies in snow densities due
to the sensitivity of snow density in NESOSIM to parameter
values and the weak observational constraints on density. Re-
gional climatologies and trends in the calibrated products are
examined and compared to another reanalysis-based snow-
on-sea-ice reconstruction, SnowModel-LG. NESOSIM and
SnowModel-LG show close agreement in snow depth clima-
tologies in the central Arctic Ocean region but differ more in
peripheral seas. The models perform comparably when eval-
uated against IceBird airborne snow depth observations and
in situ depth and density observations from the Multidisci-

plinary Drifting Observatory for the Study of Arctic Climate
(MOSAiC). Trends are found to be region-dependent, and
central Arctic Ocean snow depth trends are more sensitive to
the choice of reanalysis input than to the choice of model.

1 Introduction

Snow on Arctic sea ice plays a key role in controlling Arc-
tic climate and ecosystem function and is a crucial input to
altimetry-derived sea ice thickness retrieval, but it is chal-
lenging to characterize consistently across the Arctic Ocean
at basin scales (Webster et al., 2018). Satellite remote sens-
ing data using, for example, depth retrievals from passive mi-
crowave data (Brucker and Markus, 2013; Rostosky et al.,
2018) and altimetry-based snow depth retrievals (Lawrence
et al., 2018; Kwok et al., 2020) provide basin-wide estimates
of snow depth on Arctic sea ice but are subject to signifi-
cant retrieval limitations and uncertainties. Airborne (Mac-
Gregor et al., 2021; Jutila et al., 2022) and in situ (Wagner
et al., 2022; Radionov et al., 1997) observation campaigns
and automated snow buoys (Perovich et al., 2019; Nicolaus et
al., 2017) provide generally more accurate but also more lo-
calized observations. A complementary approach to estimate
snow on Arctic sea ice on basin scales is through reanalysis-
based snow reconstructions, in which reanalysis snowfall
forces a model that simulates snow processes while account-
ing for sea ice concentration and drift. These reconstructions
include SnowModel-LG (Liston et al., 2020), the University
of Washington snow-on-sea-ice reconstruction (Blanchard-
Wrigglesworth et al., 2018), and the NASA Eulerian Snow
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on Sea Ice Model (NESOSIM; Petty et al., 2018), which is
the focus of our study. NESOSIM has been previously used
with altimetry measurements from the NASA Ice, Cloud, and
land Elevation Satellite 2 (ICESat-2) to produce estimates of
Arctic sea ice thickness over the winter season (Petty et al.,
2020, 2023b).

Not surprisingly, reanalysis snow-on-sea-ice reconstruc-
tions are strongly sensitive to snowfall input, which depends
on several factors such as atmospheric process represen-
tation in reanalysis products (e.g. microphysical processes
and partitioning between solid-, liquid-, and mixed-phase
precipitation), data assimilation inconsistencies, and prod-
uct resolution. Reanalysis precipitation assessment for the
Arctic (Behrangi et al., 2016; Boisvert et al., 2018; Barrett
et al., 2020; Edel et al., 2020; Cabaj et al., 2020) is chal-
lenged by uncertainty in polar precipitation observations, es-
pecially over the Arctic Ocean. Reanalysis precipitation in-
tercomparison work by Barrett et al. (2020) recommends that
the European Centre for Medium-range Weather Forecasts
(ECMWF) Reanalysis v5 (ERA5) be used to provide precip-
itation for sea ice thickness estimates over other contempo-
rary reanalysis products but acknowledges that other reanaly-
sis products investigated in that study are of similar value for
that application, given the difficulty of observational valida-
tion and bias adjustment. Biases between reanalysis products
can be reduced through calibration using satellite snowfall
observations, but differences between products nevertheless
persist, and satellite snowfall measurements themselves may
be biased (Cabaj et al., 2020; Edel et al., 2020). This moti-
vates the need for further calibration of snow-on-sea-ice re-
constructions.

The purpose of this study is to improve consistency and
characterize uncertainty amongst several reanalysis snowfall
inputs for NESOSIM’s snow-on-sea-ice reconstruction, us-
ing bias-adjusted snowfall input and automated calibration of
NESOSIM’s snow model parameters. We also seek to assess
the variability and trends in basin-wide and regional snow
on Arctic sea ice produced by NESOSIM using these newly
recalibrated snow depth estimates. Our starting point is the
latest version of NESOSIM, version 1.1 (v1.1; Petty et al.,
2023b). In Cabaj et al. (2023), NESOSIM v1.1 free parame-
ters for the wind packing (densification) and blowing snow
(loss) processes were calibrated to snow-on-sea-ice depth
and density observations using a Markov chain Monte Carlo
(MCMC) approach, and uncertainty estimates for these free
parameters were obtained. Several considerations motivated
the development of an automated parameter calibration ap-
proach for NESOSIM. In recent upgrades to NESOSIM that
included the switch to the latest ERA5 snowfall input, the
free parameters were manually tuned to increase agreement
with snow depths obtained from Operation IceBridge (Petty
et al., 2023b). This process alluded to the potential for pa-
rameter tuning to account for forcing biases between prod-
ucts, as well as the potential benefits of a more automated
system that could bring in different types of observations to

evaluate both the snow depth and density concurrently. Opti-
mizing NESOSIM output is motivated by its continued use as
the main snow loading input to satellite-derived sea ice thick-
ness estimates from ICESat-2 (Petty et al., 2023a, b) and the
need to better characterize the snow loading uncertainty con-
tribution to the overall thickness uncertainty.

To better reconcile differences between NESOSIM run
with different snowfall inputs and to incorporate estimates
of uncertainties due to the choice of model snowfall input,
in this current study, we run the MCMC optimization for
NESOSIM with additional reanalysis snowfall inputs, intro-
ducing NASA’s Modern-Era Retrospective analysis for Re-
search and Applications, Version 2 (MERRA-2), and the
Japanese Meteorological Agency’s Japanese 55-year Reanal-
ysis (JRA-55) to this study in addition to ERA5. This also
necessitates a revisiting of the CloudSat calibration for re-
analysis snowfall first performed in Cabaj et al. (2020) since
a longer time record and an additional reanalysis product
are used in this study. We estimate resulting snow depth
and density uncertainties due to parameter uncertainty, which
helps account for uncertainties due to snow input, and exam-
ine the impact of this parameter optimization on the agree-
ment between the snow depth and density derived using
these products. Then we construct consensus snow depth
and density estimates that account for variability in reanal-
ysis snowfall from the average of calibrated NESOSIM out-
put for different reanalysis snow inputs, motivated by work
combining land snow products (Mudryk et al., 2015), which
demonstrates how multi-dataset approaches can help to re-
veal biases between datasets and facilitate the characteri-
zation of dataset uncertainties. We evaluate the consistency
of the outputs across different snowfall forcing inputs, ex-
amining the climatologies, the interannual variability, and
trends over the 1980–2021 time period. We compare the NE-
SOSIM output to SnowModel-LG (Liston et al., 2020), an-
other reanalysis-based snow-on-sea-ice model. SnowModel-
LG likewise includes observation-based calibration, namely
an assimilation-based bias correction to precipitation to bring
modelled snow depth into agreement with ground-based and
remote sensing observations, including Operation IceBridge
measurements (Liston et al., 2020; Stroeve et al., 2020). We
further compare the NESOSIM and SnowModel-LG outputs
to independent observational datasets, namely in situ snow
depth and density observations from the 2019–2020 Multi-
disciplinary Drifting Observatory for the Study of Arctic Cli-
mate (MOSAiC) observational campaign (Itkin et al., 2023;
Macfarlane et al., 2023) and airborne snow depth observa-
tions from April 2017 and 2019 from the Alfred Wegener
Institute (AWI) IceBird campaign (Jutila et al., 2022).
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2 Data products and models

2.1 Reanalysis products

Snowfall rates from the ERA5, MERRA-2, and JRA-55 re-
analysis products are used as input to NESOSIM in this
study. ERA-Interim is examined for reference but is not used
as input to NESOSIM, as it has been superseded by ERA5.
A summary of the reanalysis products used in this study is
shown in Table 1, and each product is discussed in more de-
tail in the subsections below. To format the reanalysis snow-
fall for use as input to NESOSIM, the snowfall rate from
each reanalysis product is aggregated by day to produce
daily snowfall and then regridded to the 100 km× 100 km
equal-area NESOSIM model grid. NESOSIM also uses 10 m
wind input from reanalysis products, but for this study, ERA5
winds were used for all model runs.

2.1.1 ERA-Interim

The European Centre for Medium-range Weather Forecasts
(ECMWF) Re-Analysis Project ERA-Interim (Dee et al.,
2011) is widely used in studies of Arctic snow and is often
used for precipitation input in snow models (Kwok and Cun-
ningham, 2008; Petty et al., 2018; Blanchard-Wrigglesworth
et al., 2018). It has been found to have high correlations
and low biases with respect to observations of Arctic land
precipitation (Lindsay et al., 2014). Sea ice concentration
is represented as a fractional quantity for grid cells with
concentrations greater than 20 %, while grid cells with less
than 20 % concentration are designated as open ocean. ERA-
Interim is produced using a 4DVar assimilation scheme, and
it features a T255 (∼ 79 km) resolution spectral dynamical
core. The ERA-Interim snowfall product is provided on an
N128 Gaussian grid, re-gridded to a 0.75°× 0.75° latitude/-
longitude grid in this study. Production of ERA-Interim has
stopped as of August 2019.

2.1.2 ERA5

The ECMWF Reanalysis v5 (Hersbach et al., 2020), the suc-
cessor to ERA-Interim, features many improvements, such as
a finer model resolution, an updated assimilation scheme, and
an improved cloud scheme, including improvements to the
representation of mixed-phase clouds and ice-phase cloud
microphysics (Hersbach et al., 2020). It has been found to
produce more snow than ERA-Interim, especially in the At-
lantic sector (Wang et al., 2019). Like ERA-Interim, ERA5
uses a 4DVar assimilation scheme. The representation of sea
ice concentration is also the same as in ERA-Interim, with
fractional concentration above a 20 % open-ocean threshold.
In this study, the ERA5 snowfall rate product is interpolated
from its native N320 Gaussian grid to a 0.25°× 0.25° grid.
Currently, ERA5 is used as the default snowfall and as the
10 m wind input for NESOSIM v1.1 (Petty et al., 2023b;
Cabaj et al., 2023).

2.1.3 MERRA-2

NASA’s Modern-Era Retrospective analysis for Research
and Applications, Version 2 (Gelaro et al., 2017), is pro-
duced on a cubed-sphere grid with a finite-element dynam-
ics scheme and is used in this study with its native horizon-
tal resolution of 0.5°× 0.625° (∼ 55 km). Unlike the other
reanalysis products investigated in this study, which use a
4DVar assimilation scheme, MERRA-2 uses a 3DVar assim-
ilation scheme with an incremental analysis update proce-
dure, which applies the analysis increment as a constant term
over the assimilation window instead of only correcting the
initial condition, as is done conventionally for 3DVar (Gelaro
et al., 2017). Sea ice is distinguished from open ocean based
on a 50 % concentration threshold. MERRA-2 is known to
produce more total precipitation over the Arctic compared to
other reanalysis products (Barrett et al., 2020; Boisvert et al.,
2018).

2.1.4 JRA-55

The Japanese Meteorological Agency’s Japanese 55-year Re-
analysis (Kobayashi et al., 2015) is another widely used prod-
uct for Arctic snowfall estimates, and it is interpolated onto a
1.25°× 1.25° grid from its native TL319 (∼ 55 km) spectral
resolution. The product uses a 4DVar assimilation scheme.
Sea ice is represented in JRA-55 with a binary classification
based on a 55 % concentration threshold. JRA-55 has been
previously used as a source of snowfall input for snow-on-
sea-ice reconstructions and was investigated as an input for
NESOSIM version 1.0 (v1.0; Petty et al., 2018). In compar-
isons of total precipitation over the Arctic Ocean, JRA-55 has
been found to produce less precipitation overall than other
reanalysis products (Barrett et al., 2020).

2.2 CloudSat

CloudSat was a satellite equipped with a 94 GHz Cloud Pro-
filing Radar (CPR) instrument, which measured vertical pro-
files of cloud and hydrometeor reflectivity, from which the
near-surface snowfall rate was retrieved (Kulie and Ben-
nartz, 2009). The satellite had an observational footprint of
1.4× 1.7 km (along and across track) and a 16 d repeat cy-
cle. The instrument was operational from 2006 to 2023, with
an interruption in 2011 due to a battery malfunction and a
change to a lower orbit in 2018. In this study, surface snow-
fall rates from the 2C-SNOW-PROFILE product, version P1
R05 (Wood et al., 2013, 2014), are used to bias correct snow-
fall rates from reanalysis products by scaling the reanalysis
monthly climatologies to the monthly climatology of region-
ally aggregated CloudSat snowfall, following the approach
in Cabaj et al. (2020). CloudSat measurements from 2006 to
2016 are used in this study. CloudSat’s ground track had lat-
itudinal coverage between 82° N and 82° S. Its sampling is
also limited following the 2011 battery malfunction to ob-
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Table 1. Reanalysis products examined in this study. Spatial resolution refers to the regular lat–long grid used for the products in this study.
To provide input to NESOSIM, all reanalysis products are regridded to the equal-area 100 km× 100 km polar grid used by the model.

Reanalysis Spatial resolution Time resolution Assimilation scheme Reference

ERA-Interim 0.75°× 0.75° 6-hourly 4DVar Dee et al. (2011)
ERA5 0.25°× 0.25° Hourly 4DVar Hersbach et al. (2020)
MERRA-2 0.5°× 0.625° Hourly 3DVar Gelaro et al. (2017)
JRA-55 1.25°× 1.25° 3-hourly 4DVar Kobayashi et al. (2015)

servations taken when the instrument had line-of-sight to
the sun, which may introduce low biases during the later
observational period (Milani and Wood, 2021). Neverthe-
less, CloudSat has been used extensively in studies of high-
latitude precipitation and snowfall (Behrangi et al., 2016;
Edel et al., 2020; Kulie et al., 2016; Milani et al., 2018).
To mitigate ground clutter contamination of surface returns
in this study, near-surface snowfall rate measurements are
retrieved from the third vertical bin above ocean surfaces
(approximately 720 m above the surface) or the fifth verti-
cal bin above sea ice (as determined by a climatological sea
ice mask at approximately 1200 m above the surface) (Wood
and L’Ecuyer, 2018). Data quality flags are applied to ex-
clude potentially contaminated observations, as described in
Cabaj et al. (2020).

2.3 MOSAiC

The Multidisciplinary Drifting Observatory for the Study of
Arctic Climate (MOSAiC) expedition took place in Septem-
ber 2019–October 2020, providing high-quality in situ ob-
servations of snow and sea ice for the duration of an en-
tire sea ice season at a central Arctic location (Nicolaus et
al., 2022). In this study, we use snow depth measurements
recorded using automated snow depth probes (MagnaProbes)
(Itkin et al., 2021) and bulk snow densities calculated from
snow density cutters (Macfarlane et al., 2021, 2022) as in-
dependent observational datasets for comparison with model
output (Macfarlane et al., 2023). Snow depth measurements
were collected over regions representative of first-year and
second-year ice over level ice and ridges. Snow density cutter
measurements likewise were taken under a variety of snow
conditions. To partly compensate for the highly localized and
heterogeneous nature of the observations, we collocate the
observed values with the nearest respective model grid cell
and average the values by day within each grid cell. Then we
calculate monthly means of these daily aggregated values for
comparison with modelled values. Prior to aggregation, bulk
snow densities are first calculated by calculating the height-
weighted average of snow density samples measured in each
snow density profile.

2.4 IceBird

The Alfred Wegener Institute (AWI) IceBird observational
campaign is an airborne observational campaign for collect-
ing measurements of sea ice thickness, and sea ice and snow
properties. We make use of snow depth observations col-
lected by airborne snow radar from April 2017 and April
2019 (Jutila et al., 2022, 2024a, b) as independent obser-
vational datasets for comparison with model output. Survey
tracks cover regions over the western Arctic Ocean, around
the Canadian Arctic Archipelago and Beaufort Sea regions,
and they encompass both first-year and multi-year ice. For
comparison with model output, we calculate the average of
observed values from the transects within each coincident
model grid cell. Each transect spans multiple model grid
cells, although some measurements coincide with grid cells
considered to be land by the models due to model resolution
limitations.

2.5 NESOSIM and MCMC calibration

The NASA Eulerian Snow on Sea Ice Model (NESOSIM)
produces estimates of snow depth and bulk snow density over
winter Arctic (September to April) sea ice on a 100× 100 km
polar grid (Petty et al., 2018). The model is a two-layer
Eulerian snow-on-sea-ice model and includes parameterized
representations of snow accumulation, densification through
wind packing, loss to the atmosphere and open ocean from
blowing snow, and redistribution of snow due to sea ice
motion. NESOSIM was initially developed to provide esti-
mates of snow depth to enable the rapid production of Arc-
tic sea ice thickness estimates from ICESat-2 (Petty et al.,
2020, 2023b).

Several observational and reanalysis inputs are used in
NESOSIM. Snowfall input for NESOSIM is provided from
reanalysis products, with ERA5 being used as the default
product as of v1.1 and ERA-Interim used previously as the
default in v1.0. In this study, multiple reanalysis products are
investigated as a source of snowfall input. Reanalysis prod-
ucts are also used for wind input to NESOSIM. This study
uses ERA5 10 m wind as input to the model, motivated by
findings that the ERA5 wind product performs relatively well
with respect to observations compared to other reanalysis
products in Arctic regions (Graham et al., 2019a, b). Sea ice
concentration is provided by the National Oceanic and Atmo-
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spheric Administration and National Snow and Ice Data Cen-
ter (NOAA/NSIDC) Climate Data Record (CDR) product
(Peng et al., 2013). Sea ice drift for the MCMC calibration
is obtained from the low-resolution sea ice drift product of
the European Organisation for the Exploitation of Meteoro-
logical Satellites (EUMETSAT) Ocean and Sea Ice Satellite
Application Facility (OSI SAF; Lavergne et al., 2010). Since
the OSI SAF drift product is not available for years prior to
2009, sea ice drift from the NSIDCv4 Polar Pathfinder prod-
uct (Tschudi et al., 2019) was used to generate the full 1980–
2021 datasets. Aside from reanalysis products, these inputs
are the same as those used in previous work using NESOSIM
v1.1 (Petty et al., 2020, 2023b; Cabaj et al., 2023).

Representations of snow processes in NESOSIM are
highly simplified. Since NESOSIM is a two-layer model,
bulk snow density in the model is represented as a weighted
sum of the prescribed densities for old snow (350 kg m−3)
and new snow (200 kg m−3). The old-snow density repre-
sents both wind slab and depth hoar (Petty et al., 2018).
These prescribed values impose maximum and minimum
values on the bulk density represented by the model. Snow
may be redistributed between model grid cells through the
action of sea ice drift, although the representation of drift
represents a large-scale average, given the model resolution.
Melt processes are currently not included in NESOSIM, so
the model is run from September to April in each season and
re-initialized on 1 September based on climatological mean
snow depths scaled by the number of melt days in the previ-
ous season (Petty et al., 2018).

The wind packing and blowing snow parameters in NE-
SOSIM are free parameters, and previous work introduced an
automated calibration of these parameters using an MCMC
process (Cabaj et al., 2023). At each model step and grid
point, if the input wind speed exceeds a prescribed threshold
speed of 5 m s−1, the wind packing and blowing snow pro-
cesses act on the snow in NESOSIM. Wind packing controls
the amount of snow transferred between layers, decreasing
the snow depth and increasing the bulk snow density as snow
is transferred from the upper (less dense) layer to the lower
(denser) layer. The blowing snow process acts only on the
upper snow layer and decreases the snow depth in the upper
layer linearly with wind speed. The blowing snow term in-
cludes an atmosphere loss term and an open-water loss term,
which are prescribed separately in NESOSIM v1.1 (Petty et
al., 2023b). The open-water loss term accounts for sea ice
concentration, with regions of lower sea ice concentration
experiencing more open-water loss. For the purpose of this
study, the blowing snow term parameters are treated as a sin-
gle term, as was done in previous work (Cabaj et al., 2023),
with the atmospheric loss factor being 0.15 times the blow-
ing snow parameter. The blowing snow term is exclusively a
loss term and does not include redistribution. When snow is
lost from a grid cell via this process, it is removed, not redis-
tributed to another grid cell. This current study will extend
previous parameter calibration work by investigating the im-

pact of using different reanalysis snowfall input products in
NESOSIM.

Previous work (Cabaj et al., 2023) demonstrated success-
ful calibration of NESOSIM’s wind packing and blowing
snow parameters using an MCMC process when NESOSIM
was run with ERA5 snowfall. MCMC is an algorithm applied
to Bayesian problems where, given prior information about
the parameters and observational constraints on the param-
eters, posterior parameters may be obtained, which produce
model output that is more closely aligned to observations, as
determined by a cost function; in this case, a log likelihood
function of the difference between model output and selected
aggregated observations used for the calibration, weighted
by the uncertainty in the observations. Using an MCMC ap-
proach for calibrating NESOSIM allows for the automated
estimation of free parameters, which were previously man-
ually estimated via comparison to observations (Petty et al.,
2018). An added benefit of this approach is that it yields pos-
terior distributions of the parameters, which provide an esti-
mate of parameter uncertainty subject to observational con-
straints. The MCMC process is iterative and is conducted for
NESOSIM following the approach in Cabaj et al. (2023).
Further description of the NESOSIM MCMC calibration is
provided in Appendix B.

2.6 SnowModel-LG

SnowModel-LG (Liston et al., 2020; Stroeve et al., 2020)
is a Lagrangian snow-on-sea-ice model. Like NESOSIM, it
takes snowfall input from reanalysis products. However, the
representation of snow processes in SnowModel-LG is con-
siderably more complex than in NESOSIM, with the no-
table inclusion of snowmelt, snowpack metamorphosis pro-
cesses, and multiple snow layers (a maximum of 25 lay-
ers for the product used in this study). Output is provided
with a daily temporal resolution and a spatial resolution of
25× 25 km. SnowModel-LG output has been found to com-
pare favourably with data from several observational cam-
paigns (Stroeve et al., 2020), although agreement depends
on the region and time period of comparison.

The ERA5 and MERRA-2 reanalysis products are used to
provide snowfall input to SnowModel-LG. SnowModel-LG
also includes an observation-based calibration, with scaling
factors applied to the reanalysis snowfall based on a cor-
rection empirically derived from Operation IceBridge snow
depth measurements (Liston et al., 2020; Stroeve et al.,
2020). The assimilation approach used in SnowModel-LG is
consistent with optimal interpolation approaches (Liston and
Hiemstra, 2008).

In this study, output from SnowModel-LG run with ERA5
and MERRA-2 input (retrieved from the National Snow and
Ice Data Center; Liston et al., 2021) is used for comparison
with NESOSIM. SnowModel-LG does not include the Cana-
dian Arctic Archipelago region, so this region is not consid-
ered for the comparisons between SnowModel-LG and NE-
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SOSIM in this study. Furthermore, whereas NESOSIM is ini-
tialized in September, SnowModel-LG is initialized in Au-
gust and run through the melt season. For consistency, only
months during which NESOSIM and SnowModel-LG data
are both available will be considered in this study.

3 Investigating different reanalysis snowfall products

Here, we present a comparison of the reanalysis snowfall
products used in this study as input to NESOSIM. Reanal-
ysis snowfall products are calibrated to CloudSat following
the approach from Cabaj et al. (2020), but in this study, addi-
tional products are used and a longer time series is examined,
as discussed below.

3.1 Reanalysis snowfall calibration using CloudSat

Figure 1 shows regionally aggregated monthly mean snow-
fall rates over the ocean region in the 60–82° N latitude band
from reanalysis products and CloudSat from 1980 to 2016
without and with scaling to the CloudSat monthly clima-
tology (Cabaj et al., 2020). The scaling entails taking the
monthly reanalysis snowfall rate for each month and mul-
tiplying it by a scaling factor, which consists of the CloudSat
climatological monthly mean snowfall rate divided by the re-
analysis climatological monthly mean snowfall rate for each
respective month. The climatological means for this scaling
are taken from 2006 to 2016, excluding months in 2011 when
CloudSat observations are absent due to instrument malfunc-
tions. Further details of this scaling are provided in Cabaj
et al. (2020). Before the scaling is applied in Fig. 1, there
is some variation between the reanalysis products, although
they have similar seasonal cycles and generally coincident
seasonal maxima and minima. ERA5 and MERRA-2 have
relatively high snowfall compared to ERA-Interim and JRA-
55. Snowfall rates from CloudSat, which are available from
2006 to 2016 with a gap in 2011, are comparable to the
snowfall rates of the other products. MERRA-2 is known
to be wetter compared to other reanalysis products over the
Arctic when total precipitation is considered (Barrett et al.,
2020; Boisvert et al., 2018). This is particularly reflected in
the summer months, when MERRA-2 snowfall rates are the
largest relative to the other products.

As in Cabaj et al. (2020), we bias adjust reanalysis snow-
fall input to climatological CloudSat snowfall for 2006–
2016. CloudSat scaling improves agreement amongst the re-
analyses both within and outside the 2006–2016 calibration
period (Fig. 1b). Although MERRA-2’s seasonal snowfall
cycle is consistently of greater amplitude than those of the
other products prior to 2006, the agreement of MERRA-2
with the other products is considerably improved with the
scaling. JRA-55, which was not previously investigated in
this context, is also brought into closer agreement with the
other products using this approach. This highlights the con-

tinued benefits of this bias-adjustment approach for reconcil-
ing reanalysis snowfall products.

3.2 Snowfall comparison over ocean and sea ice for the
NESOSIM domain

To apply CloudSat scaling over the NESOSIM model do-
main, a more regionally refined scaling approach is used.
Reanalysis snowfall rates are scaled to CloudSat measure-
ments from 60 to 82° N over four quadrants, as described
in Cabaj et al. (2020). The CloudSat scaling was previously
found to improve agreement in basin-averaged and region-
ally averaged snow depths in NESOSIM v1.0 (Cabaj et al.,
2020). Some adjustments were made to the scaling for NE-
SOSIM v1.1, which has a larger model domain (Petty et al.,
2023b) extending down to 50° N compared to 60° N for NE-
SOSIM v1.0 (Petty et al., 2018). For the current version of
the model, the scaling is performed as follows.

As in previous work, the NESOSIM v1.1 model domain is
divided into quadrants with longitudinal boundaries at longi-
tudes 135, 45, 45, and 135° E, as illustrated in Fig. A1. For
each quadrant within a region between latitudes of 60 and
82° N (indicated by solid lines in Fig. A1), CloudSat scal-
ing factors are calculated by dividing the CloudSat monthly
snowfall climatology by the reanalysis monthly snowfall cli-
matology averaged over the region. The same CloudSat scal-
ing factors previously calculated for Cabaj et al. (2020) are
used, with the addition of scaling factors for JRA-55, which
were not previously calculated. The scaling factors are lin-
early interpolated across the pole from corners at latitudes
of 45° N (longitudes of 90° W, 0° E, 90° E, and 180° E, in-
dicated by A–D in Fig. A1), consistent with the interpola-
tion performed for version 1.0 of the model. To account for
the extended model domain in NESOSIM version 1.1, the
scaling factors are extrapolated southwards from the same
corners (A–D) as constant values. This process creates a set
of monthly gridded scaling factors that are then multiplied
by the daily reanalysis snowfall rates used as input to NE-
SOSIM v1.1, with a different set of scaling factors used for
each month.

Figure 2 shows the impact of CloudSat scaling applied to
NESOSIM model input for monthly climatologies of reanal-
ysis snowfall rates over ocean (which includes both ice and
open ocean, with land masked out) and over sea ice only, re-
gionally averaged over a representative subset of the different
Arctic regions shown in Fig. A1.

CloudSat scaling effectively reconciles differences be-
tween reanalysis products for the pan-Arctic ocean region in
Fig. 1 during the satellite era but shows less consistency for
individual regions and when ice-covered scenes are broken
out. Over the ice-plus-ocean region for which the CloudSat
scaling was originally developed, the CloudSat scaling rec-
onciles differences between the products for most months in
most regions. A notable exception is in the central Arctic re-
gion, where the September snowfall values are excessively
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Figure 1. Monthly mean snowfall rates from reanalysis products and CloudSat, regionally averaged over the ocean region in the 60–82° N
latitude band (i.e. excluding land) (a) without scaling to CloudSat and (b) scaled to the CloudSat monthly snowfall climatology. Panel (c)
shows the difference between the reanalysis products and CloudSat for the no-scaling (dashed) and with-scaling (solid) cases from 2006 to
2016.

large for JRA-55 following the application of the CloudSat
scaling. This may be because JRA-55 is biased relatively low
compared to CloudSat and the other products, so the Cloud-
Sat scaling, determined using ice-plus-ocean scaling factors,
greatly increases the snowfall rates, especially in the early
part of the sea ice season. Furthermore, since CloudSat ob-
servations are limited to latitudes south of 82° N, the scal-
ing factors may be less reliable over more poleward regions.
Over the ice-covered region alone, the CloudSat scaling re-
duces inter-product consistency in some regions and months.
Over sea ice, the overall inter-product spread increases in
September and October in the central Arctic, in October in
the Beaufort Sea, in October–November in the Chukchi Sea,
in all months except January and September for the Kara Sea,
in all months except April and September in the Barents Sea,
and in all months except April in the East Greenland Sea.
In the Kara, Barents, and East Greenland Sea regions in par-

ticular, JRA-55 and MERRA-2 are closely reconciled by the
CloudSat scaling, but ERA5 is less changed by the scaling,
which results in it being biased relatively low with respect to
the other products.

Seasonal cycles of snowfall over sea ice may be similar to
snowfall over the ice-plus-ocean region in some regions, but
other regions show stark differences. Of the regions shown,
the seasonal cycles and magnitudes differ considerably be-
tween the two cases in the Chukchi Sea, Barents Sea, and
East Greenland Sea regions. By comparison, the differences
are notably less stark in the central Arctic region, which has
considerable ice cover even in the early season. In the Kara
and Beaufort seas, the seasonality is similar between the two
cases, although the magnitudes differ. Many of the regions
show relatively low snowfall over the ocean-plus-ice region
in September, but those same snowfall minima are not as
prominent in the plots for the ice-covered regions. This sug-
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Figure 2. Monthly climatologies of regionally averaged snowfall rates from reanalysis products from 1980 to 2021: over the ocean region
(i.e. including both ice-covered and ice-free ocean) and over sea ice only without and with CloudSat scaling (CS) applied. Bars represent the
interannual standard deviations of the climatologies. Note the differing scales on the vertical axes between regions.

gests that much of the snow that is present during the early
part of the season is coincident with the presence of sea ice.
This may be due to ice-covered regions having lower temper-
atures, which permits the presence of early-season snowfall
where other regions may have rainfall. Despite these regional
inconsistencies due to the limited overlap between Cloud-
Sat orbits and ice-covered regions, which would likewise ad-
versely impact CloudSat scaling if it were restricted to ice-
covered regions, we proceed with the established CloudSat
scaling factors. We will return to the discussion of issues re-
lated to CloudSat scaling in Sect. 7.

Discrepancies in reanalysis input yield discrepancies in the
output from NESOSIM driven by different reanalysis snow-
fall products. This motivates the observation-constrained cal-
ibration of NESOSIM run with different reanalysis snowfall
inputs using an MCMC method, as was previously done in
Cabaj et al. (2023). The following section discusses an up-
dated calibration of NESOSIM and the impact on model-
derived snow depth and density.

4 Impact of MCMC calibration on NESOSIM output

4.1 Posterior model parameters

In this study, the same MCMC approach as in Cabaj et al.
(2023) is repeated but with the addition of other reanalysis
snowfall inputs; MERRA-2 and JRA-55 snowfall are used in
addition to that of ERA5. The MCMC process was run for
10 000 iterations for each snowfall input product. The first
5000 iterations are discarded to exclude “burn-in” values, as
was done in Cabaj et al. (2023). Nevertheless, in each case,
the optimal posterior parameter values did not differ signifi-
cantly between the first (burn-in) and subsequent (after burn-
in) sets of iterations, demonstrating robust convergence of
the MCMC process.

Figure 3 shows the posterior distributions obtained from
the MCMC calibrations of NESOSIM run with snowfall in-
put from ERA5, JRA-55, and MERRA-2. The posterior dis-
tributions are aggregated from parameter values that are ac-
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cepted during the MCMC process and provide both the opti-
mal (maximum-likelihood) parameter values and estimates
of the parameter uncertainties (Gelman et al., 2013). Nu-
merical values for the optimal parameters and associated
uncertainties are shown in Table 2, along with the coef-
ficients of variation and the acceptance rates. The accep-
tance rate, calculated from the ratio of accepted parameters
to the total number of iterations, indicates the efficiency of
the MCMC process, with an optimal efficiency for a two-
parameter MCMC process being approximately 23 % (Gel-
man et al., 2013). Coefficients of variation are calculated
from the standard deviation of the posterior distribution di-
vided by the posterior parameter value and quantify the rel-
ative spread of the posterior distribution. This provides a
quantitative indication of how well-constrained the param-
eters are by the MCMC calibration. The posterior distribu-
tion of ERA5 is considerably narrower than the distributions
of MERRA-2 and JRA-55, with the latter being noticeably
broad relative to the posterior distributions of the other two
products. The coefficients of variation for the wind pack-
ing parameters, as indicated in Table 2, are 15 % for ERA5,
42 % for JRA-55, and 21 % for MERRA-2. The coefficients
of variation for the blowing snow parameters are 13 % for
ERA5, 38 % for JRA-55, and 19 % for MERRA-2. The JRA-
55 parameter distribution has a slight bimodality in both
wind packing and blowing snow, although the maximum-
likelihood parameter corresponds to the larger mode. The
spreads of the parameters for ERA5 and MERRA-2 are more
comparable, with the MERRA-2 posterior distributions be-
ing somewhat wider than those of ERA5. In terms of de-
parture from the prior values, ERA5 has the closest blow-
ing snow value to the prior, and MERRA-2 has the closest
wind packing to the prior. JRA-55 demonstrates the largest
departure from the prior parameter values overall. The ac-
ceptance rates are included primarily as an indicator of the
efficiency of the MCMC process; ERA5 and MERRA-2 are
relatively close to the optimal (23 %) efficiency for a two-
parameter MCMC optimization (Gelman et al., 2013). The
comparatively large acceptance rate for JRA-55 suggests that
a larger step size could be used for the MCMC optimization
for this product, but given that the NESOSIM–MCMC op-
timization is not excessively computationally expensive, the
existing configuration is sufficient for the scope of this study.
The correlation between the wind packing and blowing snow
parameters may be a consequence of the processes compen-
sating for each other, as described in Cabaj et al. (2023).
The wind packing process transfers snow to the lower layer,
where the blowing snow process cannot remove snow, so if
wind packing is strengthened, the blowing snow process may
also be strengthened to compensate and to enable additional
snow depth reduction.

These results highlight the fact that model parameter tun-
ing is heavily dependent on the forcing dataset. Care must
be taken when using reanalysis-based snow-on-sea-ice re-
constructions such as NESOSIM with different snow input

Figure 3. Posterior wind packing and blowing snow parameter dis-
tributions from MCMC calibration using snow input from ERA5,
JRA-55, and MERRA-2. Note that the distributions have some over-
lap. The dark red dot indicates the prior parameter values, and the
other coloured dots indicate the optimal parameter values for the
three respective products. The side panels show the marginal distri-
butions, highlighting the overlap.

datasets since model processes may be less physically rep-
resentative when different inputs are used. When developing
parameterizations for such model processes, it is important to
consider that biases in model inputs will likewise be reflected
in model parameterizations. Biases in the observations used
for calibration will also impact the model output, but may be
inevitable given the relative scarcity of in situ observations of
snow on sea ice. Overall, MCMC can be used to objectively
determine model parameters and their uncertainty given the
uncertainty in the inputs.

4.2 Snow depth and density uncertainty estimates

Given the posterior parameter uncertainties provided from
the MCMC calibration, uncertainty in the NESOSIM output
can be calculated. Figure 4 shows the depth and density for
a single representative late-decade year, with shading repre-
senting the associated MCMC-estimated uncertainty for each
respective product. The uncertainty is calculated from a 100-
parameter ensemble run, with the wind packing and blowing
snow parameters sampled from the posterior distribution for
each respective MCMC calibration, as in Cabaj et al. (2023).
This represents uncertainty due to the model parameter un-
certainty and therefore does not characterize all the uncer-
tainties in the model. The day-to-day variability is quite sim-
ilar between the time series, although some differences re-
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Table 2. Optimal parameters from MCMC optimization for different reanalysis inputs, with the default (prior) configuration and the pre-
scribed prior standard deviations included in the first row for reference. WP refers to wind packing and BS refers to blowing snow. MCMC-
derived standard deviations are denoted by σ . CV refers to the respective coefficients of variation for each parameter. AR refers to the
acceptance rate of the MCMC optimization, i.e. the percentage of iterations whose test parameter values are accepted.

Configuration WP (s−1) σWP (s−1) CVWP BS (m−1) σBS (m−1) CVBS AR

Model default (prior) 5.8× 10−7 1× 10−8 – 2.9× 10−7 1× 10−8 – –
MCMC–ERA5 2.05× 10−6 3.11× 10−7 15 % 4.01× 10−7 5.30× 10−8 13 % 29 %
MCMC–JRA-55 2.35× 10−6 9.82× 10−7 42 % 1.05× 10−6 4.01× 10−7 38 % 46 %
MCMC–MERRA-2 1.59× 10−6 3.40× 10−7 21 % 6.03× 10−7 1.12× 10−7 19 % 33 %

main between the products. NESOSIM with JRA-55 input
shows a sharper early-season increase in snow depth com-
pared to the other products, although the late-season snow
depth is comparable to that of the other products. Snow
density values for the NESOSIM–JRA-55 output are also
the largest overall, reflecting its stronger wind packing. The
agreement in day-to-day density variations is likely a conse-
quence of the identical ERA5 wind inputs to each NESOSIM
run since wind packing is dependent on the wind input to
NESOSIM. NESOSIM–JRA-55 has the largest uncertainty
in snow depth and snow density, which is consistent with the
spread of the posterior parameter distributions.

The multi-product average was calculated as the aver-
age of the MCMC-calibrated output from NESOSIM for
the three different reanalysis inputs. The uncertainty in the
multi-product average was calculated using the standard de-
viation of the three 100-parameter model-run ensembles for
the three reanalysis products. It thus quantifies both the un-
certainty due to model parameter uncertainty and the spread
from the use of different model snowfall inputs. Initially, a
bootstrap sampling approach was attempted to produce po-
tentially more robust estimates, but it was found that the
bootstrap-estimated standard deviations differed from the di-
rectly calculated standard deviations by at most only 0.05 %.
Hence, the standard deviation of the combined parameter en-
semble was used to calculate the multi-product average un-
certainty for the depth and density.

To enable more direct uncertainty comparisons, uncertain-
ties and percent uncertainties for depth and density due to
model parameter uncertainty are shown in Fig. 5. A plot
of monthly interannual-averaged uncertainties from 1980 to
2021 is also available in Fig. A2. As in Fig. 4, the per-
cent uncertainty magnitudes reflect the shape of the pos-
terior distributions. The relative insensitivity of NESOSIM
snow output to model parameter values, as was observed
in Cabaj et al. (2023), persists here; the percent uncertain-
ties are considerably smaller than the NESOSIM parameter
uncertainty, represented by coefficients of variation, as dis-
cussed in Sect. 4.1. The NESOSIM–ERA5 uncertainties are
relatively small compared to the other products. The percent
uncertainties for all the products attain their initial maxima
within approximately 15 d of when the model is initialized

despite the differing snow inputs. This further justifies the
choice of 15 d as a “ramp-up” period for uncertainty in Cabaj
et al. (2023).

The multi-product-average percent uncertainty is larger
than the ERA5 percent uncertainty because it accounts for
the inter-product differences across snowfall input products,
reaching a range of 8 %–18 % snow depth uncertainty and
a smaller range of 2 %–5 % uncertainty for snow density.
The relatively low percent uncertainty for density may be be-
cause the density values are constrained to a relatively narrow
range, with a maximum prescribed by the model. The multi-
product density percent uncertainty is also notably lower than
the JRA-55 density percent uncertainty, which suggests that
the JRA-55 density data alone has more relative spread com-
pared to all the ensemble data aggregated together. In par-
ticular, as seen in Fig. 4, the JRA-55 uncertainty overlaps
considerably with that of ERA5 and to some extent with that
of MERRA-2. Hence, there is some reduction in the standard
deviation when the parameter ensembles are consolidated to
construct a single inter-product standard deviation.

4.3 Impact of MCMC calibration on snow depth

Figure 6 shows basin-average monthly snow depth clima-
tologies from NESOSIM, illustrating how re-calibrating NE-
SOSIM parameters for each individual reanalysis forcing
brings the output snow depths from NESOSIM into better
consistency across the datasets. The average snow depth is
lowered somewhat overall, with the multi-product average in
April (27.4 cm) now very close in value to the ERA5 end-
of-season value (27.3 cm). Given that in both Fig. 6a and b,
ERA5 is plotted with its posterior parameters, it follows that
the other products have values that more closely match the
ERA5 output in Fig. 6b after the remaining two products
have also been MCMC calibrated to the same target observa-
tions to which ERA5 was calibrated previously. Some of the
relative biases between the products persist; JRA-55 contin-
ues to have a relatively large early-season snow depth, which
is not seen in the other products, consistent with its early-
season snowfall bias. Conversely, at the end of the season,
JRA-55 and MERRA-2 previously both exceeded ERA5 at
the end of the season, consistent with snowfall biases over
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Figure 4. Single-year daily snow depth and density time series for each MCMC-calibrated NESOSIM configuration (with snowfall input
from the ERA5, JRA-55, and MERRA-2 reanalysis products) and for the multi-product average. Shading denotes the uncertainty estimated
based on the MCMC parameter uncertainty.

sea ice in most regions, particularly over the central Arctic.
Following the MCMC calibration, JRA-55 and MERRA-2
bracket ERA5 snow depth on either side, with the multi-
product average closely matching the ERA5 values.

The bars in Fig. 6 shows interannual variability in the
ERA5-calibrated and individually calibrated model runs,
which is calculated as the standard deviation of the climatol-
ogy (these quantities are also plotted separately in Fig. A3).
The interannual variability reaches its seasonal peak at the
beginning of the season for JRA-55 and ERA5, and at the
end of the season for MERRA-2, although the seasonal cycle
attains its minimum for all products in October. JRA-55 has
the largest interannual variability in September, and in Octo-
ber onward, MERRA-2 has the largest interannual variabil-
ity of all the products. MCMC calibration reconciles some of
the overall spread in interannual variability between the snow
depth outputs, although there is less agreement in interan-
nual variability between JRA-55 and MERRA-2 in October
following the calibration. Both JRA-55’s high early-season
variability and MERRA-2’s high late-season variability de-

crease somewhat following the MCMC calibration, bringing
them into closer agreement with the rest of the products.

4.4 Impact of MCMC calibration on snow density

Although the MCMC calibration reconciles snow depths for
NESOSIM run with different snowfall inputs, the opposite
is seen for bulk snow density. Figure 7 shows plots of the
basin-average monthly bulk snow density climatologies be-
fore and after the calibration. The climatologies show very
close agreement when the same (MCMC–ERA5) parame-
ters are used for each NESOSIM run but differ consider-
ably when the individually calibrated MCMC parameters are
used. This is likely a consequence of how snow density is
represented in the model. Since snow density in each layer of
NESOSIM is fixed, bulk density is a function of the ratio of
snow depths in the two layers. Hence, the bulk density in NE-
SOSIM is strongly sensitive to the strength of the wind pack-
ing process, which transfers snow between the layers. Model
runs with different snowfall inputs can still produce similar
bulk densities, as long as the same wind packing parameter
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Figure 5. Daily uncertainty estimates for snow depth (a, b) and density (c, d) for a single season (2018–2019) of the NESOSIM run with
all the products separately (colours) and the multi-product average (black). The absolute uncertainties are shown in panels (a) and (c), and
percent uncertainties are shown in panels (b) and (d). Grey shading indicates the first 15 d of the season.

and wind input are used. The slight differences between the
uncalibrated snow density outputs may depend on the timing
of snowfall. For example, a high-snow-accumulation event
will reduce the overall bulk density in the short term, but if
this accumulation occurs early in the season, more snow may
subsequently be transferred to the lower layer, increasing the
bulk snow density in the long term if subsequent accumula-
tion is lower. NESOSIM driven by JRA-55 shows deep snow
in the early season relative to other products, which may con-
tribute to its high later-season snow density bias, as seen in
Fig. 7. Conversely, if the wind packing parameter changes,
the modelled density will shift accordingly. The inter-product
density differences following MCMC calibration are consis-
tent with the posterior parameter values shown in Fig. 3: the
wind packing parameter is largest in JRA-55, which reports
the highest bulk snow density value, whereas the smallest
wind packing parameter is obtained in the MERRA-2 cali-
bration, which reports the lowest density value.

The widened spread between products following the cali-
bration also reflects the fact that the density values are rela-
tively under-constrained by the MCMC calibration approach

due to the small number of density measurements used.
Monthly climatologies of basin-averaged historical density
measurements are used as observational constraints for the
calibration due to a relative lack of widespread contemporary
density measurements. These density observations are vastly
outnumbered by the Operation IceBridge (OIB) depth ob-
servations used in the optimization, which puts more weight
on the OIB measurements in the likelihood function. Hence,
because the snow depth constraint is stronger, the MCMC
calibration will tend to reconcile differences in snow depth
while potentially introducing discrepancies in density. Some
of this spread may also be related to how the wind pack-
ing and blowing snow parameters vary in tandem during the
calibration, which may also be a consequence of the rela-
tively few density measurements provided. Given that pre-
vious work (Cabaj et al., 2023) found that sea ice thickness
estimates produced using NESOSIM snow input are more
sensitive to snow depth than differences in snow density, we
proceed with using the individually calibrated density values
to produce the NESOSIM multi-product-average density de-
spite their wider spread.
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Figure 6. Basin-average monthly snow depth climatologies from NESOSIM for 1980–2021, (a) with the model run using the MCMC–ERA5
configuration for all products (i.e. using the same wind packing and blowing snow parameters) and (b) with the parameter values re-tuned
to each respective reanalysis input. Bars indicate the interannual variability (standard deviation of the climatology), which is also shown
separately in Fig. A3.

Figure 7. Basin-average bulk snow density monthly climatologies for 1980–2021 (a) for the MCMC–ERA5 configuration and (b) with each
product calibrated separately. Bars represent the standard deviations of the climatologies, indicating interannual variability.

4.5 Regional snow-on-sea-ice climatologies

Figure 8 shows regionally averaged snow depth and den-
sity climatologies by region (with regions as defined in
Meier and Stewart, 2023) from NESOSIM–MCMC output
and from SnowModel-LG. Sea ice area calculated from the
NOAA/NSIDC Climate Data Record (CDR) product (Peng
et al., 2013) is also shown; this product is used in NE-
SOSIM. The sea ice product used in SnowModel-LG dif-
fers in that it uses the NASA Team algorithm, whereas the
CDR product uses the highest value from the NASA Team

and Bootstrap algorithms (Cavalieri et al., 1996; Peng et al.,
2013). NESOSIM and SnowModel-LG snow depths agree
well in the central Arctic, Beaufort Sea, and Chukchi Sea
regions, but NESOSIM depths exceed those of SnowModel-
LG in the Kara, Barents, and East Greenland Sea regions.
Notably, NESOSIM shows the greatest snow depths in the
East Greenland Sea region, as expected from the presence
of the North Atlantic storm track (Webster et al., 2019), but
SnowModel-LG records this as a region with much shallower
snow (∼ 27 cm versus ∼ 72 cm in the late season). Know-
ing that NESOSIM’s simplicity might challenge its realism
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in high-latitude North Atlantic regions like the East Green-
land Sea, improved observations of snow on sea ice are crit-
ical in such regions. In several peripheral seas of the Arctic
Ocean, SnowModel-LG demonstrates a slight levelling-off
of the snow depth in March and April (as can be seen in the
Beaufort, Chukchi, and Kara seas). Conversely, snow depth
in NESOSIM steadily increases in the late-season months in
these same regions. This discrepancy may be due to a lack
of representation of melt or other snow metamorphosis pro-
cesses in NESOSIM since even at high latitudes, some melt
is expected at the end of the season. However, other inter-
model process differences may also contribute.

For regionally averaged snow densities from NESOSIM
and SnowModel-LG, the limitations of the simple represen-
tation of snow density in NESOSIM are apparent since the
density in NESOSIM does not exceed 350 kg m−3, the pre-
scribed maximum density of the model. The seasonal cy-
cles of density in NESOSIM exhibit few regional differ-
ences. By contrast, in SnowModel-LG, snow densities and
their seasonal cycles vary considerably by region. There
is an early-season decline in density in several regions for
SnowModel-LG that is not represented in NESOSIM, in-
cluding in the Beaufort, Chukchi, and Kara seas. The dens-
est snow in SnowModel-LG is present in the East Greenland
Sea region, exceeding the maximum snow density possible in
NESOSIM as early as January. This high density may explain
some of the representational discrepancies for NESOSIM in
this region. Because the snow cannot become as dense in NE-
SOSIM, given equal amounts of snowfall input, lower den-
sity will yield a deeper snowpack. Nevertheless, differences
in snow density representation do not entirely explain dif-
ferences between SnowModel-LG and NESOSIM. In some
regions where NESOSIM has a higher density (e.g. Barents
Sea), it also has a deeper snowpack.

5 Comparison to MOSAiC and IceBird observations

NESOSIM (run with the ERA5-calibrated parameters
(“E5config”) and individually calibrated parameters
(“MCMC”)) and SnowModel-LG output is compared to
MagnaProbe snow depth (Itkin et al., 2021) and snow
density cutter (Macfarlane et al., 2021, 2022) observations
from the 2019 to 2020 MOSAiC observational campaign
(Macfarlane et al., 2023; Itkin et al., 2023) and to airborne
snow radar depth observations from April 2017 and April
2019 from the AWI IceBird observational campaign (Jutila
et al., 2022) in Fig. 9. The observed data are aggregated to
the respective NESOSIM and SnowModel-LG model grids.

Both NESOSIM and SnowModel-LG snow depths show
relatively good agreement with the gridded IceBird and MO-
SAiC observations, given the considerable differences in spa-
tial and temporal sampling between the modelled and ob-
served values. Overall root-mean-square differences are low
(no greater than 10 cm for all products and observations), and

mean biases are generally relatively small (absolute value
less than 5 cm for all products and observations). Overall ob-
servational correlations are somewhat better for NESOSIM
than for SnowModel-LG, particularly for SnowModel-LG
driven by MERRA-2. Root-mean-square differences are gen-
erally comparable between NESOSIM and SnowModel-LG
for MOSAiC data, although they are somewhat lower for NE-
SOSIM when compared to IceBird. Mean biases for snow
depth are largest (in absolute value) for SnowModel-LG
driven by ERA5 relative to MOSAiC and for NESOSIM
driven by JRA-55 with ERA5 parameters relative to IceBird.
Some of the MOSAiC snow depth observations show high
values (> 60 cm) that are not captured by the models; these
observations tend to coincide with measurements made on or
near sea ice ridges. Conversely, for some gridded measure-
ments, the models, especially SnowModel-LG, can consid-
erably overestimate snow depths relative to IceBird. Differ-
ences in model gridding may also contribute to differences
in correlations and biases. Since SnowModel-LG has a finer
grid than that of NESOSIM, observations gridded to be com-
pared with NESOSIM are more aggregated and can have
fewer extreme values, as is the case for IceBird.

For snow density, SnowModel-LG has more variability
than NESOSIM, which is a consequence of the relatively
simple representation of snow density in the latter model.
Nevertheless, both models have similar challenges reproduc-
ing observed snow density despite the differences in snow
density representation between the models, with correlations
no greater than 0.23. This disagreement may be partly due
to sampling bias in the snow density observations and to
the overall difficulty in comparing point measurements to
large-scale modelled values. Both models show a high mean
bias relative to observed values, with SnowModel-LG driven
by MERRA-2 having the largest mean bias, as well as the
largest root-mean-square difference. Although NESOSIM
has a high bias overall, some snow density measurements
were found to exceed 350 kg m−3 (the maximum density the
model can represent), highlighting another limitation of the
model. Snow density observations from MOSAiC could be
used in future work to guide the development of the represen-
tation of snow density in NESOSIM to help address this limi-
tation. Several large observed density values (> 400 kg m−3)
are not well-represented by either model.

The IceBird and MOSAiC observations have been made
available recently and have not been used to calibrate either
NESOSIM or SnowModel-LG. IceBird data capture some
regional variability over some regions, and MOSAiC data
capture seasonal variability for a single season. Nevertheless,
both datasets are limited in their observational coverage, and
as such, this comparison provides a limited assessment of the
impact of the MCMC calibration. The NESOSIM MCMC
calibration improves snow depth agreement slightly relative
to IceBird observations but has mixed results relative to MO-
SAiC depth and density observations. In general, for snow
depth, the effect of the MCMC calibration is to lower the

The Cryosphere, 19, 3033–3064, 2025 https://doi.org/10.5194/tc-19-3033-2025



A. Cabaj et al.: Impact of snow input on a snow-on-sea-ice reconstruction 3047

Figure 8. Climatologies of regionally averaged snow depth and density from MCMC-calibrated NESOSIM output and SnowModel-LG
output for 1980–2021. Regional CDR sea ice area climatologies also shown. “Average” indicates the inter-product average for the three
NESOSIM configurations. Climatologies from SnowModel-LG driven with ERA5 and MERRA-2 are also shown. Regions are as described
in Fig. A1. Bars indicate the interannual variability in each respective climatology, which is quantified by the standard deviation of the
climatology.

mean bias. This brings the model output into closer agree-
ment with the observations when the model is biased high,
as is the case for IceBird, but can degrade agreement if the
bias is comparatively low, as is the case for NESOSIM driven
by MERRA-2 relative to MOSAiC. The correlation is im-
proved for all products relative to IceBird but is unchanged
by the calibration relative to MOSAiC depth and density. The
MCMC calibration has mixed impacts on agreement with
observed density, but the overall impact of the calibration
is small, likely due to sampling differences and model rep-
resentational challenges, as discussed above. The improved
agreement with airborne observations may be partly a con-
sequence of similar observations (from OIB) being used as
input to the MCMC calibration.

6 Trends in MCMC-calibrated NESOSIM output

Trends were calculated using a Theil–Sen trend estimator,
consistent with the approach used by Mudryk et al. (2015).
The Theil–Sen trend estimator produces estimates of trends
by finding the median of slopes between all pairs of points
in a dataset. This approach allows for the estimation of trend

uncertainty based on a chosen confidence interval; a 95 %
confidence interval was chosen for this study. In the follow-
ing discussion, trends are considered significant if the 95 %
confidence interval does not overlap with zero. If the confi-
dence interval overlaps with zero, we consider there to be no
trend.

Basin-average trends from NESOSIM for snowfall over
sea ice, snow depth, snow density, and sea ice area are shown
in Fig. 10. The trends in snowfall over sea ice are not statis-
tically significant for most products except for a decline for
MERRA-2 from October onwards and a decreasing snow-
fall trend in January and February for JRA-55. The basin-
average trends in snow depth from MCMC-calibrated NE-
SOSIM output vary in magnitude according to the prod-
uct but are all broadly similar in sign. MERRA-2 has the
strongest trends in the basin average overall. The trend is
found to be negative (declining snow depth) in all months
except September, when the trend is significantly positive
for all products, and October, when only MERRA-2 shows
a (declining) trend. Snow density trends are generally simi-
lar between the products, aside from in October, when only
JRA-55 shows a trend. Similarity between the snow density
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Figure 9. Scatter plots with kernel density estimates of NESOSIM and SnowModel-LG output compared to observations aggregated daily to
the respective model grids from IceBird airborne snow radar (April 2017 and April 2019) (Jutila et al., 2022, 2024a, b), MOSAiC MagnaProbe
snow depth (2019–2020) (Itkin et al., 2021), and MOSAiC snow density cutters (2019–2020) (Macfarlane et al., 2021, 2022). Correlation
(r), mean bias (MB) and root-mean-square difference (RMS) are shown. The 1 : 1 line is also indicated for reference.
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Figure 10. Basin-average monthly trends from 1980 to 2021 for snowfall over sea ice from reanalysis products with CloudSat scaling
applied, with MCMC-calibrated NESOSIM snow depth and density, and with CDR sea ice concentration, calculated using a Theil–Sen trend
estimator for all products. “Average” denotes the multi-product average. Error bars indicate a 95 % confidence interval as given by the trend
estimator; points where there are no trends (the interval overlaps the zero line) are not shown. The dashed grey lines indicate the zero line for
reference. SnowModel-LG is excluded from this plot due to differences in model domains.

trends is expected since snow density in NESOSIM is less
sensitive to snow input, being primarily dependent on wind
speed. Since snow density in NESOSIM is limited to the
range of 200–350 kg m−3, the density trends may be spuri-
ously low, particularly towards the end of the season, when
density values approach the maximum and interannual vari-
ability is low (Fig. 7). The comparatively large declining
trends in MERRA-2 for depth may result from its high early-
decade snowfall bias relative to the other products. Higher
early-year snowfall rates in MERRA-2 can be seen in Fig. 1
and are consistent with findings on Arctic total precipitation
in MERRA-2, which is likewise consistently higher in early
years (Barrett et al., 2020).

Regional trends in snow depth, snow density, and sea
ice area are shown in Fig. 11. Regional trends in snowfall
are shown in Fig. A4; although there is regional variation
in snowfall trends, most products show no trend for most
months, likely due to high interannual variability in snow-
fall. A large and significant early-season decline is apparent
in the Kara Sea region but only for the month of September
for most products.

Trends in snow depth are generally stronger and more sta-
tistically significant than trends in snowfall. Many of the pe-
ripheral seas show a significant declining trend for all prod-
ucts from October onward. These trends are consistent with
results from Webster et al. (2019), who find delays in sea
ice formation, particularly in the Chukchi Sea region, and at-
tribute declining snow-on-sea-ice trends partly to the increas-
ingly late sea ice onset in this region. The East Greenland
Sea region differs noticeably from the other regions shown,
with no trend for most months except for a slight increase in
November for SnowModel-LG driven by MERRA-2 and de-
clines in April only for NESOSIM driven by MERRA-2 and
JRA-55. In the central Arctic region, declines are generally
seen only for products driven by MERRA-2. A slight Oc-
tober decline is seen for SnowModel-LG driven by ERA5,
a September decline for NESOSIM driven by ERA5, and

declines in November and March for NESOSIM driven by
JRA-55.

Despite the differences in the snow depth climatologies
between NESOSIM and SnowModel-LG, the snow depth
trends show considerably more overlap between the two
models. This demonstrates how the choice of snowfall in-
put to reanalysis-based snow-on-sea-ice reconstructions can
impact the magnitude and significance of the derived snow
depth trends. In several regions, the strongest declining
trends are found in MERRA-2, whereas trends often tend
to be smaller or absent for ERA5 for both NESOSIM and
SnowModel-LG.

For snow density trends, inter-model differences tend to
be larger than inter-product differences. Declining trends are
largest around October–November for most products and re-
gions except in the Barents and East Greenland seas. The
East Greenland Sea region shows increases in snow density
for some months and products. NESOSIM and SnowModel-
LG disagree on the sign of the snow density trend for
September in the Beaufort Sea and for March in the East
Greenland Sea for products driven by MERRA-2. Overall,
densities in SnowModel-LG tend to show large declines rel-
ative to NESOSIM. As discussed previously, NESOSIM end-
of-season density trends may be spuriously small due to NE-
SOSIM snow densities approaching their maximum towards
the end of the season, although the end-of-season density
trends represented in SnowModel-LG also tend to be smaller.

Sea ice area trends vary by region, but strong declines are
found for at least part of the season in all regions shown. In
the central Arctic and the Siberian sector, as well as in the
Beaufort Sea, the largest declining trends are in the earlier
months of the cold season (larger trends may be present in
months outside of the NESOSIM study period). When sea
ice in these regions attains its maximum extent, the trends
largely vanish, suggesting a persistent cold-season cover. To-
wards the North Atlantic (Barents, East Greenland), larger
declines are seen in later months.
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Figure 11. Monthly trends for regionally averaged quantities over the 1980–2021 time period: reanalysis snowfall over sea ice, snow depth,
snow density (from NESOSIM and SnowModel-LG), and sea ice area (from the Climate Data Record product). Error bars indicate a 95 %
confidence interval given by the trend estimator; points where there are no trends (the interval overlaps with the zero line) are not shown.

To provide a more regional perspective on snow trends,
maps of snow depth trends in NESOSIM and SnowModel-
LG output are shown in Fig. 12. Corresponding snowfall
trends are shown in Fig. A5. For these plots, trends were also
calculated using a Theil–Sen estimator, but only grid squares
containing at least 20 years of values were included to ex-
clude spurious trends. Consistent with results from the re-
gional monthly trend plots, there is a lack of snowfall trends
over most of the Arctic basin due to the high interannual
variability in Arctic snowfall relative to the magnitude of the
trends. Slight increases are seen in the Barents Sea and in the
Sea of Okhotsk, and decreasing trends are seen east of Green-
land for all products. The depth trends are more robust, high-
lighting a decline in the peripheral seas consistent with the
results shown in the regional plots, as well as some slight de-
clines around Hudson Bay and the Labrador Sea. Some sig-
nificant increasing depth trends north of the Beaufort Sea are
found in SnowModel-LG driven by ERA5, as well as in NE-
SOSIM driven by ERA5 and JRA-55, although the products
differ regarding the existence of the increasing trend near the
North Pole. The spatial pattern of increasing trends north of
Greenland and the Canadian Arctic Archipelago and decreas-
ing trends elsewhere is consistent with the pattern of spring-
time trends found by other studies, including Webster et al.
(2019) and Zhou et al. (2021), although the spatial extent of
the significant trends differs. Some differences are expected
since the other studies mentioned examine different months

and time periods. There is broad consistency, however, in the
declining trend found in the Barents Sea region. The over-
all large declining trends in depth derived from MERRA-2
are particularly apparent in Fig. 12. ERA5 and JRA-55 agree
better with each other on the spatial pattern of the snow depth
trends compared to MERRA-2.

The impact of model resolution is apparent since some
of the strong trends seen in the SnowModel-LG output are
highly localized. There are small but significant increases
in snow depth in Hudson Bay that are absent from the NE-
SOSIM output and some increases east of Greenland towards
the Fram Strait that are not apparent in the NESOSIM out-
put. This highlights the continued need for further analy-
sis of snow on sea ice in these regions, as well as a need
for further observations to validate models in these difficult-
to-characterize regions. Nevertheless, the broad patterns of
trends between NESOSIM and SnowModel-LG are simi-
lar, and there is good agreement between NESOSIM and
SnowModel-LG for the central Arctic and adjacent regions.

7 Discussion

The results of this study highlight the value of producing
a snow-on-sea-ice product that accounts for uncertainty in
model input and formulation and for sparse observations. We
find that snowfall climatologies differ considerably between
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Figure 12. Snow depth trend maps for March 1980–2021 from the NESOSIM–MCMC run with snowfall input from ERA5, MERRA-2, and
JRA-55, and SnowModel-LG with snowfall input from ERA5 (SM-ERA5) and MERRA-2 (SM-MERRA-2). The snow depth is output from
NESOSIM with parameters specific to each separate reanalysis product. The trend in the average of the output of the three NESOSIM runs
is also plotted (average). Regions with no trends (not significant at a 95 % confidence interval) are shaded in grey. Note that SnowModel-LG
is not provided within the Canadian Arctic Archipelago, so data from that region are absent in this map.
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the ice-covered region of the Arctic Ocean and the full ice-
plus-ocean region. This result is expected, given that sea ice
controls atmosphere–ocean moisture and heat fluxes, which
in turn influence high-latitude precipitation. In particular, cu-
muliform snowfall observed by CloudSat has been shown to
vary seasonally with sea ice cover (Kulie and Milani, 2017;
Kulie et al., 2016). This impacts the CloudSat scaling, which
performs well over the ocean basin but has more difficulty
reconciling snowfall over sea ice in some cases, particularly
in September when the largest basin-average accumulation
takes place, as seen in Fig. 2. This was not considered in
Cabaj et al. (2020). The CloudSat scaling factors applied
to NESOSIM were calculated over ocean regions, including
both sea-ice-free and sea-ice-covered regions, with new fac-
tors calculated for JRA-55. Although the scaling of model
snowfall input to CloudSat reconciled inter-product differ-
ences in snow depth for NESOSIM v1.0, inconsistencies re-
main in NESOSIM v1.1 snow depth output even with the ap-
plication of the CloudSat calibration. In general, the Cloud-
Sat scaling performs best in aggregate over larger regions
since smaller regions may have high variability that may not
necessarily be accounted for by the scaling. Re-calculating
the CloudSat scaling factors masked exclusively over sea ice
may not be feasible due to the relative lack of CloudSat mea-
surements over sea ice. In regions such as the Greenland Sea
where sea ice is present only in a very narrow region along
the coast, CloudSat reports much less cold-season snow-
fall relative to the reanalysis products, which suggests that
CloudSat may not be adequately sampling snowfall events
in the region. This is illustrated in Fig. A6, where CloudSat
fails to reproduce the climatology and interannual variability
found in the reanalysis products when restricted to over-ice
observations in the Greenland/Norwegian Sea region despite
agreeing comparatively better with reanalysis products in
other regions. As a result, constructing scaling factors using
CloudSat restricted to over the ice-covered region yields ex-
cessively low (< 18 cm) basin-average snow depths. Hence,
in this work, CloudSat scaling factors are calculated based on
snowfall over land-free regions, including both open ocean
and ice-covered ocean. Nevertheless, future work may en-
tail some revision of the existing CloudSat scaling factors
over sea ice, particularly for JRA-55. A more regionally re-
fined calibration may be appropriate, with the caveat that ag-
gregating CloudSat observations over smaller regions may
introduce additional uncertainty due to observational under-
sampling, as is likely the case with the Greenland/Norwegian
Sea region. Refining the calibration using more contempo-
rary forthcoming snowfall measurements from satellite mis-
sions such as EarthCARE (Wehr et al., 2023) and using more
sophisticated calibration techniques may be other options for
future work.

This study also investigates calibration of NESOSIM wind
packing and blowing snow parameters using an MCMC pro-
cess when different reanalysis products are used for NE-
SOSIM snowfall input. The MCMC parameter tuning is de-

pendent on the choice of snowfall input to NESOSIM. Given
the discrepancies between the NESOSIM output products
prior to the MCMC calibration and the fact that they are
all being calibrated to the same observational target, it is
unsurprising that the posterior parameter distributions ob-
tained from the calibration differ. This has some implications
for the model physics since it suggests that the representa-
tion of the physics in the calibrated model is highly depen-
dent on the input. Caution must be taken, then, when tak-
ing the wind packing and blowing snow parameters at face
value because wide ranges of these parameters can produce
physically reasonable model output. This also has implica-
tions for other reanalysis-based snow-on-sea-ice estimates,
which tend to make use of a selected reanalysis product. As
with NESOSIM, snow depth and density in SnowModel-LG
are dependent on the choice of reanalysis input, even with
the corrections applied in SnowModel-LG to the reanaly-
sis snowfall inputs that were used (Liston et al., 2020). Us-
ing automated model parameter recalibration when changing
snowfall inputs used for NESOSIM and other snow-on-sea-
ice models provides an objective means to address this issue.

The MCMC calibration improves agreement in both the
magnitude and the interannual variability in the snow depths
output from NESOSIM forced with different reanalysis
snowfall products, but it reduces agreement in snow den-
sity. This is likely a consequence of two factors: the relative
lack of density constraints in the MCMC calibration and the
snow density being more sensitive to the wind packing factor
than to the snow inputs examined in this study. With different
snow inputs, when the wind packing and blowing snow pa-
rameters were the same for all runs, there was relatively min-
imal variation in the density. Given that the density does not
depend on the total snow depth but, rather, on the proportion
of snow in each layer, one expects the density to be relatively
insensitive to snow input and more sensitive to differences in
the parameters. Nevertheless, the lack of density constraints
in the MCMC calibration may also be an influence, since
if density were more strongly constrained, the parameters
would be optimized to produce output with a narrower spread
in density between the products. Despite this, the estimated
density uncertainty in the multi-product average is also quite
low, highlighting how the densities produced by NESOSIM
are limited to a relatively narrow range due to constraints im-
posed by the model itself. Since other models produce higher
densities (as seen in the comparison with SnowModel-LG)
and observations indicate the presence of denser snow than
what can be produced by NESOSIM (King et al., 2020; Itkin
et al., 2023; Macfarlane et al., 2023), the density assumptions
in NESOSIM may need to be revisited. The matter of scale
must also be considered because density measurements are
highly localized, and NESOSIM represents bulk density over
large regions, consistent with its coarse resolution. Overall,
this result highlights the need to include additional observa-
tional density constraints in the calibration and to eventually
reformulate NESOSIM’s representation of density.
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In regional comparisons with SnowModel-LG, NESOSIM
snow depth is found to generally agree over the central
Arctic region, but agreement is weaker in the peripheral
seas, particularly towards the end of the sea ice season.
Overall, NESOSIM snow depth tends to be biased high
relative to SnowModel-LG. SnowModel-LG includes loss
processes not currently captured by NESOSIM, such as
snowmelt, which may contribute to the inter-product dif-
ferences. NESOSIM and SnowModel-LG also have differ-
ent approaches to address sea ice drift. The Lagrangian ap-
proach of SnowModel-LG allows it to track individual ice
parcels, providing a more complex representation of the con-
tribution of sea ice dynamics to the snow budget. NESOSIM
presents a more simplified approach but is less computation-
ally expensive to run. Limitations in NESOSIM’s represen-
tation of snow density may also impact the agreement with
SnowModel-LG; snow density in NESOSIM is limited to a
maximum value of 350 kg m−3, whereas it can attain larger
values in SnowModel-LG. NESOSIM snow depth is biased
especially high relative to SnowModel-LG in the East Green-
land Sea region, where its density conversely has a low bias.
SnowModel-LG includes snow grain parameterizations that
are absent in NESOSIM, which allows for the representation
of processes that may be essential to quantifying variations
in snow density. Nevertheless, discrepancies in snow density
representation are likely not the sole explanatory factor of
inter-model differences since, in some regions, NESOSIM is
biased high relative to SnowModel-LG even while the densi-
ties are more comparable.

Despite the differences between NESOSIM and
SnowModel-LG in terms of model processes and com-
plexity, the models generally perform comparably in
comparisons with in situ MagnaProbe snow depth (Itkin et
al., 2021) and density cutter (Macfarlane et al., 2021, 2022)
observational data from the 2019–2020 MOSAiC ob-
servational campaign, although some larger inter-model
differences are seen in comparison with April 2017
and 2019 IceBird snow radar observations (Jutila et al.,
2024a, b, 2022). The highly localized nature of the in situ
measurements from MOSAiC makes comparisons with
comparatively coarse gridded model output challenging.
Both models represent snow depth relatively well with
respect to MOSAiC and IceBird (correlations upwards of
0.54 and root-mean-square difference (RMSD)< 11 cm) but
have more difficulty representing observed snow density
(correlations< 0.23). SnowModel-LG driven by MERRA-2
is notable for having the lowest snow depth correlation and
the highest root-mean-square difference relative to MOSAiC
and IceBird but also the smallest mean bias compared to all
other products for MOSAiC. The root-mean-square differ-
ence and mean bias for snow density are also high for this
product, which is biased high overall and does not reproduce
any lower density values coincident with the observations.
This highlights how even with broad-scale observational
adjustments such as those made to the reanalysis input to

SnowModel-LG, the use of different snow forcings can
still have a large impact on model output. The MCMC
calibration has mixed impacts on NESOSIM agreement with
MOSAiC, and the overall magnitude of the impacts is small.
However, there is slight improvement in correlations and
biases relative to IceBird. The observational data used in the
MCMC calibration differ considerably from MOSAiC since
they include sparser observational data from multiple years
and, in the case of OIB measurements, span larger spatial
extents. The measurement approach of IceBird more closely
resembles that of OIB, both being airborne campaigns mak-
ing measurements in April. Some of the differences between
observed and modelled values are likely a consequence of
sampling bias. MOSAiC, for example, includes a variety of
measurements made on different days, which were made
with the intention of sampling various snow conditions.
Thus, MOSAiC measurements show a high degree of vari-
ability compared to modelled values, especially as different
observational sites change location throughout the season
(Itkin et al., 2023). Given the differing scales involved, it is
unsurprising that the current configurations of the models
can have difficulty reproducing outlying observed values.
Model simplifications likely also play a role in the discrep-
ancies, such as in the case of NESOSIM snow density. Since
snow in NESOSIM cannot be removed from the lower layer
(for a given grid cell, it can only decrease as a consequence
of sea ice motion), end-of-season densities are expected
to approach 350 kg m−3 as an increasing proportion of the
snow in each grid cell is old (lower-layer) snow. This yields
a limited range of possible representations of snow values
and a large number of snow densities near 350 kg m−3, as
seen in Fig. 9. Future work could explore using IceBird and
MOSAiC measurements to help constrain NESOSIM model
output and, in the case of MOSAiC, guide the improved
representation of NESOSIM snow density. Caution would be
necessary to avoid overfitting, given the spatial and temporal
limitations of the observations. Nevertheless, high-quality
contemporary airborne and in situ observations of snow on
sea ice, such as those from IceBird and MOSAiC, provide
a new path to assess and improve model representation of
snow on sea ice.

There are many possibilities for further refinements to NE-
SOSIM and to the MCMC calibration approach. NESOSIM
is a comparatively low-resolution model with highly pa-
rameterized snow processes. This makes it computationally
inexpensive, facilitating both MCMC optimization and the
rapid production of ice thickness estimates. A key advance-
ment presented by the MCMC calibration lies in the ease of
quickly generating updated parameter estimates as new in-
put products are introduced. Additional reanalysis products
not examined in this study could be investigated as possi-
ble additional inputs to NESOSIM, especially when exist-
ing products are inevitably superseded by updated versions.
The MCMC calibration itself could also be adjusted; future
work could investigate the use of additional observational
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constraints on snow depth and especially on snow density.
High-quality contemporary snow density observations ex-
ist from several observational campaigns such as MOSAiC
(Wagner et al., 2022), and although the measurements avail-
able during a single day may be highly localized, making
use of these observations with an appropriate uncertainty es-
timate could help constrain the wind packing parameter bet-
ter, yielding more representative estimates of snow on Arctic
sea ice. With the inclusion of additional observational con-
straints, calibration of additional model parameters in NE-
SOSIM could also be explored. Future work could also in-
vestigate impacts of a similar calibration using more com-
plex models or of added complexity in NESOSIM. Several
processes, including snow redistribution by wind, sublima-
tion, and melt and refreeze processes, are simplified in NE-
SOSIM. Given the warming conditions in the Arctic, it may
be particularly beneficial to represent melt processes in NE-
SOSIM. NESOSIM is run over the September–April period
to exclude the melt season, but melt also occurs throughout
the year, with a trend towards earlier onset (Stroeve and Notz,
2018). In the current calibration process, observed melt may
hence be misrepresented in NESOSIM as a decrease in depth
due to densification or blowing snow. Future work could ex-
plore parameterizations of additional processes, such as sub-
limation and snow redistribution by wind, to improve snow
depth and density estimates across a variety of environmental
conditions.

The relatively coarse resolution of NESOSIM may impact
its representativeness since some snow-on-sea-ice processes
operate on very small spatial scales and short timescales. The
sea ice advection and divergence processes in NESOSIM
represent a spatially averaged tendency of snow to be re-
distributed with sea ice motion but may fail to capture the
small-scale effects from localized ridging and the small-scale
leads often seen in observational studies (Itkin et al., 2023;
Macfarlane et al., 2023). The amount of blowing snow loss
due to leads has been observed to be influenced by strong
winds and warm air temperatures from Arctic cyclone events,
which may be challenging to capture in the current con-
figuration of NESOSIM (Clemens-Sewall et al., 2023). The
coarse time resolution also limits the model’s ability to cap-
ture rapid changes in snow depth due to short-term accumu-
lation events. In a broader modelling context, high-resolution
modelling may be necessary to adequately capture small-
scale processes (Lecomte et al., 2015). NESOSIM could be
run at a higher resolution to take advantage of the higher res-
olution of available drift products to better capture the influ-
ence of sea ice motion. However, sub-grid-scale parameteri-
zation would still be necessary to better capture smaller-scale
effects. The representation of sea ice differs between reanaly-
sis products and may not align with the observational sea ice
concentration used as input to NESOSIM in this work. This,
in conjunction with regridding, may introduce some artefacts
in regions of marginal sea ice cover such as the Greenland
Sea region.

The ERA5 wind product was used in all configurations
in this study to isolate the contribution of snowfall to NE-
SOSIM since snowfall is the primary input to the NE-
SOSIM budget. In observational comparisons in the Arctic,
ERA5 has been found to perform relatively well compared
to other reanalysis products, including JRA-55 and MERRA-
2, which motivates the choice of ERA5 over other products
(Graham et al., 2019a, b). However, the choice of reanalysis
wind input may also have an impact on NESOSIM output.
The wind packing and blowing snow processes take effect
only when the wind speed exceeds the 5 m s−1 wind action
threshold. If wind speeds from different input products are on
opposite sides of the threshold, wind-related snow processes
may take effect at a given location and time for one product
and not another. The strength of the blowing snow process is
also dependent on wind speed. Future work could investigate
the impact of differing wind input products on NESOSIM.

Uncertainties derived from the MCMC parameter uncer-
tainty for each product reflect the widths of the posterior dis-
tributions produced from the MCMC process. The percent
uncertainties in the model depth and density output are con-
siderably smaller than the percent uncertainty in the posterior
parameters (expressed as coefficients of variation). This is
consistent with the result in Cabaj et al. (2023), which high-
lights the relative insensitivity of NESOSIM to the model
parameters. However, the snow depth and density uncer-
tainties for NESOSIM run with MERRA-2 and JRA55 are
larger than the uncertainties for NESOSIM–ERA5 alone, and
likewise, the aggregated multi-product uncertainties exceed
the MCMC–ERA5 values. This highlights the importance of
accounting for uncertainties arising from differences in re-
analysis input products. The multi-product snow depth un-
certainty ranges from 8 % to 18 %, which is more reason-
able compared to the < 3 % uncertainty in MCMC–ERA5
alone. The estimated snow density uncertainty is relatively
small, particularly when compared to the 40 kg m−3 uncer-
tainty prescribed for the ICESat-2 product (Petty et al., 2020)
based on the in situ snow observations compiled and ana-
lyzed by Warren et al. (1999). The uncertainty estimated for
NESOSIM in this study is likely underestimated because of
the model’s limited density range. Near the end of the sea-
son, the densities in many grid cells may be near the maxi-
mum 350 kg m−3 density value, limiting the possible density
variation and thus decreasing the spread in parameter ensem-
ble density values. This challenges the assumption of Gaus-
sian uncertainty distributions, and it may be beneficial to re-
visit the calibration with non-symmetrical distributions in fu-
ture work. A similar underestimate of uncertainty takes place
in the early season, where uncertainties are artificially low
due to the common point of initialization for all the param-
eter ensemble runs. However, in general, by around the 15th
model day, the percent uncertainty saturates, and moreover,
this saturation is observed not just for ERA5 (as in Cabaj et
al., 2023) but for each individual product. Overall, the esti-
mated uncertainties in the NESOSIM–MCMC-average prod-

The Cryosphere, 19, 3033–3064, 2025 https://doi.org/10.5194/tc-19-3033-2025



A. Cabaj et al.: Impact of snow input on a snow-on-sea-ice reconstruction 3055

uct must be treated with caution since they do not fully char-
acterize all sources of uncertainty, but they can be used to
provide a more robust estimate of uncertainty from the NE-
SOSIM model input and calibration assumptions.

Inter-product differences in snow depth and density may
have substantial impacts on estimates of sea ice thickness
from sea ice altimetry measurements. For example, given
representative values of lidar freeboard and representative
densities of snow, ice, and water, if snow depth estimates
with a 5 cm difference are used to estimate sea ice thickness,
the difference in derived sea ice thickness can be as large as
30 cm (Giles et al., 2007). Thus, if trends differ between snow
products, trends in derived sea ice thickness will be impacted
as well. For sea ice freeboard, a snow product with a decreas-
ing trend would impose an increasing derived ice thickness
trend on top of any trend in the freeboard itself. Interannual
variability in snow was found to strongly influence the sea
ice volume derived from CryoSat-2 altimetry measurements
(Bunzel et al., 2018). Hence, differing snow depth trends (or
lack thereof) between products could lead to differing con-
clusions related to trends in derived sea ice thickness.

Intercomparisons of reanalysis products (and quantities
derived from them) have some associated caveats. Insight
into Arctic precipitation can be gained from the analysis of
reanalysis precipitation trends (Boisvert et al., 2018), but
caution may be necessary in their interpretation due to dis-
continuities in the assimilation (Barrett et al., 2020), although
contemporary reanalysis systems include bias corrections
that mitigate some of the issues introduced by these discon-
tinuities. It is important to consider inter-product differences
due to reanalysis inputs because differing snow depth trends
between model outputs may have impacts on estimates of
the sensitivity of sea ice variables to changes in snow depth.
Coupled climate model simulations have found contrasting
climate impacts of snow on Arctic sea ice due to competing
influences on congelation sea ice growth and surface melt
(Holland et al., 2021), but snow-free summers may increase
sea ice melt (Webster et al., 2021). Thus, by influencing sea
ice thickness, a declining snow depth trend could influence
trends in atmosphere–ice heat fluxes, which in turn could
influence sea ice extent and other climate variables. There
are also discrepancies between the representation of sea ice
cover in the three reanalysis products used, which may yield
larger inter-product differences, particularly in regions with
thinner sea ice (Barrett et al., 2020). Averaging multiple
data products together is a well-established approach, and
the development of blended land snow products motivates
this study (Mudryk et al., 2015, 2018). Constructing a multi-
product average using a wider range of input products and
incorporating other models and observations could be of fu-
ture interest.

8 Conclusions

Quantifying snow on Arctic sea ice is an ongoing chal-
lenge and existing approaches face difficulties due to spa-
tial and temporal sampling discrepancies, relative biases, and
the sparse availability of in situ validation data. Neverthe-
less, NESOSIM has free parameters that can be observation-
ally calibrated for different snowfall inputs to reconcile inter-
product biases. Averaging together model outputs run with
different snow inputs can also account for relative differences
between the products, and thus, we construct a snow-on-sea-
ice product that averages the output of NESOSIM with cal-
ibrated snowfall input from ERA5, JRA-55, and MERRA-2
after calibrating each model output to depth and density ob-
servations using an MCMC process.

MCMC calibration of NESOSIM with different snowfall
inputs following the approach in Cabaj et al. (2023) recon-
ciles differences in snow depth in NESOSIM run with differ-
ent reanalysis inputs but enhances differences in snow den-
sity. The posterior parameter distributions obtained from the
calibration differ between the products, with JRA-55 yield-
ing the largest values for the wind packing and blowing
snow parameters and yielding posterior parameter distribu-
tions with the largest spread compared to those of the other
two products.

When MCMC-calibrated regionally aggregated NE-
SOSIM monthly climatologies from 1980 to 2021 are com-
pared to those of SnowModel-LG, good agreement in snow
depth is found in the central Arctic Ocean and nearby re-
gions, although NESOSIM has a high bias relative to that
of SnowModel-LG in more peripheral regions. Snow densi-
ties differ greatly between NESOSIM and SnowModel-LG
in both magnitude and seasonality, likely as a consequence
of the comparatively simpler representation of snow density
in NESOSIM and the weaker constraints in the calibration,
although it is challenging to ascertain accuracy in this poorly
observed quantity. NESOSIM and SnowModel-LG compare
similarly to airborne snow depth measurements from the
2017 and 2019 IceBird campaigns and to in situ snow depth
and density measurements from the 2019–2020 MOSAiC
observational campaign, and both models have challenges
representing snow density in particular. The discrepancies
may be partly due to insufficient representation of physical
processes in models but also likely result from differences in
spatial scales and in timing between the modelled and ob-
served values, as well as measurement sampling biases.

Trends in MCMC-calibrated NESOSIM run with the dif-
ferent products over the 1980–2021 time period broadly
agree, with decreasing trends being the strongest for NE-
SOSIM run with MERRA-2 snow input. Basin-average snow
depth on Arctic sea ice from NESOSIM is declining in most
months and for most products except in September, where
there is a slight increasing trend, and trends are not statisti-
cally significant in October except for in MERRA-2, where
there is a modest decline. Regional snow depth trends vary in
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magnitude and statistical significance, but most regions show
a declining trend in snow depth on sea ice over the mid-to-
late season. In regions where climatologies disagree between
models, snow depth trends between models can sometimes
show more agreement. In other cases, the choice of reanal-
ysis snow input can still greatly impact the magnitude and
statistical significance of snow depth trends, and thus, trends
derived from reanalysis-based reconstructions of snow on
sea ice must be treated with caution. In general, when using
reanalysis-based reconstructions of snow on sea ice, the im-
pact of reanalysis input must be accounted for since changing
the reanalysis input may yield less representative model pro-
cesses.

The uncertainties from MCMC–ERA5 are low relative
to other products, and combining uncertainties from the
MCMC calibrations for additional reanalysis products yields
a more reasonable estimate of basin-average snow depth un-
certainty, accounting for uncertainties due to model parame-
ter calibration and the choice of reanalysis input. Estimates
of snow density uncertainty remain relatively low, likely due
to the implicit constraints on snow density imposed by the
model since the fixed density values in each layer impose
minimum and maximum density values.

Overall, the findings in this study motivate the continued
need for widespread in situ observations of snow on Arc-
tic sea ice, particularly for snow density. In the meantime,
however, synthesizing existing models and observations can
help provide best-guess estimates of snow on Arctic sea ice.
The consensus snow depth product produced in this work in-
corporates uncertainties from both reanalysis and parameter
uncertainties, albeit limited by the simplicity of NESOSIM.
Future work in synthesizing models and observations could
entail incorporating additional observations and reanalysis
products or possibly applying similar calibration and blend-
ing approaches to other snow-on-sea-ice products.

Appendix A: Supporting figures

Figure A1. Map of the NESOSIM v1.1 model domain, with the
NSIDC-defined regions (Meier and Stewart, 2023) investigated in
this study identified. The lower (60° N) and upper (82° N) limits of
the latitude band from which CloudSat measurements were aggre-
gated for the CloudSat climatology scaling are indicated with dark-
grey contours. The quadrants of the domain used for the CloudSat
scaling as applied to the NESOSIM reanalysis input are likewise
indicated. Dashed lines indicate the bounds of the model domain
for the previous version of NESOSIM, and A–D indicate the corner
points from which the CloudSat scaling factors are linearly interpo-
lated.
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Figure A2. Basin-average monthly climatologies (1980–2021) of estimated uncertainties for NESOSIM snow depth and density, shown for
all products separately and for the multi-product average.

Figure A3. Interannual variability (IAV) of snow depth for NESOSIM, as shown in the bars in Fig. 6 (a) with MCMC–ERA5 calibration and
(b) with all products calibrated. This value is calculated as the standard deviation over the time period for the monthly mean for each given
month.

Figure A4. Monthly trends for regionally averaged reanalysis snowfall over sea ice quantities over the 1980–2021 time period. Bars indicate
95 % confidence intervals.
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Figure A5. Snowfall trend maps over ocean for March 1980–2021 for ERA5, MERRA-2, JRA-55 and the average of the three reanalysis
products (average). Snowfall is provided for each respective reanalysis product regridded to the NESOSIM domain. Regions with no trends
(not significant at a 95 % confidence interval) are shaded in grey. Snowfall trends over land-covered regions are not shown.

Figure A6. Monthly climatologies (left column) and interannual variability (IAV, right column) of snowfall over sea ice in the 60–82° N lati-
tude band within the four quadrants (East Siberian/Chukchi Sea, Kara/Laptev Sea, Canadian Arctic Archipelago, and Greenland/Norwegian
Sea), which are illustrated on the map in Fig. A1. CloudSat fails to adequately represent the monthly climatology in the Greenland/Norwegian
Sea region.
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Appendix B: MCMC calibration

The MCMC calibration is carried out in this work follow-
ing the approach in Cabaj et al. (2023) and is described as
follows:

1. Begin with a model run with prior parameter values
a0 and observed values y and calculate the log likeli-
hood log(p(y|a0)). The prior parameter values are as-
sociated with prior parameter distributions p(a0) for
which the mean is a0 and the uncertainty is a prescribed
prior parameter uncertainty value. These prior values
are given in Table 2. In the following iterative loop, set
acurrent= a0.

2. For each subsequent step in the Markov chain:

a. Choose new parameters atest that are a small step
from acurrent, with the step chosen from p(a0): a
normal distribution centered at a0 whose standard
deviation is determined by the prior parameter un-
certainty.

b. Calculate the new test log likelihood function
log(p(y|atest)).

c. Calculate the log likelihood difference
R= log(p(y|atest))− log(p(y|acurrent)). If
R> log(U(0,1)) (where U(0,1) is chosen from
a uniform distribution between 0 and 1), then the
new parameters are accepted and acurrent := atest.

As in Cabaj et al. (2023), the observations used for
the calibration of NESOSIM are snow depth measurements
from the median of airborne Operation IceBridge (OIB)
measurements (Petty et al., 2020) and from Cold Regions
Research and Engineering Laboratory (CRREL)-Dartmouth
buoys (Perovich et al., 2019) and historical snow density
measurements from Soviet drifting stations (Radionov et al.,
1997; Mallett et al., 2022). OIB measurements are available
exclusively in March and April and represent the majority of
the observations used for calibrating the parameters. Basin-
averaged monthly climatologies are used for the drifting sta-
tion and buoy measurements, and OIB measurements are ag-
gregated to daily averages over the NESOSIM model grid.
This aggregation helps to mitigate the impact of observa-
tional biases due to the relatively sparse and infrequent ob-
servations in these datasets.

Log likelihood is used to reduce the number of exponential
operations calculated and thus reduce computational costs.
The log likelihood function used in this study is the same as
that used in Cabaj et al. (2023), shown below:

L =−
1
2

M∑
i=1

(
hN,i −ho,i

)2
u2
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−
1
2
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(
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)2
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2

−
1
2

8∑
k=1

(
〈hN,k〉− 〈hb,k〉

)2
〈uhb,k〉

2 . (B1)

Here, M denotes the number of grid points with Opera-
tion IceBridge snow depth measurements, hN,i denotes NE-
SOSIM snow depth output values for a given grid point, and
ho,i denotes corresponding OIB snow depth measurements
aggregated to a single grid point for a single day. uho denotes
OIB observational uncertainty. ρ denotes snow density, with
subscripts N for NESOSIM and d for drifting stations, re-
spectively, and with uρd,j denoting the corresponding uncer-
tainty. hb denotes CRREL-Dartmouth buoy depth measure-
ments, with corresponding uncertainties uhb,k . Angle brack-
ets denote basin-averaged monthly climatologies, and the in-
dices j and k denote months from September to April. The
observational uncertainties also account for estimated errors
in representativeness in each term.

The acceptance step in the MCMC algorithm allows for
the avoidance of local maxima, and posterior parameter dis-
tributions are obtained from the distributions of accepted pa-
rameters. As in Cabaj et al. (2023), all distributions (the prior
parameter distribution, the likelihood function, and the pos-
terior distribution) are assumed to be Gaussian. The modes
of the posterior distributions provide optimal values for the
parameters. Parameter uncertainty can be estimated from the
spread of the posterior distributions. This parameter uncer-
tainty may be propagated through the model to provide esti-
mates of model uncertainty due to parameter uncertainty. Ad-
ditional parameters may also be calibrated using the MCMC
process, but in previous work, limitations were found due to
observations not providing sufficiently strong constraints for
the optimization to provide suitable optimal parameter values
(Cabaj et al., 2023).

To enable NESOSIM to be run with MCMC parameter cal-
ibration, the model was modified to keep model output in
memory, minimizing the number of file I/O operations and
providing a 20 % speedup for MCMC model runs (Cabaj et
al., 2023). The NESOSIM–MCMC code was also adapted
to enable the calibration to be run with different reanalysis
snowfall input products for this study. This highlights the ver-
satility of NESOSIM as a model well-suited to observational
calibration.

Code and data availability. The NASA Eulerian Snow On Sea Ice
Model (Petty et al., 2018) is available at https://doi.org/10.5281/
zenodo.6342069 (Petty and Cabaj, 2022), modified for MCMC at
https://doi.org/10.5281/zenodo.7644948 (Cabaj and Petty, 2023).
The final calibrated multi-product average with uncertainties, in-
cluding the individually calibrated model runs and the Cloud-
Sat scaling factors, is provided at https://doi.org/10.5281/zenodo.
13307800 (Cabaj et al., 2024). SnowModel-LG (Liston et al.,
2020; Stroeve et al., 2020) output was obtained from the NSIDC
at https://doi.org/10.5067/27A0P5M6LZBI (Liston et al., 2021).
Forcing data for NESOSIM, including atmospheric input from
ECMWF ERA5 (Hersbach et al., 2020; Hersbach et al., 2023, https:
//doi.org/10.24381/cds.adbb2d47), NOAA/NSIDC sea ice concen-
tration at https://doi.org/10.7265/EFMZ-2T65 (Meier et al., 2021),
EUMETSAT OSI SAF sea ice drift (Lavergne et al., 2010;
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EUMETSAT Ocean and Sea Ice Satellite Application Facility,
2017, https://doi.org/10.15770/EUM_SAF_OSI_NRT_2007), and
NSIDCv4 Polar Pathfinder sea ice drift at https://doi.org/10.5067/
INAWUWO7QH7B (Tschudi et al., 2019), as well as processed
Operation IceBridge data (Petty et al., 2023b), is available on Zen-
odo at https://doi.org/10.5281/zenodo.7051062 (Petty, 2021). Ad-
ditional forcing data for NESOSIM were regridded from MERRA-
2 (Gelaro et al., 2017) obtained from NASA GES DISC at https:
//doi.org/10.5067/7MCPBJ41Y0K6 (Global Modeling and Assimi-
lation Office (GMAO), 2015) and from JRA-55 (Kobayashi et al.,
2015) obtained from the NCAR RDA at https://doi.org/10.5065/
D6HH6H41 (Japan Meteorological Agency, 2013). The CloudSat
2C-SNOW-PROFILE product (Wood et al., 2013, 2014) was ob-
tained from https://www.cloudsat.cira.colostate.edu/data-products/
2c-snow-profile (Wood and L’Ecuyer, 2018). In addition to the pro-
cessed Operation IceBridge data mentioned above, the NESOSIM
MCMC calibration also makes use of processed snow input from
Soviet drifting stations (Mallett et al., 2022; Radionov et al., 1997)
and from CRREL-Dartmouth buoy observations (Perovich et al.,
2022). AWI IceBird data were obtained from Jutila et al. (2022), Ju-
tila et al. (2024a, https://doi.org/10.1594/PANGAEA.966059), and
Jutila et al. (2024b, https://doi.org/10.1594/PANGAEA.966009).
MOSAiC MagnaProbe snow depth data (Itkin et al., 2021) were ob-
tained from https://doi.org/10.1594/PANGAEA.937781, and MO-
SAiC snow density cutter data were obtained from https://doi.org/
10.1594/PANGAEA.935934 (Macfarlane et al., 2021) and https:
//doi.org/10.1594/PANGAEA.940214 (Macfarlane et al., 2022).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/tc-19-3033-2025-supplement.

Author contributions. AC designed this study, with input from PJK
and AAP. AC ran the model simulations based on model code orig-
inally developed by AAP (with subsequent contributions from AC).
AC conducted the analysis in the article, with input from all co-
authors. AC prepared the paper with contributions from all co-
authors.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. Alex Cabaj and Paul J. Kushner conducted this
study with support from the Canadian Space Agency Earth Sys-
tem Science, Data Analyses Fund, grant no. 16SAUSSNOW. Alek
A. Petty gratefully acknowledges support from NASA under grant
no. 80NSSC23K1253, awarded by the Cryospheric Sciences pro-
gram (solicitation NNH22ZDA001N-ICESAT2). We thank all those

who contributed to MOSAiC (Nixdorf et al., 2021), as well as those
who contributed to IceBird, the CRREL-Dartmouth buoy program,
Operation IceBridge, and all other observational campaigns that
provided the data used in this work. The authors would also like
to thank Walt Meier for his helpful feedback on a precursor to this
paper.

Financial support. This research has been supported by the
Canadian Space Agency Earth System Science Data Analy-
ses Fund (grant no. 16SAUSSNOW) and NASA through the
Cryospheric Sciences program (grant no. 80NSSC23K125, solici-
tation NNH22ZDA001N-ICESAT2).

Review statement. This paper was edited by John Yackel and re-
viewed by Tian Tian and two anonymous referees.

References

Barrett, A. P., Stroeve, J. C., and Serreze, M. C.: Arctic Ocean Pre-
cipitation From Atmospheric Reanalyses and Comparisons With
North Pole Drifting Station Records, J. Geophys. Res.-Oceans,
125, e2019JC015415, https://doi.org/10.1029/2019JC015415,
2020.

Behrangi, A., Christensen, M., Richardson, M., Lebsock, M.,
Stephens, G., Huffman, G. J., Bolvin, D., Adler, R. F.,
Gardner, A., Lambrigtsen, B., and Fetzer, E.: Status of
High-Latitude Precipitation Estimates from Observations
and Reanalyses, J. Geophys. Res.-Atmos., 121, 4468–4486,
https://doi.org/10.1002/2015JD024546, 2016.

Blanchard-Wrigglesworth, E., Webster, M. A., Farrell,
S. L., and Bitz, C. M.: Reconstruction of Snow on Arc-
tic Sea Ice, J. Geophys. Res.-Oceans, 123, 3588–3602,
https://doi.org/10.1002/2017JC013364, 2018.

Boisvert, L. N., Webster, M. A., Petty, A. A., Markus, T., Bromwich,
D. H., and Cullather, R. I.: Intercomparison of Precipitation Esti-
mates over the Arctic Ocean and Its Peripheral Seas from Reanal-
yses, J. Climate, 31, 8441–8462, https://doi.org/10.1175/JCLI-
D-18-0125.1, 2018.

Brucker, L. and Markus, T.: Arctic-scale assessment of satellite pas-
sive microwave-derived snow depth on sea ice using Operation
IceBridge airborne data, J. Geophys. Res.-Oceans, 118, 2892–
2905, https://doi.org/10.1002/jgrc.20228, 2013.

Bunzel, F., Notz, D., and Pedersen, L. T.: Retrievals of Arctic
Sea-Ice Volume and Its Trend Significantly Affected by Inter-
annual Snow Variability, Geophys. Res. Lett., 45, 11751–11759,
https://doi.org/10.1029/2018GL078867, 2018.

Cabaj, A. and Petty, A.: NESOSIM with MCMC calibration, Ver-
sion v1.1-mcmc, Zenodo [code], https://doi.org/10.5281/zenodo.
7644948, 2023.

Cabaj, A., Kushner, P. J., Fletcher, C. G., Howell, S., and
Petty, A. A.: Constraining Reanalysis Snowfall Over the Arctic
Ocean Using CloudSat Observations, Geophys. Res. Lett., 47,
e2019GL086426, https://doi.org/10.1029/2019GL086426, 2020.

Cabaj, A., Kushner, P. J., and Petty, A. A.: Automated Calibra-
tion of a Snow-On-Sea-Ice Model, Earth and Space Science, 10,
e2022EA002655, https://doi.org/10.1029/2022EA002655, 2023.

The Cryosphere, 19, 3033–3064, 2025 https://doi.org/10.5194/tc-19-3033-2025

https://doi.org/10.15770/EUM_SAF_OSI_NRT_2007
https://doi.org/10.5067/INAWUWO7QH7B
https://doi.org/10.5067/INAWUWO7QH7B
https://doi.org/10.5281/zenodo.7051062
https://doi.org/10.5067/7MCPBJ41Y0K6
https://doi.org/10.5067/7MCPBJ41Y0K6
https://doi.org/10.5065/D6HH6H41
https://doi.org/10.5065/D6HH6H41
https://www.cloudsat.cira.colostate.edu/data-products/2c-snow-profile
https://www.cloudsat.cira.colostate.edu/data-products/2c-snow-profile
https://doi.org/10.1594/PANGAEA.966059
https://doi.org/10.1594/PANGAEA.966009
https://doi.org/10.1594/PANGAEA.937781
https://doi.org/10.1594/PANGAEA.935934
https://doi.org/10.1594/PANGAEA.935934
https://doi.org/10.1594/PANGAEA.940214
https://doi.org/10.1594/PANGAEA.940214
https://doi.org/10.5194/tc-19-3033-2025-supplement
https://doi.org/10.1029/2019JC015415
https://doi.org/10.1002/2015JD024546
https://doi.org/10.1002/2017JC013364
https://doi.org/10.1175/JCLI-D-18-0125.1
https://doi.org/10.1175/JCLI-D-18-0125.1
https://doi.org/10.1002/jgrc.20228
https://doi.org/10.1029/2018GL078867
https://doi.org/10.5281/zenodo.7644948
https://doi.org/10.5281/zenodo.7644948
https://doi.org/10.1029/2019GL086426
https://doi.org/10.1029/2022EA002655


A. Cabaj et al.: Impact of snow input on a snow-on-sea-ice reconstruction 3061

Cabaj, A., Petty, A. A., and Kushner, P. J.: NESOSIM-MCMC
Multi-Reanalysis-Average Product with Uncertainty Estimates,
Zenodo [data set], https://doi.org/10.5281/zenodo.13307800,
2024.

Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally,
H. J.: Sea Ice Concentrations from Nimbus-7 SMMR and
DMSP SSM/I-SSMIS Passive Microwave Data, Version 1,
NASA National Snow and Ice Data Center Distributed Ac-
tive Archive Cente [data set], Boulder, Colorado, USA,
https://doi.org/10.5067/8GQ8LZQVL0VL, 1996.

Clemens-Sewall, D., Polashenski, C., Frey, M. M., Cox, C. J.,
Granskog, M. A., Macfarlane, A. R., Fons, S. W., Schmale, J.,
Hutchings, J. K., von Albedyll, L., Arndt, S., Schneebeli, M.,
and Perovich, D.: Snow Loss Into Leads in Arctic Sea Ice:
Minimal in Typical Wintertime Conditions, but High During
a Warm and Windy Snowfall Event, Geophys. Res. Lett., 50,
e2023GL102816, https://doi.org/10.1029/2023GL102816, 2023.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,
P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-
lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,
A.J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A.P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey,
C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. and Vitart, F.: The
ERA-Interim Reanalysis: Configuration and Performance of the
Data Assimilation System, Q. J. Roy. Meteor. Soc., 137, 553–
597, https://doi.org/10.1002/qj.828, 2011.

Edel, L., Claud, C., Genthon, C., Palerme, C., Wood, N.,
L’Ecuyer, T., and Bromwich, D.: Arctic Snowfall from Cloud-
Sat Observations and Reanalyses, J. Climate, 33, 2093–2109,
https://doi.org/10.1175/JCLI-D-19-0105.1, 2020.

EUMETSAT Ocean and Sea Ice Satellite Ap-
plication Facility: Global Low Resolution Sea
Ice Drift, EUMETSAT Data Centre [data set],
https://doi.org/10.15770/EUM_SAF_OSI_NRT_2007, 2017.

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A.,
Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Re-
ichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella,
S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-
K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Par-
tyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D.,
Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2),
J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-
0758.1, 2017.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Ve-
htari, A., and Rubin, D. B.: Bayesian Data Analysis, CRC
Texts in Statistical Science, CRC Press, Boca Raton, 3rd edn.,
ISBN: 9781439840955, 2013.

Giles, K., Laxon, S., Wingham, D., Wallis, D., Krabill, W.,
Leuschen, C., McAdoo, D., Manizade, S., and Raney, R.: Com-
bined airborne laser and radar altimeter measurements over the
Fram Strait in May 2002, Remote Sens. Environ., 111, 182–194,
https://doi.org/10.1016/j.rse.2007.02.037, 2007.

Global Modeling and Assimilation Office (GMAO): MERRA-
2 tavg1_2d_flx_Nx: 2d,1-Hourly,Time-Averaged,Single-
Level,Assimilation,Surface Flux Diagnostics V5.12.4,
Goddard Earth Sciences Data and Information Services

Center (GES DISC) [data set], Greenbelt, MD, USA,
https://doi.org/10.5067/7MCPBJ41Y0K6, 2015.

Graham, R. M., Cohen, L., Ritzhaupt, N., Segger, B., Graversen,
R. G., Rinke, A., Walden, V. P., Granskog, M. A., and Hudson,
S. R.: Evaluation of Six Atmospheric Reanalyses over Arctic Sea
Ice from Winter to Early Summer, J. Climate, 32, 4121–4143,
https://doi.org/10.1175/JCLI-D-18-0643.1, 2019a.

Graham, R. M., Hudson, S. R., and Maturilli, M.: Improved Per-
formance of ERA5 in Arctic Gateway Relative to Four Global
Atmospheric Reanalyses, Geophys. Res. Lett., 46, 6138–6147,
https://doi.org/10.1029/2019GL082781, 2019b.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo,
G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara,
G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flem-
ming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S.,
Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The
ERA5 Global Reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–
2049, https://doi.org/10.1002/qj.3803, 2020.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum,
I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut,
J.-N.: ERA5 hourly data on single levels from 1940 to present,
Copernicus Climate Change Service (C3S) Climate Data Store
(CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.

Holland, M. M., Clemens-Sewall, D., Landrum, L., Light,
B., Perovich, D., Polashenski, C., Smith, M., and Web-
ster, M.: The influence of snow on sea ice as assessed
from simulations of CESM2, The Cryosphere, 15, 4981–4998,
https://doi.org/10.5194/tc-15-4981-2021, 2021.

Itkin, P., Webster, M., Hendricks, S., Oggier, M., Jaggi, M., Ricker,
R., Arndt, S., Divine, D. V., von Albedyll, L., Raphael, I., Rohde,
J., and Liston, G. E.: Magnaprobe snow and melt pond depth
measurements from the 2019-2020 MOSAiC expedition, PAN-
GAEA [data set], https://doi.org/10.1594/PANGAEA.937781,
2021.

Itkin, P., Hendricks, S., Webster, M., von Albedyll, L., Arndt, S.,
Divine, D., Jaggi, M., Oggier, M., Raphael, I., Ricker, R., Rohde,
J., Schneebeli, M., and Liston, G. E.: Sea ice and snow charac-
teristics from year-long transects at the MOSAiC Central Ob-
servatory, Elementa: Science of the Anthropocene, 11, 00048,
https://doi.org/10.1525/elementa.2022.00048, 2023.

Japan Meteorological Agency: JRA-55: Japanese 55-year Re-
analysis, Daily 3-Hourly and 6-Hourly Data, Research Data
Archive at the National Center for Atmospheric Research,
Computational and Information Systems Laboratory [data set],
https://doi.org/10.5065/D6HH6H41, 2013.

Jutila, A., Hendricks, S., Ricker, R., von Albedyll, L., Krumpen, T.,
and Haas, C.: Retrieval and parameterisation of sea-ice bulk den-
sity from airborne multi-sensor measurements, The Cryosphere,
16, 259–275, https://doi.org/10.5194/tc-16-259-2022, 2022.

Jutila, A., Hendricks, S., Ricker, R., von Albedyll, L., and
Haas, C.: Airborne sea ice parameters during aircraft flight
P6_217_ICEBIRD_2019_1904051001, Version 2, PANGAEA
[data set], https://doi.org/10.1594/PANGAEA.966059, 2024a.

https://doi.org/10.5194/tc-19-3033-2025 The Cryosphere, 19, 3033–3064, 2025

https://doi.org/10.5281/zenodo.13307800
https://doi.org/10.5067/8GQ8LZQVL0VL
https://doi.org/10.1029/2023GL102816
https://doi.org/10.1002/qj.828
https://doi.org/10.1175/JCLI-D-19-0105.1
https://doi.org/10.15770/EUM_SAF_OSI_NRT_2007
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1016/j.rse.2007.02.037
https://doi.org/10.5067/7MCPBJ41Y0K6
https://doi.org/10.1175/JCLI-D-18-0643.1
https://doi.org/10.1029/2019GL082781
https://doi.org/10.1002/qj.3803
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.5194/tc-15-4981-2021
https://doi.org/10.1594/PANGAEA.937781
https://doi.org/10.1525/elementa.2022.00048
https://doi.org/10.5065/D6HH6H41
https://doi.org/10.5194/tc-16-259-2022
https://doi.org/10.1594/PANGAEA.966059


3062 A. Cabaj et al.: Impact of snow input on a snow-on-sea-ice reconstruction

Jutila, A., Hendricks, S., Ricker, R., von Albedyll, L., and Haas,
C.: Airborne sea ice parameters during the PAMARCMIP2017
campaign in the Arctic Ocean, Version 2, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.966009, 2024b.

King, J., Howell, S., Brady, M., Toose, P., Derksen, C., Haas, C., and
Beckers, J.: Local-scale variability of snow density on Arctic sea
ice, The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-
14-4323-2020, 2020.

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda,
H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka,
K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifi-
cations and Basic Characteristics, J. Meteorol. Soc. Jpn., Ser. II,
93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.

Kulie, M. S. and Bennartz, R.: Utilizing Spaceborne Radars to Re-
trieve Dry Snowfall, J. Appl. Meteorol. Clim., 48, 2564–2580,
https://doi.org/10.1175/2009JAMC2193.1, 2009.

Kulie, M. S. and Milani, L.: Seasonal Variability of Shallow Cu-
muliform Snowfall: A CloudSat Perspective, Q. J. Roy. Meteor.
Soc., 144, 329–343, https://doi.org/10.1002/qj.3222, 2017.

Kulie, M. S., Milani, L., Wood, N. B., Tushaus, S. A., Bennartz,
R., and L’Ecuyer, T. S.: A Shallow Cumuliform Snowfall Cen-
sus Using Spaceborne Radar, J. Hydrometeorol., 17, 1261–1279,
https://doi.org/10.1175/JHM-D-15-0123.1, 2016.

Kwok, R. and Cunningham, G. F.: ICESat over Arctic sea ice:
Estimation of snow depth and ice thickness, J. Geophys. Res.-
Oceans, 113, C08010, https://doi.org/10.1029/2008JC004753,
2008.

Kwok, R., Kacimi, S., Webster, M. A., Kurtz, N. T., and
Petty, A. A.: Arctic Snow Depth and Sea Ice Thickness
From ICESat-2 and CryoSat-2 Freeboards: A First Ex-
amination, J. Geophys. Res.-Oceans, 125, e2019JC016008,
https://doi.org/10.1029/2019JC016008, 2020.

Lavergne, T., Eastwood, S., Teffah, Z., Schyberg, H., and
Breivik, L.-A.: Sea Ice Motion from Low-Resolution Satel-
lite Sensors: An Alternative Method and Its Validation
in the Arctic, J. Geophys. Res.-Oceans, 115, C10032,
https://doi.org/10.1029/2009JC005958, 2010.

Lawrence, I. R., Tsamados, M. C., Stroeve, J. C., Armitage, T.
W. K., and Ridout, A. L.: Estimating snow depth over Arc-
tic sea ice from calibrated dual-frequency radar freeboards, The
Cryosphere, 12, 3551–3564, https://doi.org/10.5194/tc-12-3551-
2018, 2018.

Lecomte, O., Fichefet, T., Flocco, D., Schroeder, D.,
and Vancoppenolle, M.: Interactions between wind-
blown snow redistribution and melt ponds in a cou-
pled ocean–sea ice model, Ocean Model., 87, 67–80,
https://doi.org/10.1016/j.ocemod.2014.12.003, 2015.

Lindsay, R., Wensnahan, M., Schweiger, A., and Zhang, J.: Evalua-
tion of Seven Different Atmospheric Reanalysis Products in the
Arctic, J. Climate, 27, 2588–2606, https://doi.org/10.1175/JCLI-
D-13-00014.1, 2014.

Liston, G. E. and Hiemstra, C. A.: A Simple Data Assimilation Sys-
tem for Complex Snow Distributions (SnowAssim), J. Hydrom-
eteorol., 9, 989–1004, https://doi.org/10.1175/2008JHM871.1,
2008.

Liston, G. E., Itkin, P., Stroeve, J., Tschudi, M., Stewart, J. S.,
Pedersen, S. H., Reinking, A. K., and Elder, K.: A Lagrangian
Snow-Evolution System for Sea-Ice Applications (SnowModel-

LG): Part I – Model Description, J. Geophys. Res.-Oceans, 125,
e2019JC015913, https://doi.org/10.1029/2019JC015913, 2020.

Liston, G. E., Stroeve, J., and Itkin, P.: Lagrangian Snow
Distributions for Sea-Ice Applications, Version 1, NASA
National Snow and Ice Data Center Distributed Ac-
tive Archive Center [data set], Boulder, Colorado, USA,
https://doi.org/10.5067/27A0P5M6LZBI, 2021.

Macfarlane, A. R., Schneebeli, M., Dadic, R., Wagner, D. N.,
Arndt, S., Clemens-Sewall, D., Hämmerle, S., Hannula, H.-
R., Jaggi, M., Kolabutin, N., Krampe, D., Lehning, M.,
Matero, I., Nicolaus, M., Oggier, M., Pirazzini, R., Po-
lashenski, C., Raphael, I., Regnery, J., Shimanchuck, E.,
Smith, M. M., and Tavri, A.: Snowpit raw data col-
lected during the MOSAiC expedition, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.935934, 2021.

Macfarlane, A. R., Schneebeli, M., Dadic, R., Wagner, D. N.,
Arndt, S., Clemens-Sewall, D., Hämmerle, S., Hannula, H.-R.,
Jaggi, M., Kolabutin, N., Krampe, D., Lehning, M., Matero,
I., Nicolaus, M., Oggier, M., Pirazzini, R., Polashenski, C.,
Raphael, I., Regnery, J., Shimanchuck, E., Smith, M. M.,
and Tavri, A.: Snowpit snow density cutter profiles mea-
sured during the MOSAiC expedition, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.940214, 2022.

Macfarlane, A. R., Schneebeli, M., Dadic, R., Tavri, A., Immerz,
A., Polashenski, C., Krampe, D., Clemens-Sewall, D., Wagner,
D. N., Perovich, D. K., Henna-Reetta, H., Raphael, I., Matero,
I., Regnery, J., Smith, M. M., Nicolaus, M., Jaggi, M., Og-
gier, M., Webster, M. A., Lehning, M., Kolabutin, N., Itkin, P.,
Naderpour, R., Pirazzini, R., Hämmerle, S., Arndt, S., and Fons,
S.: A Database of Snow on Sea Ice in the Central Arctic Col-
lected during the MOSAiC expedition, Scientific Data, 10, 398,
https://doi.org/10.1038/s41597-023-02273-1, 2023.

MacGregor, J. A., Boisvert, L. N., Medley, B., Petty, A. A., Har-
beck, J. P., Bell, R. E., Blair, J. B., Blanchard-Wrigglesworth,
E., Buckley, E. M., Christoffersen, M. S., Cochran, J. R.,
Csathó, B. M., De Marco, E. L., Dominguez, R. T., Fahne-
stock, M. A., Farrell, S. L., Gogineni, S. P., Greenbaum, J. S.,
Hansen, C. M., Hofton, M. A., Holt, J. W., Jezek, K. C., Koenig,
L. S., Kurtz, N. T., Kwok, R., Larsen, C. F., Leuschen, C. J.,
Locke, C. D., Manizade, S. S., Martin, S., Neumann, T. A.,
Nowicki, S. M., Paden, J. D., Richter-Menge, J. A., Rignot,
E. J., Rodríguez-Morales, F., Siegfried, M. R., Smith, B. E., Son-
ntag, J. G., Studinger, M., Tinto, K. J., Truffer, M., Wagner,
T. P., Woods, J. E., Young, D. A., and Yungel, J. K.: The Sci-
entific Legacy of NASA’s Operation IceBridge, Rev. Geophys.,
59, e2020RG000712, https://doi.org/10.1029/2020RG000712,
2021.

Mallett, R. D. C., Stroeve, J. C., Tsamados, M., Willatt, R., New-
man, T., Nandan, V., Landy, J. C., Itkin, P., Oggier, M., Jaggi,
M., and Perovich, D. K.: Sub-Kilometre Scale Distribution of
Snow Depth on Arctic Sea Ice from Soviet Drifting Stations, J.
Glaciol., 68, 1–13, https://doi.org/10.1017/jog.2022.18, 2022.

Meier, W., Fetterer, F., Windnagel, A., and Stewart, S.: NOAA/N-
SIDC Climate Data Record of Passive Microwave Sea Ice Con-
centration, Version 4, National Snow and Ice Data Center [data
set], Boulder, Colorado, USA, https://doi.org/10.7265/EFMZ-
2T65, 2021.

Meier, W. N. and Stewart, J. S.: NSIDC Land, Ocean,
Coast, Ice, and Sea Ice Region Masks, NSIDC Spe-

The Cryosphere, 19, 3033–3064, 2025 https://doi.org/10.5194/tc-19-3033-2025

https://doi.org/10.1594/PANGAEA.966009
https://doi.org/10.5194/tc-14-4323-2020
https://doi.org/10.5194/tc-14-4323-2020
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.1175/2009JAMC2193.1
https://doi.org/10.1002/qj.3222
https://doi.org/10.1175/JHM-D-15-0123.1
https://doi.org/10.1029/2008JC004753
https://doi.org/10.1029/2019JC016008
https://doi.org/10.1029/2009JC005958
https://doi.org/10.5194/tc-12-3551-2018
https://doi.org/10.5194/tc-12-3551-2018
https://doi.org/10.1016/j.ocemod.2014.12.003
https://doi.org/10.1175/JCLI-D-13-00014.1
https://doi.org/10.1175/JCLI-D-13-00014.1
https://doi.org/10.1175/2008JHM871.1
https://doi.org/10.1029/2019JC015913
https://doi.org/10.5067/27A0P5M6LZBI
https://doi.org/10.1594/PANGAEA.935934
https://doi.org/10.1594/PANGAEA.940214
https://doi.org/10.1038/s41597-023-02273-1
https://doi.org/10.1029/2020RG000712
https://doi.org/10.1017/jog.2022.18
https://doi.org/10.7265/EFMZ-2T65
https://doi.org/10.7265/EFMZ-2T65


A. Cabaj et al.: Impact of snow input on a snow-on-sea-ice reconstruction 3063

cial Report No. 25, National Snow and Ice Data Cen-
ter, Boulder, CO, USA, https://nsidc.org/sites/default/files/
documents/technical-reference/nsidc-special-report-25.pdf (last
access: 15 June 2024), 2023.

Milani, L. and Wood, N. B.: Biases in CloudSat Falling Snow Esti-
mates Resulting from Daylight-Only Operations, Remote Sens-
ing, 13, 2041, https://doi.org/10.3390/rs13112041, 2021.

Milani, L., Kulie, M. S., Casella, D., Dietrich, S., L’Ecuyer,
T. S., Panegrossi, G., Porcù, F., Sanò, P., and Wood, N. B.:
CloudSat snowfall estimates over Antarctica and the Southern
Ocean: An assessment of independent retrieval methodologies
and multi-year snowfall analysis, Atmos. Res., 213, 121–135,
https://doi.org/10.1016/j.atmosres.2018.05.015, 2018.

Mudryk, L. R., Derksen, C., Kushner, P. J., and Brown,
R.: Characterization of Northern Hemisphere Snow Water
Equivalent Datasets, 1981–2010, J. Climate, 28, 8037–8051,
https://doi.org/10.1175/JCLI-D-15-0229.1, 2015.

Mudryk, L. R., Derksen, C., Howell, S., Laliberté, F., Thackeray, C.,
Sospedra-Alfonso, R., Vionnet, V., Kushner, P. J., and Brown, R.:
Canadian snow and sea ice: historical trends and projections, The
Cryosphere, 12, 1157–1176, https://doi.org/10.5194/tc-12-1157-
2018, 2018.

Nicolaus, M., Hoppmann, M., Arndt, S., Hendricks, S.,
Katlein, C., König-Langlo, G., Nicolaus, A., Rossmann,
L., Schiller, M., Schwegmann, S., Langevin, D., and
Bartsch, A.: Snow Height and Air Temperature on Sea Ice
from Snow Buoy Measurements, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.875638, 2017.

Nicolaus, M., Perovich, D. K., Spreen, G., Granskog, M. A., von
Albedyll, L., Angelopoulos, M., Anhaus, P., Arndt, S., Bel-
ter, H. J., Bessonov, V., Birnbaum, G., Brauchle, J., Calmer,
R., Cardellach, E., Cheng, B., Clemens-Sewall, D., Dadic, R.,
Damm, E., de Boer, G., Demir, O., Dethloff, K., Divine, D. V.,
Fong, A. A., Fons, S., Frey, M. M., Fuchs, N., Gabarró, C.,
Gerland, S., Goessling, H. F., Gradinger, R., Haapala, J., Haas,
C., Hamilton, J., Hannula, H.-R., Hendricks, S., Herber, A.,
Heuzé, C., Hoppmann, M., Høyland, K. V., Huntemann, M.,
Hutchings, J. K., Hwang, B., Itkin, P., Jacobi, H.-W., Jaggi, M.,
Jutila, A., Kaleschke, L., Katlein, C., Kolabutin, N., Krampe,
D., Kristensen, S. S., Krumpen, T., Kurtz, N., Lampert, A.,
Lange, B. A., Lei, R., Light, B., Linhardt, F., Liston, G. E.,
Loose, B., Macfarlane, A. R., Mahmud, M., Matero, I. O.,
Maus, S., Morgenstern, A., Naderpour, R., Nandan, V., Ni-
ubom, A., Oggier, M., Oppelt, N., Pätzold, F., Perron, C., Petro-
vsky, T., Pirazzini, R., Polashenski, C., Rabe, B., Raphael,
I. A., Regnery, J., Rex, M., Ricker, R., Riemann-Campe, K.,
Rinke, A., Rohde, J., Salganik, E., Scharien, R. K., Schiller,
M., Schneebeli, M., Semmling, M., Shimanchuk, E., Shupe,
M. D., Smith, M. M., Smolyanitsky, V., Sokolov, V., Stanton,
T., Stroeve, J., Thielke, L., Timofeeva, A., Tonboe, R. T., Tavri,
A., Tsamados, M., Wagner, D. N., Watkins, D., Webster, M.,
and Wendisch, M.: Overview of the MOSAiC expedition: Snow
and sea ice, Elementa: Science of the Anthropocene, 10, 000046,
https://doi.org/10.1525/elementa.2021.000046, 2022.

Nixdorf, U., Dethloff, K., Rex, M., Shupe, M., Sommerfeld, A.,
Perovich, D. K., Nicolaus, M., Heuzé, C., Rabe, B., Loose, B.,
Damm, E., Gradinger, R., Fong, A., Maslowski, W., Rinke, A.,
Kwok, R., Spreen, G., Wendisch, M., Herber, A., Hirsekorn,
M., Mohaupt, V., Frickenhaus, S., Immerz, A., Weiss-Tuider, K.,

König, B., Mengedoht, D., Regnery, J., Gerchow, P., Ransby, D.,
Krumpen, T., Morgenstern, A., Haas, C., Kanzow, T., Rack, F. R.,
Saitzev, V., Sokolov, V., Makarov, A., Schwarze, S., Wunderlich,
T., Wurr, K., and Boetius, A.: MOSAiC Extended Acknowledge-
ment, Zenodo, https://doi.org/10.5281/zenodo.5541624, 2021.

Peng, G., Meier, W. N., Scott, D. J., and Savoie, M. H.: A long-term
and reproducible passive microwave sea ice concentration data
record for climate studies and monitoring, Earth Syst. Sci. Data,
5, 311–318, https://doi.org/10.5194/essd-5-311-2013, 2013.

Perovich, D. K., Richter-Menge, J. A., and Polashenski, C.: Observ-
ing and Understanding Climate Change: Monitoring the Mass
Balance, Motion, and Thickness of Arctic Sea Ice, CRREL-
Dartmouth [data set], http://imb-crrel-dartmouth.org (last access:
30 July 2025), 2019.

Perovich, D. K., Richter-Menge, J. A., and Polashenski, C.: Observ-
ing and Understanding Climate Change: Monitoring the Mass
Balance, Motion, and Thickness of Arctic Sea Ice, CRREL-
Dartmouth [data set], http://imb-crrel-dartmouth.org (last access:
30 July 2025), 2022.

Petty, A.: NASA Eulerian Snow On Sea Ice Model Version 1.1 (NE-
SOSIMv1.1) data: 1980 - 2022, Version v1.1, Zenodo [data set],
https://doi.org/10.5281/zenodo.7051062, 2021.

Petty, A. and Cabaj, A.: akpetty/NESOSIM, Version v1.1.1, Zenodo
[code], https://doi.org/10.5281/zenodo.6342069, 2022.

Petty, A. A., Webster, M., Boisvert, L., and Markus, T.: The NASA
Eulerian Snow on Sea Ice Model (NESOSIM) v1.0: initial model
development and analysis, Geosci. Model Dev., 11, 4577–4602,
https://doi.org/10.5194/gmd-11-4577-2018, 2018.

Petty, A. A., Kurtz, N. T., Kwok, R., Markus, T., and Neu-
mann, T. A.: Winter Arctic Sea Ice Thickness From ICESat-
2 Freeboards, J. Geophys. Res.-Oceans, 125, e2019JC015764,
https://doi.org/10.1029/2019JC015764, 2020.

Petty, A. A., Kurtz, N., Kwok, R., Markus, T., Neumann, T. A., and
Keeney, N.: ICESat-2 L4 Monthly Gridded Sea Ice Thickness,
Version 3, National Snow and Ice Data Center (NSIDC) [data
set], https://doi.org/10.5067/ZCSU8Y5U1BQW, 2023a.

Petty, A. A., Keeney, N., Cabaj, A., Kushner, P., and Bagnardi, M.:
Winter Arctic sea ice thickness from ICESat-2: upgrades to free-
board and snow loading estimates and an assessment of the first
three winters of data collection, The Cryosphere, 17, 127–156,
https://doi.org/10.5194/tc-17-127-2023, 2023b.

Radionov, V. F., Bryazgin, N. N., and Alexandrov, E. I.: The Snow
Cover of the Arctic Basin, APL-UW TR 9701, 98 pp., Washing-
ton University Applied Physics Laboratory, https://apps.dtic.mil/
sti/tr/pdf/ADA327057.pdf (last access: 1 July 2024), 1997.

Rostosky, P., Spreen, G., Farrell, S. L., Frost, T., Heyg-
ster, G., and Melsheimer, C.: Snow Depth Retrieval on
Arctic Sea Ice From Passive Microwave Radiometers–
Improvements and Extensions to Multiyear Ice Using Lower
Frequencies, J. Geophys. Res.-Oceans, 123, 7120–7138,
https://doi.org/10.1029/2018JC014028, 2018.

Stroeve, J. and Notz, D.: Changing state of Arctic sea
ice across all seasons, Environ. Res. Lett., 13, 103001,
https://doi.org/10.1088/1748-9326/aade56, 2018.

Stroeve, J., Liston, G. E., Buzzard, S., Zhou, L., Mallett, R., Bar-
rett, A., Tschudi, M., Tsamados, M., Itkin, P., and Stewart, J. S.:
A Lagrangian Snow Evolution System for Sea Ice Applications
(SnowModel-LG): Part II – Analyses, J. Geophys. Res.- Oceans,

https://doi.org/10.5194/tc-19-3033-2025 The Cryosphere, 19, 3033–3064, 2025

https://nsidc.org/sites/default/files/documents/technical-reference/nsidc-special-report-25.pdf
https://nsidc.org/sites/default/files/documents/technical-reference/nsidc-special-report-25.pdf
https://doi.org/10.3390/rs13112041
https://doi.org/10.1016/j.atmosres.2018.05.015
https://doi.org/10.1175/JCLI-D-15-0229.1
https://doi.org/10.5194/tc-12-1157-2018
https://doi.org/10.5194/tc-12-1157-2018
https://doi.org/10.1594/PANGAEA.875638
https://doi.org/10.1525/elementa.2021.000046
https://doi.org/10.5281/zenodo.5541624
https://doi.org/10.5194/essd-5-311-2013
http://imb-crrel-dartmouth.org
http://imb-crrel-dartmouth.org
https://doi.org/10.5281/zenodo.7051062
https://doi.org/10.5281/zenodo.6342069
https://doi.org/10.5194/gmd-11-4577-2018
https://doi.org/10.1029/2019JC015764
https://doi.org/10.5067/ZCSU8Y5U1BQW
https://doi.org/10.5194/tc-17-127-2023
https://apps.dtic.mil/sti/tr/pdf/ADA327057.pdf
https://apps.dtic.mil/sti/tr/pdf/ADA327057.pdf
https://doi.org/10.1029/2018JC014028
https://doi.org/10.1088/1748-9326/aade56


3064 A. Cabaj et al.: Impact of snow input on a snow-on-sea-ice reconstruction

125, e2019JC015900, https://doi.org/10.1029/2019JC015900,
2020.

Tschudi, M., Meier, W. N., Stewart, J. S., Fowler, C., and Maslanik,
J.: Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion
Vectors, Version 4, NASA National Snow and Ice Data Center
Distributed Active Archive Center [data set], Boulder, Colorado,
USA, https://doi.org/10.5067/INAWUWO7QH7B, 2019.

Wagner, D. N., Shupe, M. D., Cox, C., Persson, O. G., Uttal,
T., Frey, M. M., Kirchgaessner, A., Schneebeli, M., Jaggi, M.,
Macfarlane, A. R., Itkin, P., Arndt, S., Hendricks, S., Krampe,
D., Nicolaus, M., Ricker, R., Regnery, J., Kolabutin, N., Shi-
manshuck, E., Oggier, M., Raphael, I., Stroeve, J., and Lehn-
ing, M.: Snowfall and snow accumulation during the MOSAiC
winter and spring seasons, The Cryosphere, 16, 2373–2402,
https://doi.org/10.5194/tc-16-2373-2022, 2022.

Wang, C., Graham, R. M., Wang, K., Gerland, S., and Granskog, M.
A.: Comparison of ERA5 and ERA-Interim near-surface air tem-
perature, snowfall and precipitation over Arctic sea ice: effects
on sea ice thermodynamics and evolution, The Cryosphere, 13,
1661–1679, https://doi.org/10.5194/tc-13-1661-2019, 2019.

Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov,
V. F., Bryazgin, N. N., Aleksandrov, Y. I., and
Colony, R.: Snow Depth on Arctic Sea Ice, J. Cli-
mate, 12, 1814–1829, https://doi.org/10.1175/1520-
0442(1999)012<1814:SDOASI>2.0.CO;2, 1999.

Webster, M. A., Gerland, S., Holland, M., Hunke, E., Kwok, R.,
Lecomte, O., Massom, R., Perovich, D. K., and Sturm, M.: Snow
in the Changing Sea-Ice Systems, Nat. Clim. Change, 8, 946–
953, https://doi.org/10.1038/s41558-018-0286-7, 2018.

Webster, M. A., Parker, C., Boisvert, L., and Kwok, R.: The role
of cyclone activity in snow accumulation on Arctic sea ice, Nat.
Commun., 10, 1–12, https://doi.org/10.1038/s41467-019-13299-
8, 2019.

Webster, M. A., DuVivier, A. K., Holland, M. M., and Bailey,
D. A.: Snow on Arctic Sea Ice in a Warming Climate as Simu-
lated in CESM, J. Geophys. Res.-Oceans, 126, e2020JC016308,
https://doi.org/10.1029/2020JC016308, 2021.

Wehr, T., Kubota, T., Tzeremes, G., Wallace, K., Nakatsuka, H.,
Ohno, Y., Koopman, R., Rusli, S., Kikuchi, M., Eisinger, M.,
Tanaka, T., Taga, M., Deghaye, P., Tomita, E., and Bernaerts,
D.: The EarthCARE mission – science and system overview, At-
mos. Meas. Tech., 16, 3581–3608, https://doi.org/10.5194/amt-
16-3581-2023, 2023.

Wood, N. B. and L’Ecuyer, T. S.: Level 2C Snow Profile Process De-
scription and Interface Control Document, https://www.cloudsat.
cira.colostate.edu/data-products/2c-snow-profile (last access:
1 February 2024), 2018.

Wood, N. B., L’Ecuyer, T. S., Bliven, F. L., and Stephens, G. L.:
Characterization of video disdrometer uncertainties and impacts
on estimates of snowfall rate and radar reflectivity, Atmos. Meas.
Tech., 6, 3635–3648, https://doi.org/10.5194/amt-6-3635-2013,
2013.

Wood, N. B., L’Ecuyer, T. S., Heymsfield, A. J., Stephens,
G. L., Hudak, D. R., and Rodriguez, P.: Estimating Snow
Microphysical Properties Using Collocated Multisensor
Observations, J. Geophys. Res.-Atmos., 119, 8941–8961,
https://doi.org/10.1002/2013JD021303, 2014.

Zhou, L., Stroeve, J., Xu, S., Petty, A., Tilling, R., Winstrup, M.,
Rostosky, P., Lawrence, I. R., Liston, G. E., Ridout, A., Tsama-
dos, M., and Nandan, V.: Inter-comparison of snow depth over
Arctic sea ice from reanalysis reconstructions and satellite re-
trieval, The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-
15-345-2021, 2021.

The Cryosphere, 19, 3033–3064, 2025 https://doi.org/10.5194/tc-19-3033-2025

https://doi.org/10.1029/2019JC015900
https://doi.org/10.5067/INAWUWO7QH7B
https://doi.org/10.5194/tc-16-2373-2022
https://doi.org/10.5194/tc-13-1661-2019
https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2
https://doi.org/10.1038/s41558-018-0286-7
https://doi.org/10.1038/s41467-019-13299-8
https://doi.org/10.1038/s41467-019-13299-8
https://doi.org/10.1029/2020JC016308
https://doi.org/10.5194/amt-16-3581-2023
https://doi.org/10.5194/amt-16-3581-2023
https://www.cloudsat.cira.colostate.edu/data-products/2c-snow-profile
https://www.cloudsat.cira.colostate.edu/data-products/2c-snow-profile
https://doi.org/10.5194/amt-6-3635-2013
https://doi.org/10.1002/2013JD021303
https://doi.org/10.5194/tc-15-345-2021
https://doi.org/10.5194/tc-15-345-2021

	Abstract
	Introduction
	Data products and models
	Reanalysis products
	ERA-Interim
	ERA5
	MERRA-2
	JRA-55

	CloudSat
	MOSAiC
	IceBird
	NESOSIM and MCMC calibration
	SnowModel-LG

	Investigating different reanalysis snowfall products
	Reanalysis snowfall calibration using CloudSat
	Snowfall comparison over ocean and sea ice for the NESOSIM domain

	Impact of MCMC calibration on NESOSIM output
	Posterior model parameters
	Snow depth and density uncertainty estimates
	Impact of MCMC calibration on snow depth
	Impact of MCMC calibration on snow density
	Regional snow-on-sea-ice climatologies

	Comparison to MOSAiC and IceBird observations
	Trends in MCMC-calibrated NESOSIM output
	Discussion
	Conclusions
	Appendix A: Supporting figures
	Appendix B: MCMC calibration
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

