Articles | Volume 19, issue 3
https://doi.org/10.5194/tc-19-1353-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-1353-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Inland migration of near-surface crevasses in the Amundsen Sea Sector, West Antarctica
Andrew O. Hoffman
CORRESPONDING AUTHOR
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964-1000, USA
Knut Christianson
Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195-2700, USA
Ching-Yao Lai
Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
Department of Geophysics, Stanford University, Stanford, CA 94305, USA
Ian Joughin
Polar Science Center, Applied Physics Laboratory, Seattle, WA 98105, USA
Nicholas Holschuh
Department of Geology, Amherst College, Amherst, MA 01002, USA
Elizabeth Case
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964-1000, USA
Jonathan Kingslake
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964-1000, USA
A full list of authors appears at the end of the paper.
Related authors
Andrew O. Hoffman, Paul T. Summers, Jenny Suckale, Knut Christianson, Ginny Catania, and Howard Conway
EGUsphere, https://doi.org/10.5194/egusphere-2025-1239, https://doi.org/10.5194/egusphere-2025-1239, 2025
Short summary
Short summary
In Antarctica, fast-flowing ice streams drive most ice loss. Radar data from Conway Ice Ridge reveal that the van der Veen and Mercer Ice Streams were wider ~3000 years ago and narrowed progressively. Numerical modeling demonstrates that small thickness changes can rapidly alter shear-margin locations. These findings offer crucial insights into Late Holocene Ice Sheet readvance.
Andrew O. Hoffman, Michelle L. Maclennan, Jan Lenaerts, Kristine M. Larson, and Knut Christianson
The Cryosphere, 19, 713–730, https://doi.org/10.5194/tc-19-713-2025, https://doi.org/10.5194/tc-19-713-2025, 2025
Short summary
Short summary
Traditionally, glaciologists use global navigation satellite systems (GNSSs) to measure the surface elevation and velocity of glaciers to understand processes associated with ice flow. Using the interference of GNSS signals that bounce off of the ice sheet surface, we measure the surface height change near GNSS receivers in the Amundsen Sea Embayment (ASE). From surface height change, we infer daily accumulation rates that we use to understand the drivers of extreme precipitation in the ASE.
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023, https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Short summary
Atmospheric rivers are air masses that transport large amounts of moisture and heat towards the poles. Here, we use a combination of weather observations and models to quantify the amount of snowfall caused by atmospheric rivers in West Antarctica which is about 10 % of the total snowfall each year. We then examine a unique event that occurred in early February 2020, when three atmospheric rivers made landfall over West Antarctica in rapid succession, leading to heavy snowfall and surface melt.
Daniel R. Shapero, Jessica A. Badgeley, Andrew O. Hoffman, and Ian R. Joughin
Geosci. Model Dev., 14, 4593–4616, https://doi.org/10.5194/gmd-14-4593-2021, https://doi.org/10.5194/gmd-14-4593-2021, 2021
Short summary
Short summary
This paper describes a new software package called "icepack" for modeling the flow of ice sheets and glaciers. Glaciologists use tools like icepack to better understand how ice sheets flow, what role they have played in shaping Earth's climate, and how much sea level rise we can expect in the coming decades to centuries. The icepack package includes several innovations to help researchers describe and solve interesting glaciological problems and to experiment with the underlying model physics.
Andrew O. Hoffman, Knut Christianson, Daniel Shapero, Benjamin E. Smith, and Ian Joughin
The Cryosphere, 14, 4603–4609, https://doi.org/10.5194/tc-14-4603-2020, https://doi.org/10.5194/tc-14-4603-2020, 2020
Short summary
Short summary
The West Antarctic Ice Sheet has long been considered geometrically prone to collapse, and Thwaites Glacier, the largest glacier in the Amundsen Sea, is likely in the early stages of disintegration. Using observations of Thwaites Glacier velocity and elevation change, we show that the transport of ~2 km3 of water beneath Thwaites Glacier has only a small and transient effect on glacier speed relative to ongoing thinning driven by ocean melt.
Ellen Lucinda Mutter and Nicholas Holschuh
The Cryosphere, 19, 3159–3176, https://doi.org/10.5194/tc-19-3159-2025, https://doi.org/10.5194/tc-19-3159-2025, 2025
Short summary
Short summary
Ice-penetrating radar is a technology that lets us see through ice sheets, capturing their organized, layered structure. But near the ice bottom, radar data are much more complicated, with signals that are disordered and often ignored. Here, we work to better understand these complex signals by comparing radar data to measurements of ice structure from ice cores. We show these signals reflect structural changes in the ice itself and can inform our search for ancient climate records.
Andrew O. Hoffman, Paul T. Summers, Jenny Suckale, Knut Christianson, Ginny Catania, and Howard Conway
EGUsphere, https://doi.org/10.5194/egusphere-2025-1239, https://doi.org/10.5194/egusphere-2025-1239, 2025
Short summary
Short summary
In Antarctica, fast-flowing ice streams drive most ice loss. Radar data from Conway Ice Ridge reveal that the van der Veen and Mercer Ice Streams were wider ~3000 years ago and narrowed progressively. Numerical modeling demonstrates that small thickness changes can rapidly alter shear-margin locations. These findings offer crucial insights into Late Holocene Ice Sheet readvance.
Andrew O. Hoffman, Michelle L. Maclennan, Jan Lenaerts, Kristine M. Larson, and Knut Christianson
The Cryosphere, 19, 713–730, https://doi.org/10.5194/tc-19-713-2025, https://doi.org/10.5194/tc-19-713-2025, 2025
Short summary
Short summary
Traditionally, glaciologists use global navigation satellite systems (GNSSs) to measure the surface elevation and velocity of glaciers to understand processes associated with ice flow. Using the interference of GNSS signals that bounce off of the ice sheet surface, we measure the surface height change near GNSS receivers in the Amundsen Sea Embayment (ASE). From surface height change, we infer daily accumulation rates that we use to understand the drivers of extreme precipitation in the ASE.
Grace P. Gjerde, Mark D. Behn, Laura A. Stevens, Sarah B. Das, and Ian R. Joughin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3700, https://doi.org/10.5194/egusphere-2024-3700, 2025
Short summary
Short summary
We characterize the magnitude and variability of transient speed-ups across a GPS array in western Greenland in 2011 and 2012. While we find no relationship between speed-up and runoff, late-season events have larger speed-up amplitudes and more spatially uniform patterns of speed-up across the GPS array compared to early season events. These results reflect an evolution toward a less efficient drainage system late in the melt season, with a pervasive system of open surface-to-bed conduits.
George Lu and Jonathan Kingslake
The Cryosphere, 18, 5301–5321, https://doi.org/10.5194/tc-18-5301-2024, https://doi.org/10.5194/tc-18-5301-2024, 2024
Short summary
Short summary
Water below ice sheets affects ice-sheet motion, while the evolution of ice sheets likewise affects the water below. We create a model that allows for water and ice to affect each other and use it to see how this coupling or lack thereof may impact ice-sheet retreat. We find that coupling an evolving water system with the ice sheet results in more retreat than if we assume unchanging conditions under the ice, which indicates a need to better represent the effects of water in ice-sheet models.
Allison M. Chartrand, Ian M. Howat, Ian R. Joughin, and Benjamin E. Smith
The Cryosphere, 18, 4971–4992, https://doi.org/10.5194/tc-18-4971-2024, https://doi.org/10.5194/tc-18-4971-2024, 2024
Short summary
Short summary
This study uses high-resolution remote-sensing data to show that shrinking of the West Antarctic Thwaites Glacier’s ice shelf (floating extension) is exacerbated by several sub-ice-shelf meltwater channels that form as the glacier transitions from full contact with the seafloor to fully floating. In mapping these channels, the position of the transition zone, and thinning rates of the Thwaites Glacier, this work elucidates important processes driving its rapid contribution to sea level rise.
Twila A. Moon, Benjamin Cohen, Taryn E. Black, Kristin L. Laidre, Harry L. Stern, and Ian Joughin
The Cryosphere, 18, 4845–4872, https://doi.org/10.5194/tc-18-4845-2024, https://doi.org/10.5194/tc-18-4845-2024, 2024
Short summary
Short summary
The complex geomorphology of southeast Greenland (SEG) creates dynamic fjord habitats for top marine predators, featuring glacier-derived floating ice, pack and landfast sea ice, and freshwater flux. We study the physical environment of SEG fjords, focusing on surface ice conditions, to provide a regional characterization that supports biological research. As Arctic warming persists, SEG may serve as a long-term refugium for ice-dependent wildlife due to the persistence of regional ice sheets.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Ian Joughin, Daniel Shapero, and Pierre Dutrieux
The Cryosphere, 18, 2583–2601, https://doi.org/10.5194/tc-18-2583-2024, https://doi.org/10.5194/tc-18-2583-2024, 2024
Short summary
Short summary
The Pine Island and Thwaites glaciers are losing ice to the ocean rapidly as warmer water melts their floating ice shelves. Models help determine how much such glaciers will contribute to sea level. We find that ice loss varies in response to how much melting the ice shelves are subjected to. Our estimated losses are also sensitive to how much the friction beneath the glaciers is reduced as it goes afloat. Melt-forced sea level rise from these glaciers is likely to be less than 10 cm by 2300.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023, https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Short summary
Atmospheric rivers are air masses that transport large amounts of moisture and heat towards the poles. Here, we use a combination of weather observations and models to quantify the amount of snowfall caused by atmospheric rivers in West Antarctica which is about 10 % of the total snowfall each year. We then examine a unique event that occurred in early February 2020, when three atmospheric rivers made landfall over West Antarctica in rapid succession, leading to heavy snowfall and surface melt.
Aleksandr Montelli and Jonathan Kingslake
The Cryosphere, 17, 195–210, https://doi.org/10.5194/tc-17-195-2023, https://doi.org/10.5194/tc-17-195-2023, 2023
Short summary
Short summary
Thermal modelling and Bayesian inversion techniques are used to evaluate the uncertainties inherent in inferences of ice-sheet evolution from borehole temperature measurements. We show that the same temperature profiles may result from a range of parameters, of which geothermal heat flux through underlying bedrock plays a key role. Careful model parameterisation and evaluation of heat flux are essential for inferring past ice-sheet evolution from englacial borehole thermometry.
Taryn E. Black and Ian Joughin
The Cryosphere, 17, 1–13, https://doi.org/10.5194/tc-17-1-2023, https://doi.org/10.5194/tc-17-1-2023, 2023
Short summary
Short summary
The frontal positions of most ice-sheet-based glaciers in Greenland vary seasonally. On average, these glaciers begin retreating in May and begin advancing in October, and the difference between their most advanced and most retreated positions is 220 m. The timing may be related to the timing of melt on the ice sheet, and the seasonal length variation may be related to glacier speed. These seasonal variations can affect glacier behavior and, consequently, how much ice is lost from the ice sheet.
Jonathan Kingslake, Robert Skarbek, Elizabeth Case, and Christine McCarthy
The Cryosphere, 16, 3413–3430, https://doi.org/10.5194/tc-16-3413-2022, https://doi.org/10.5194/tc-16-3413-2022, 2022
Short summary
Short summary
Firn is snow that has persisted for at least 1 full year on the surface of a glacier or ice sheet. It is an intermediate substance between snow and glacial ice. Firn compacts into glacial ice due to the weight of overlying snow and firn. The rate at which it compacts and the rate at which it is buried control how thick the firn layer is. We explore how this thickness depends on the rate of snow fall and how this dependence is controlled by the size of snow grains at the ice sheet surface.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
Taryn E. Black and Ian Joughin
The Cryosphere, 16, 807–824, https://doi.org/10.5194/tc-16-807-2022, https://doi.org/10.5194/tc-16-807-2022, 2022
Short summary
Short summary
We used satellite images to create a comprehensive record of annual glacier change in northwest Greenland from 1972 through 2021. We found that nearly all glaciers in our study area have retreated and glacier retreat accelerated from around 1996. Comparing these results with climate data, we found that glacier retreat is most sensitive to water runoff and moderately sensitive to ocean temperatures. These can affect glacier fronts in several ways, so no process clearly dominates glacier retreat.
Amy Jenson, Jason M. Amundson, Jonathan Kingslake, and Eran Hood
The Cryosphere, 16, 333–347, https://doi.org/10.5194/tc-16-333-2022, https://doi.org/10.5194/tc-16-333-2022, 2022
Short summary
Short summary
Outburst floods are sudden releases of water from glacial environments. As glaciers retreat, changes in glacier and basin geometry impact outburst flood characteristics. We combine a glacier flow model describing glacier retreat with an outburst flood model to explore how ice dam height, glacier length, and remnant ice in a basin influence outburst floods. We find storage capacity is the greatest indicator of flood magnitude, and the flood onset mechanism is a significant indicator of duration.
Daniel R. Shapero, Jessica A. Badgeley, Andrew O. Hoffman, and Ian R. Joughin
Geosci. Model Dev., 14, 4593–4616, https://doi.org/10.5194/gmd-14-4593-2021, https://doi.org/10.5194/gmd-14-4593-2021, 2021
Short summary
Short summary
This paper describes a new software package called "icepack" for modeling the flow of ice sheets and glaciers. Glaciologists use tools like icepack to better understand how ice sheets flow, what role they have played in shaping Earth's climate, and how much sea level rise we can expect in the coming decades to centuries. The icepack package includes several innovations to help researchers describe and solve interesting glaciological problems and to experiment with the underlying model physics.
Huw J. Horgan, Laurine van Haastrecht, Richard B. Alley, Sridhar Anandakrishnan, Lucas H. Beem, Knut Christianson, Atsuhiro Muto, and Matthew R. Siegfried
The Cryosphere, 15, 1863–1880, https://doi.org/10.5194/tc-15-1863-2021, https://doi.org/10.5194/tc-15-1863-2021, 2021
Short summary
Short summary
The grounding zone marks the transition from a grounded ice sheet to a floating ice shelf. Like Earth's coastlines, the grounding zone is home to interactions between the ocean, fresh water, and geology but also has added complexity and importance due to the overriding ice. Here we use seismic surveying – sending sound waves down through the ice – to image the grounding zone of Whillans Ice Stream in West Antarctica and learn more about the nature of this important transition zone.
Andrew O. Hoffman, Knut Christianson, Daniel Shapero, Benjamin E. Smith, and Ian Joughin
The Cryosphere, 14, 4603–4609, https://doi.org/10.5194/tc-14-4603-2020, https://doi.org/10.5194/tc-14-4603-2020, 2020
Short summary
Short summary
The West Antarctic Ice Sheet has long been considered geometrically prone to collapse, and Thwaites Glacier, the largest glacier in the Amundsen Sea, is likely in the early stages of disintegration. Using observations of Thwaites Glacier velocity and elevation change, we show that the transport of ~2 km3 of water beneath Thwaites Glacier has only a small and transient effect on glacier speed relative to ongoing thinning driven by ocean melt.
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, N., Mané, D., Schuster, M., Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems, https://www.tensorflow.org/ (last access: June 2023), 2015. a
Alley, K. E., Scambos, T. A., Anderson, R. S., Rajaram, H., Pope, A., and Haran, T. M.: Continent-wide estimates of Antarctic strain rates from Landsat 8-derived velocity grids, J. Glaciol., 64, 321–332, https://doi.org/10.1017/jog.2018.23, 2018. a
Alley, K. E., Wild, C. T., Luckman, A., Scambos, T. A., Truffer, M., Pettit, E. C., Muto, A., Wallin, B., Klinger, M., Sutterley, T., Child, S. F., Hulen, C., Lenaerts, J. T. M., Maclennan, M., Keenan, E., and Dunmire, D.: Two decades of dynamic change and progressive destabilization on the Thwaites Eastern Ice Shelf, The Cryosphere, 15, 5187–5203, https://doi.org/10.5194/tc-15-5187-2021, 2021. a
Alley, R., Horgan, H., Joughin, I., Cuffey, K., Dupont, T., Parizek, B., Anandakrishnan, S., and Bassis, J.: A simple law for ice-shelf calving, Science, 322, 1344, https://doi.org/10.1126/science.1162543, 2008. a
Alley, R., Cuffey, K., Bassis, J., Alley, K., Wang, S., Parizek, B., Anandakrishnan, S., Christianson, K., and DeConto, R.: Iceberg Calving: Regimes and Transitions, Annu. Rev. Earth Planet. Sci., 51, 189–215, https://doi.org/10.1146/annurev-earth-032320-110916, 2023. a, b, c
ASF DAAC: Alaska Satellilte Facility Distributed Active Archive Center, contains modified Copernicus Sentinel data 2014–2022, 2014–2022. a
Ashby, M. F. and Medalist, R. M.: The mechanical properties of cellular solids, Metall. Trans. A, 14, 1755–1769, 1983. a
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes, Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013. a
Bassis, J. N. and Walker, C. C.: Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice, P. Roy. Soc. A, 468, 913–931, https://doi.org/10.1098/rspa.2011.0422, 2012. a
Benn, D. I., Luckman, A., Åström, J. A., Crawford, A. J., Cornford, S. L., Bevan, S. L., Zwinger, T., Gladstone, R., Alley, K., Pettit, E., and Bassis, J.: Rapid fragmentation of Thwaites Eastern Ice Shelf, The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022, 2022. a, b
Berg, B. and Bassis, J.: Crevasse advection increases glacier calving, J. Glaciol., 68, 977–986, https://doi.org/10.1017/jog.2022.10, 2022. a
Betterton, M. D.: Theory of structure formation in snowfields motivated by penitentes, suncups, and dirt cones, Phys. Rev. E, 63, 056129, https://doi.org/10.1103/PhysRevE.63.056129, 2001. a
Bindschadler, R., Vornberger, P., Blankenship, D., Scambos, T., and Jacobel, R.: Surface velocity and mass balance of Ice Streams D and E, West Antarctica, J. Glaciol., 42, 461–475, https://doi.org/10.3189/s0022143000003452, 1996. a
Cathles, L. M., Abbot, D. S., Bassis, J. N., and MacAyeal, D. R.: Modeling surface-roughness/solar-ablation feedback: application to small-scale surface channels and crevasses of the Greenland ice sheet, Ann. Glaciol., 52, 99–108, https://doi.org/10.3189/172756411799096268, 2011. a
Cathles, L. M., Abbot, D. S., and MacAyeal, D. R.: Intra-surface radiative transfer limits the geographic extent of snow penitents on horizontal snowfields, J. Glaciol., 60, 147–154, https://doi.org/10.3189/2014JoG13J124, 2014. a
Chudley, T. R., Christoffersen, P., Doyle, S. H., Dowling, T. P. F., Law, R., Schoonman, C. M., Bougamont, M., and Hubbard, B.: Controls on Water Storage and Drainage in Crevasses on the Greenland Ice Sheet, J. Geophys. Res.-Earth Surf., 126, e2021JF006287, https://doi.org/10.1029/2021JF006287, 2021. a
Clerc, F., Minchew, B. M., and Behn, M. D.: Marine Ice Cliff Instability Mitigated by Slow Removal of Ice Shelves, Geophys. Res. Lett., 46, 12108–12116, https://doi.org/10.1029/2019GL084183, 2019. a, b, c
Colgan, W., Rajaram, H., Abdalati, W., McCutchan, C., Mottram, R., Moussavi, M. S., and Grigsby, S.: Glacier crevasses: Observations, models, and mass balance implications, Rev. Geophys., 54, 119–161, https://doi.org/10.1002/2015rg000504, 2016. a
Cook, A. J. and Vaughan, D. G.: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years, The Cryosphere, 4, 77–98, https://doi.org/10.5194/tc-4-77-2010, 2010. a
Crawford, A. J., Benn, D. I., Todd, J., Åström, J. A., Bassis, J. N., and Zwinger, T.: Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization, Nat. Commun., 12, 2701, https://doi.org/10.1038/s41467-021-23070-7, 2021. a
Davis, P. E. D., Nicholls, K. W., Holland, D. M., Schmidt, B. E., Washam, P., Riverman, K. L., Arthern, R. J., Vaňková, I., Eayrs, C., Smith, J. A., Anker, P. G. D., Mullen, A. D., Dichek, D., Lawrence, J. D., Meister, M. M., Clyne, E., Basinski-Ferris, A., Rignot, E., Queste, B. Y., Boehme, L., Heywood, K. J., Anandakrishnan, S., and Makinson, K.: Suppressed basal melting in the eastern Thwaites Glacier grounding zone, Nature, 614, 479–485, https://doi.org/10.1038/s41586-022-05586-0, 2023. a
Fischer, M. P., Alley, R. B., and Engelder, T.: Fracture toughness of ice and firn determined from the modified ring test, J. Glaciol., 41, 383–394, https://doi.org/10.3189/s0022143000016257, 1995. a
Gerli, C., Rosier, S., Gudmundsson, G. H., and Sun, S.: Weak relationship between remotely detected crevasses and inferred ice rheological parameters on Antarctic ice shelves, The Cryosphere, 18, 2677–2689, https://doi.org/10.5194/tc-18-2677-2024, 2024. a, b
Ghiz, M. L., Scott, R. C., Vogelmann, A. M., Lenaerts, J. T. M., Lazzara, M., and Lubin, D.: Energetics of surface melt in West Antarctica, The Cryosphere, 15, 3459–3494, https://doi.org/10.5194/tc-15-3459-2021, 2021. a
Gibson, L. J. and Ashby, M. F.: Cellular Solids, Structure and Property, 2nd edn., Cambridge Solid State Science Series, Cambridge University Press, Cambridge, United Kingdom, 1999. a
Gow, A. J., Meese, D. A., and Bialas, R. W.: Accumulation variability, density profiles and crystal growth trends in ITASE firn and ice cores from West Antarctica, Ann. Glaciol., 39, 101–109, https://doi.org/10.3189/172756404781814690, 2004. a
Grinsted, A., Rathmann, N. M., Mottram, R., Solgaard, A. M., Mathiesen, J., and Hvidberg, C. S.: Failure strength of glacier ice inferred from Greenland crevasses, The Cryosphere, 18, 1947–1957, https://doi.org/10.5194/tc-18-1947-2024, 2024. a, b
Haran, T., Klinger, M., Bohlander, J., Fahnestock, M., Painter, T., and Scambos, T.: MEaSUREs MODIS Mosaic of Antarctica 2013–2014 (MOA2014) Image Map, Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/RNF17BP824UM, 2018. a
Hoffman, A.: Grounded Ice Crevasse expansion near the grounded bight of Thwaites Glacier, TIB Video Portal [video], https://doi.org/10.5446/62770, 2023a. a
Hoffman, A.: Grounded-ice crevasse expansion near the interior subglacial lakes beneath Thwaites Glacier, TIB Video Portal [video], https://doi.org/10.5446/62771, 2023b. a
Hoffman, A.: hoffmaao/thwaites_crevasses: crevasse segmentation initial release (v0.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.14994659, 2025a. a
Hoffman, A.: hoffmaao/EarthMasker: earth masker initial release (v0.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.14994657, 2025b. a
Hoffman, A. O., Christianson, K., Shapero, D., Smith, B. E., and Joughin, I.: Brief communication: Heterogenous thinning and subglacial lake activity on Thwaites Glacier, West Antarctica, The Cryosphere, 14, 4603–4609, https://doi.org/10.5194/tc-14-4603-2020, 2020. a
Hoffman, A. O., Christianson, K., Holschuh, N., Case, E., Kingslake, J., and Arthern, R.: The Impact of Basal Roughness on Inland Thwaites Glacier Sliding, Geophys. Res. Lett., 49, e2021GL096564, https://doi.org/10.1029/2021gl096564, 2022. a
Holt, J. W., Blankenship, D. D., Morse, D. L., Young, D. A., Peters, M. E., Kempf, S. D., Richter, T. G., Vaughan, D. G., and Corr, H. F. J.: New boundary conditions for the West Antarctic Ice Sheet: Subglacial topography of the Thwaites and Smith glacier catchments, Geophys. Res. Lett., 33, L09501, https://doi.org/10.1029/2005GL025561, 2006. a
Horlings, A. N., Christianson, K., Holschuh, N., Stevens, C. M., and Waddington, E. D.: Effect of horizontal divergence on estimates of firn-air content, J. Glaciol., 67, 287–296, https://doi.org/10.1017/jog.2020.105, 2021. a, b, c
Izeboud, M. and Lhermitte, S.: Damage detection on antarctic ice shelves using the normalised radon transform, Remote Sens. Environ., 284, 113359, https://doi.org/10.1016/j.rse.2022.113359, 2023. a, b, c, d
Jacobs, S. S., Hellmer, H. H., and Jenkins, A.: Antarctic Ice Sheet melting in the southeast Pacific, Geophys. Res. Lett., 23, 957–960, https://doi.org/10.1029/96gl00723, 1996. a
Jelitto, H. and Schneider, G.: A geometric model for the fracture toughness of porous materials, Acta Mater., 151, 443–453, https://doi.org/10.1016/j.actamat.2018.03.018, 2018. a, b, c
Jenkins, A., Dutrieux, P., Jacobs, S. S., McPhail, S. D., Perrett, J. R., Webb, A. T., and White, D.: Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat, Nat. Geosci., 3, 468–472, https://doi.org/10.1038/ngeo890, 2010. a
Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., Lee, S. H., Ha, H. K., and Stammerjohn, S.: West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability, Nat. Geosci., 11, 733–738, https://doi.org/10.1038/s41561-018-0207-4, 2018. a
Jeong, S., Howat, I. M., and Bassis, J. N.: Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica, Geophys. Res. Lett., 43, 11720–11725, https://doi.org/10.1002/2016GL071360, 2016. a
Joughin, I., Smith, B. E., Howat, I. M., Moon, T., and Scambos, T. A.: A SAR record of early 21st century change in Greenland, J. Glaciol., 62, 62–71, https://doi.org/10.1017/jog.2016.10, 2016. a
Joughin, I., Shapero, D., Smith, B., Dutrieux, P., and Barham, M.: Ice-shelf retreat drives recent Pine Island Glacier speedup, Sci. Adv., 7, eabg3080, https://doi.org/10.1126/sciadv.abg3080, 2021. a, b
Karidi, K.: Improvements to the CReSIS HF-VHF Sounder and UHF Accumulation Radar, Master's thesis, Electrical Engineering and Computer Science, University of Kansas, 2018. a
Lindner, F., Laske, G., Walter, F., and Doran, A. K.: Crevasse-induced Rayleigh-wave azimuthal anisotropy on Glacier de la Plaine Morte, Switzerland, Ann. Glaciol., 60, 96–111, https://doi.org/10.1017/aog.2018.25, 2019. a
Lomonaco, R., Albert, M., and Baker, I.: Microstructural evolution of fine-grained layers through the firn column at Summit, Greenland, J. Glaciol., 57, 755–762, 2011. a
MacClune, K. L., Fountain, A. G., Kargel, J. S., and MacAyeal, D. R.: Glaciers of the McMurdo dry valleys: Terrestrial analog for Martian polar sublimation, J. Geophys. Res.-Planets, 108, E4, https://doi.org/10.1029/2002JE001878, 2003. a
Maiti, S. K., Ashby, M. F., and Gibson, L. J.: Fracture toughness of brittle cellular solids, Scripta Metallurgy, 18, 213–217, 1984. a
Marsh, O., Price, D., Courville, Z., and Floricioiu, D.: Crevasse and rift detection in Antarctica from TerraSAR-X satellite imagery, Cold Reg. Sci. Technol., 187, 103284, https://doi.org/10.1016/j.coldregions.2021.103284, 2021. a, b, c, d
Meier, M., Lundstrom, S., Stone, D., Kamb, B., Engelhardt, H., Humphrey, N., Dunlap, W. W., Fahnestock, M., Krimmel, R. M., and Walters, R.: Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier: 1. Observations, J. Geophys. Res.-Sol. Ea., 99, 15219–15229, https://doi.org/10.1029/94jb00237, 1994. a
Morris, E. M. and Wingham, D. J.: Uncertainty in mass-balance trends derived from altimetry: a case study along the EGIG line, central Greenland, J. Glaciol., 61, 345–356, https://doi.org/10.3189/2015JoG14J123, 2015. a
Nath, P. C. and Vaughan, D. G.: Subsurface crevasse formation in glaciers and ice sheets, J. Geophys. Res.-Sol. Ea., 108, ECV 7-1–ECV 7-12, https://doi.org/10.1029/2001JB000453, 2003. a, b
Needell, C. and Holschuh, N.: Evaluating the Retreat, Arrest, and Regrowth of Crane Glacier Against Marine Ice Cliff Process Models, Geophys. Res. Lett., 50, e2022GL102400, https://doi.org/10.1029/2022GL102400, 2023. a
Nye, J. F.: A Method of Determining the Strain-Rate Tensor at the Surface of a Glacier, J. Glaciol., 3, 409–419, https://doi.org/10.3189/s0022143000017093, 1959. a, b
Nye, J. F. and Perutz, M. F.: The distribution of stress and velocity in glaciers and ice-sheets, P. Roy. Soc. Lond. A, 239, 113–133, https://doi.org/10.1098/rspa.1957.0026, 1957. a
Oraschewski, F. M. and Grinsted, A.: Modeling enhanced firn densification due to strain softening, The Cryosphere, 16, 2683–2700, https://doi.org/10.5194/tc-16-2683-2022, 2022. a, b
Parizek, B. R., Christianson, K., Alley, R. B., Voytenko, D., Vaňková, I., Dixon, T. H., Walker, R. T., and Holland, D. M.: Ice-cliff failure via retrogressive slumping, Geology, 47, 449–452, https://doi.org/10.1130/G45880.1, 2019. a
Pfeffer, W. T. and Bretherton, C. S.: The effect of crevasses on the solar heating of a glacier surface, IAHS Publ., 170, 191–205, 1987. a
Rignot, E., Echelmeyer, K., and Krabill, W.: Penetration depth of interferometric synthetic‐aperture radar signals in snow and ice, Geophys. Res. Lett., 28, 3501–3504, https://doi.org/10.1029/2000gl012484, 2001. a, b
Rignot, E., Mouginot, J., Scheuchl, B., Broeke, M. V. D., Wessem, M. J. v., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from 1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019. a, b
Rist, M. A., Sammonds, P. R., Murrell, S. A. F., Meredith, P. G., Doake, C. S. M., Oerter, H., and Matsuki, K.: Experimental and theoretical fracture mechanics applied to Antarctic ice fracture and surface crevassing, J. Geophys. Res.-Sol. Ea., 104, 2973–2987, https://doi.org/10.1029/1998jb900026, 1999. a, b
Rist, M. A., Sammonds, P. R., Oerter, H., and Doake, C. S. M.: Fracture of Antarctic shelf ice, J. Geophys. Res.-Sol. Ea., 107, ECV 2-1–ECV 2-13, https://doi.org/10.1029/2000jb000058, 2002. a, b, c
Ronneberger, O., Fischer, P., and Brox, T.: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 18th International Conference, 5–9 October 2015, Munich, Germany, Proceedings, Part III, Lecture Notes in Computer Science, 234–241, https://doi.org/10.1007/978-3-319-24574-4_28, 2015. a, b
Schlemm, T., Feldmann, J., Winkelmann, R., and Levermann, A.: Stabilizing effect of mélange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet, The Cryosphere, 16, 1979–1996, https://doi.org/10.5194/tc-16-1979-2022, 2022. a
Schulson, E. M., Baker, I., Robertson, C. D., Bolon, R. B., and Harnimon, R. J.: Fractography of ice, J. Mater. Sci. Lett., 8, 1193–1194, https://doi.org/10.1007/BF01730067, 1989. a
Shepherd, A., Gilbert, L., Muir, A. S., Konrad, H., McMillan, M., Slater, T., Briggs, K. H., Sundal, A. V., Hogg, A. E., and Engdahl, M. E.: Trends in Antarctic Ice Sheet Elevation and Mass, Geophys. Res. Lett., 46, 8174–8183, https://doi.org/10.1029/2019gl082182, 2019. a
Smith, R.: The application of fracture mechanics to the problem of crevasse penetration, J. Glaciol., 17, 223–228, 1976. a
Smith, R.: Iceberg cleaving and fracture mechanics-a preliminary survey, in: Iceberg Utilization, 176–190, Elsevier, 1978. a
Smith, T. R., Schulson, M. E., and Schulson, E. M.: The fracture toughness of porous ice with and without particles, in: Proceedings of the Ninth International Conference on Offshore Mechanics and Arctic Engineering, vol. 4 of Antarctic Research Series, 241–247, American Society of Mechanical Engineers, 1990. a
SNAP: SNAP – ESA Sentinel Application Platform, S1TBX, https://step.esa.int/ (last access: June 2023), 2022. a
Surawy-Stepney, T., Hogg, A. E., Cornford, S. L., and Hogg, D. C.: Mapping Antarctic crevasses and their evolution with deep learning applied to satellite radar imagery, The Cryosphere, 17, 4421–4445, https://doi.org/10.5194/tc-17-4421-2023, 2023b. a, b, c, d
Ultee, L. and Bassis, J.: The future is Nye: an extension of the perfect plastic approximation to tidewater glaciers, J. Glaciol., 62, 1143–1152, https://doi.org/10.1017/jog.2016.108, 2016. a
van der Veen, C.: Fracture mechanics approach to penetration of surface crevasses on glaciers, Cold Reg. Sci. Technol., 27, 31–47, https://doi.org/10.1016/S0165-232X(97)00022-0, 1998. a, b, c
Veen, C. J. v. d.: Crevasses on glaciers, Polar Geogr., 23, 213–245, https://doi.org/10.1080/10889379909377677, 1999. a, b, c
Verjans, V., Leeson, A. A., McMillan, M., Stevens, C. M., van Wessem, J. M., van de Berg, W. J., van den Broeke, M. R., Kittel, C., Amory, C., Fettweis, X., Hansen, N., Boberg, F., and Mottram, R.: Uncertainty in East Antarctic Firn Thickness Constrained Using a Model Ensemble Approach, Geophys. Res. Lett., 48, e2020GL092060, https://doi.org/10.1029/2020GL092060, 2021. a
Warren, S. G.: Snow spikes (penitentes) in the dry Andes, but not on Europa: a defense of Lliboutry's classic paper, Ann. Glaciol., 63, 62–66, https://doi.org/10.1017/aog.2023.12, 2022. a
Weertman, J.: Can a water-filled crevasse reach the bottom surface of a glacier?, in: Symposium on the Hydrology of Glaciers, 139–145, Union Géodésique et Géophysique Internationale, Association Internationale d’Hydrologie Scientifique, Commission de Neiges et Glaces, Cambridge, UK, 1973. a
Williams, R. M., Ray, L. E., Lever, J. H., and Burzynski, A. M.: Crevasse Detection in Ice Sheets Using Ground Penetrating Radar and Machine Learning, IEEE J. Sel. Top. Appl. Earth Obs., 7, 4836–4848, https://doi.org/10.1109/JSTARS.2014.2332872, 2014. a, b
Zhao, J., Liang, S., Li, X., Duan, Y., and Liang, L.: Detection of Surface Crevasses over Antarctic Ice Shelves Using SAR Imagery and Deep Learning Method, Remote Sens., 14, 487, https://doi.org/10.3390/rs14030487, 2022. a, b, c
Short summary
We use satellite and ice-penetrating radar technology to segment crevasses in the Amundsen Sea Embayment. Inspection of satellite time series reveals inland expansion of crevasses where surface stresses have increased. We develop a simple model for the strength of densifying snow and show that these crevasses are likely restricted to the near surface. This result bridges discrepancies between satellite and lab experiments and reveals the importance of porosity on surface crevasse formation.
We use satellite and ice-penetrating radar technology to segment crevasses in the Amundsen Sea...