Articles | Volume 18, issue 11
https://doi.org/10.5194/tc-18-5347-2024
https://doi.org/10.5194/tc-18-5347-2024
Research article
 | 
21 Nov 2024
Research article |  | 21 Nov 2024

Using deep learning and multi-source remote sensing images to map landlocked lakes in Antarctica

Anyao Jiang, Xin Meng, Yan Huang, and Guitao Shi

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1810', Anonymous Referee #1, 22 Nov 2023
  • RC2: 'Comment on egusphere-2023-1810', Anonymous Referee #2, 19 Dec 2023
  • EC1: 'Comment on egusphere-2023-1810', Nicholas Barrand, 21 Feb 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (further review by editor and referees) (04 Mar 2024) by Nicholas Barrand
AR by Guitao Shi on behalf of the Authors (15 Jul 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (23 Sep 2024) by Nicholas Barrand
AR by Guitao Shi on behalf of the Authors (30 Sep 2024)  Manuscript 
Download
Short summary
Landlocked lakes are crucial to the Antarctic ecosystem and sensitive to climate change. Limited research on their distribution prompted us to develop an automated detection process using deep learning and multi-source satellite imagery. This allowed us to accurately determine the landlocked lake open water (LLOW) area in Antarctica, generating high-resolution time series data. We find that the changes in positive and negative degree days predominantly drive variations in the LLOW area.