Articles | Volume 18, issue 11
https://doi.org/10.5194/tc-18-5347-2024
https://doi.org/10.5194/tc-18-5347-2024
Research article
 | 
21 Nov 2024
Research article |  | 21 Nov 2024

Using deep learning and multi-source remote sensing images to map landlocked lakes in Antarctica

Anyao Jiang, Xin Meng, Yan Huang, and Guitao Shi

Related authors

Measurement report: Polycyclic aromatic hydrocarbons (PAHs) and their alkylated (RPAHs), nitrated (NPAHs), and oxygenated (OPAHs) derivatives in the global marine atmosphere – occurrence, spatial variations, and source apportionment
Rui Li, Xing Liu, Yubing Shen, Yumeng Shao, Yining Gao, Ziwei Yao, Xi Liu, and Guitao Shi
Atmos. Chem. Phys., 25, 9263–9274, https://doi.org/10.5194/acp-25-9263-2025,https://doi.org/10.5194/acp-25-9263-2025, 2025
Short summary
Duration of vegetation green-up response to snowmelt on the Tibetan Plateau
Jingwen Ni, Jin Chen, Yao Tang, Jingyi Xu, Jiahui Xu, Linxin Dong, Qingyu Gu, Bailang Yu, Jianping Wu, and Yan Huang
Biogeosciences, 22, 2637–2651, https://doi.org/10.5194/bg-22-2637-2025,https://doi.org/10.5194/bg-22-2637-2025, 2025
Short summary
Temperature-dominated spatiotemporal variability in snow phenology on the Tibetan Plateau from 2002 to 2022
Jiahui Xu, Yao Tang, Linxin Dong, Shujie Wang, Bailang Yu, Jianping Wu, Zhaojun Zheng, and Yan Huang
The Cryosphere, 18, 1817–1834, https://doi.org/10.5194/tc-18-1817-2024,https://doi.org/10.5194/tc-18-1817-2024, 2024
Short summary
Brief communication: Identification of 140 000-year-old blue ice in the Grove Mountains, East Antarctica, by krypton-81 dating
Zhengyi Hu, Wei Jiang, Yuzhen Yan, Yan Huang, Xueyuan Tang, Lin Li, Florian Ritterbusch, Guo-Min Yang, Zheng-Tian Lu, and Guitao Shi
The Cryosphere, 18, 1647–1652, https://doi.org/10.5194/tc-18-1647-2024,https://doi.org/10.5194/tc-18-1647-2024, 2024
Short summary
HMRFS–TP: long-term daily gap-free snow cover products over the Tibetan Plateau from 2002 to 2021 based on hidden Markov random field model
Yan Huang, Jiahui Xu, Jingyi Xu, Yelei Zhao, Bailang Yu, Hongxing Liu, Shujie Wang, Wanjia Xu, Jianping Wu, and Zhaojun Zheng
Earth Syst. Sci. Data, 14, 4445–4462, https://doi.org/10.5194/essd-14-4445-2022,https://doi.org/10.5194/essd-14-4445-2022, 2022
Short summary

Cited articles

Arthur, J. F., Stokes, C., Jamieson, S. S. R., Carr, J. R., and Leeson, A. A.: Recent understanding of Antarctic supraglacial lakes using satellite remote sensing, Prog. Phys. Geogr.: Earth Environ., 44, 837–869, https://doi.org/10.1177/0309133320916114, 2020. 
Barrand, N. E., Vaughan, D. G., Steiner, N., Tedesco, M., Kuipers Munneke, P., van den Broeke, M. R., and Hosking, J. S.: Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling, J. Geophys. Res.-Earth, 118, 315–330, https://doi.org/10.1029/2012JF002559, 2013. 
Bowden, D., Clarke, A., Peck, L., and Barnes, D.: Antarctic sessile marine benthos: Colonisation and growth on artificial substrata over three years, Mar. Ecol. Prog. Ser., 316, 1–16, https://doi.org/10.3354/meps316001, 2006. 
Braithwaite, R. J. and Hughes, P. D.: Positive degree-day sums in the Alps: a direct link between glacier melt and international climate policy, J. Glaciol., 68, 901–911, https://doi.org/10.1017/jog.2021.140, 2022. 
Camacho, A.: Planktonic microbial assemblages and the potential effects of metazooplankton predation on the food web of lakes from the maritime Antarctica and sub-Antarctic islands, Rev. Environ. Sci. Biotechnol., 5, 167–185, https://doi.org/10.1007/s11157-006-0003-2, 2006. 
Download
Short summary
Landlocked lakes are crucial to the Antarctic ecosystem and sensitive to climate change. Limited research on their distribution prompted us to develop an automated detection process using deep learning and multi-source satellite imagery. This allowed us to accurately determine the landlocked lake open water (LLOW) area in Antarctica, generating high-resolution time series data. We find that the changes in positive and negative degree days predominantly drive variations in the LLOW area.
Share