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Abstract. Antarctic landlocked lake open water (LLOW)
plays an important role in the Antarctic ecosystem and serves
as a reliable climate indicator. However, since field surveys
are currently the main method to study Antarctic landlocked
lakes, the spatial and temporal distribution of landlocked
lakes across Antarctica remains understudied. We first devel-
oped an automated detection workflow for Antarctic LLOW
using deep learning and multi-source satellite images. The U-
Net model and LLOW identification model achieved average
F1 scores of 0.90 and 0.89 on testing datasets, respectively,
demonstrating strong spatiotemporal robustness across vari-
ous study areas. We chose four typical ice-free areas located
along coastal Antarctica as our study areas. After applying
our LLOW identification model to a total of 79 Landsat 8
Operational Land Imager (OLI) images and 330 Sentinel-1
synthetic aperture radar (SAR) images in these four areas, we
generated high-spatiotemporal-resolution LLOW time series
from January to April between 2017 and 2021. We analyzed
the fluctuation of LLOW areas in the four study areas and
found that during expansion of LLOW, over 90 % of the
changes were explained by positive degree days, while dur-
ing contraction, negative degree day changes accounted for
more than 50 % of the LLOW area fluctuations. It is shown
that our model can provide long-term LLOW time series
products that help us better understand how lakes change un-
der a changing climate.

1 Introduction

Antarctic lakes play a crucial role in the ecosystem of Antarc-
tica and are reliable indicators of climate change (Lyons et
al., 2006). These lakes can be divided into three main types:
landlocked lakes, epiglacial lakes, and supraglacial lakes.
Landlocked lakes, located in local depressions and usually
free of ice during austral summer, primarily receive water in-
flow from the melting of seasonal snow cover (Shevnina et
al., 2021). Epiglacial lakes are situated at the boundary be-
tween areas of rock and ice, and melting of the glacier ice
is the main source of water inflow into them. Supraglacial
lakes are found on the surface of ice sheets, glaciers, and ice
shelves, forming during the summer melt (Hodgson, 2012).

Extensive research confirms diverse microorganisms in
Antarctic lakes, including prokaryotes like bacteria and eu-
karyotes such as phytoplankton (Parnikoza and Kozeretska,
2020; Izaguirre et al., 2021; Keskitalo et al., 2013; Rochera
and Camacho, 2019). Cyanobacteria play a crucial role in
primary production and nutrient cycling, as highlighted by
studies on their diversity and distribution (Taton et al., 2006;
Komárek et al., 2012), alongside findings on unique micro-
bial assemblages, such as Hymenobacter sp., and diverse
bacterial communities (Koo et al., 2014; Huang et al., 2014;
Carvalho et al., 2008; Papale et al., 2017). These studies
underscore the ecological importance and high diversity of
Antarctic lake ecosystems.

Antarctic lakes are rather sensitive to environmental
change, especially under a warming climate (Quayle Wendy
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et al., 2002). Seasonally ice-covered lakes magnify the
warming trends observed in air temperature (Convey and
Peck, 2019). Recent studies have highlighted the impact of
increased temperature and melting of snowfields and glaciers
on Antarctic lakes (Izaguirre et al., 2021; Stokes et al., 2019).
In particular, the changes in the lake-ice and open water area
can have significant implications for the lake environment,
affecting both physical and biological aspects. Physically,
alterations in lake-ice and open water area influence ther-
mal stratification, leading to variations in heat distribution
and vertical mixing within the water column (Preston et al.,
2016; Lazhu et al., 2021). This, in turn, has implications for
the biological effects observed. The occurrence peak of pri-
mary consumers (Hébert et al., 2021; Izaguirre et al., 2021),
the nutrient regime (Prater et al., 2022; Yang et al., 2021),
the development of a planktonic and benthic microbial pop-
ulation (Camacho, 2006), and the availability of a suitable
oxythermal habitat for cold-water organisms (Pöysä, 2022)
can all be influenced by the changes in lake-ice and open
water area. Rising temperatures and stratification, coupled
with reduced ice cover and increased nutrient inputs, may
promote the growth of specific phytoplankton (Prowse et al.,
2011). Landlocked lakes situated in coastal Antarctica typ-
ically undergo rapid species replacements during the active
phytoplankton growth season, resulting in changes in plank-
ton abundance (Izaguirre et al., 2021). For example, obser-
vations in Lake Limnopolar, Byers Peninsula, have demon-
strated that temperature-induced warming significantly alters
carbon flow, thereby impacting the abundance of plankton in
the lake ecosystem (Villaescusa et al., 2016).

Over the past decade, thanks to the development of satel-
lite remote sensing, there has been an increasing interest in
the detection of Antarctic lakes. Compared to manual dig-
itizing, an automated lake detection method is more suit-
able for larger-scale assessments because it can be automat-
ically applied to hundreds of satellite scenes and can avoid
user bias (Arthur et al., 2020). A number of methods have
been developed to map Antarctic supraglacial lakes, includ-
ing threshold-based lake classification methods (Fitzpatrick
et al., 2014; Moussavi et al., 2020), adaptive classification
methods (Johansson and Brown, 2013), and machine learn-
ing algorithms (Dirscherl et al., 2020, 2021a). Most previous
works mainly focus on the detection of supraglacial lakes
(Dirscherl et al., 2021a, b; Leeson et al., 2015; Li et al.,
2021; Moussavi et al., 2020). Currently, a semi-automated
algorithm has been developed for the detection of water bod-
ies in Greenland (Miles et al., 2017). This method utilized
Sentinel-1 synthetic aperture radar (SAR) and Landsat 8 Op-
erational Land Imager (OLI) imagery to monitor surface and
subsurface lakes on the Greenland Ice Sheet. As for Antarctic
landlocked lakes, field surveys served as the primary method
(Shevnina et al., 2021; Lecomte et al., 2016; Shevnina and
Kourzeneva, 2017; Harris and Burton, 2010). Due to the lim-
ited study area scope and non-uniformity of field surveys,
the spatiotemporal distribution of landlocked lakes across

Antarctica remains understudied. Unlike the identification
of supraglacial lakes, the detection of landlocked lakes re-
quires information on surrounding land covers. Optical re-
mote sensing images are disturbed by frequent clouds in
Antarctica, and SAR images have difficulty capturing the in-
formation on land covers around lakes. In addition, compared
to single-polarization SAR images, the utilization of multi-
polarization SAR images can improve the capability to dis-
tinguish LLOW from other ground objects (Zakhvatkina et
al., 2019). However, high-resolution ground-range-detected
(GRD) products only provide single polarization over the
Antarctic continent. High-resolution multi-polarization SAR
images are not available in Antarctica. Thus, to better under-
stand the dynamics of landlocked lakes in Antarctica, more
efficient and accurate methods are needed.

This study aims to apply a deep learning approach to detect
the landlocked lake open water (LLOW) area in Antarctica
by combining the Landsat 8–9 OLI and SAR imagery. Then,
we aim to investigate the variations in LLOW and their re-
lationship with environmental factors, such as temperature.
To the best of our knowledge, this study represents the first
attempt to map the open water area of landlocked lakes in
Antarctica using remote sensing data.

2 Research data

2.1 Study area

Four typical ice-free areas distributed on coastal Antarctica
were selected as study areas (Fig. 1). The Antarctic Penin-
sula has experienced the largest increases in near-surface
air temperature in the Southern Hemisphere during the past
few decades (Turner et al., 2016). As a representative site of
the Antarctic Peninsula, Clearwater Mesa (CWM; 64.03° S,
57.71° W) on James Ross Island was chosen due to its high
density of lakes, unique geomorphological setting, remote el-
evated position, and lack of previous human presence (Ro-
man et al., 2019). In East Antarctica, we selected two large
ice-free oases, the Larsemann Hills (LH; 69.41° S, 76.23° E)
and the Vestfold Hills (VH; 68.58° S, 78.18° E). VH are a
400 km2 area of ice-free rock (Seppelt and Broady, 1988),
while LH are the second-largest ice-free oasis along East
Antarctica with an area of about 50 km2 (Shi et al., 2018).
The Schirmacher Oasis (SO; 70.76° S, 11.65° E), which is
an east–west trending narrow strip, with an ice-free area of
about 35 km2 (Srivastava et al., 2013), was chosen to repre-
sent the higher-latitude areas of Antarctica. Since the SO is
located about 100 km from the coast, it can also represent the
inland area of Antarctica. In these areas, the water source of
landlocked lakes is mainly from the melting of seasonal snow
cover.
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Figure 1. Map of study areas. Satellite images based on Landsat 8 and Esri World Imagery scenes show examples of landlocked lake
occurrences. Scenes used for this figure include (a) Clearwater Mesa (CWM; Landsat 8; 2 February 2016), (b) Larsemann Hills (LH; Esri
World Imagery; 7 April 2022), (c) Vestfold Hills (VH; Esri World Imagery; 7 April 2022), and (d) Schirmacher Oasis (SO; Esri World
Imagery; 7 April 2022).

2.2 Dataset

The OLI on board the Landsat 8–9 satellite captures optical
information in the visible and near-infrared (VNIR), near-
infrared (NIR), and shortwave infrared (SWIR) portions, en-
abling the comprehensive assessment of diverse surface fea-
tures. The Landsat 8–9 OLI data are superior in the enhanced
radiometric capabilities and the expanded range of spectral
bands (Gorji et al., 2020). Leveraging the capabilities of
Landsat 8–9 OLI facilitates better monitoring of the LLOW.
Thus, a total of 79 optical images of Landsat 8–9 Collection
1 with 30 m resolution between January and April from 2014
to 2022 were obtained from the United States Geological
Survey (USGS) Global Visualization Viewer (GloVis) por-
tal (http://earthexplorer.usgs.gov/, last access: 2 May 2022).
The Landsat 8–9 satellite has a 16 d repeat cycle. However,
cloud cover frequently hampers the detection through visi-
ble bands within the study areas. Whenever thick layers of
clouds are present above our study areas in the Landsat im-
ages, those images are excluded from our study. As a result,
the time interval between usable Landsat images can vary.
In the Landsat OLI products, the optical bands 1–7 were uti-
lized to identify the land cover in the study areas.

The Sentinel-1 mission is dedicated to SAR imaging
and provides all-weather day-and-night imagery in C-band.
The SAR-based landscape detection offers a distinct ad-

vantage over optical approaches by mitigating the chal-
lenges posed by cloud interference. Consequently, it can of-
fer datasets for obtaining long-time-series monitoring of the
LLOW. Because of the advantages of SAR images, Sentinel-
1 datasets have been widely used for Antarctic open wa-
ter and snowmelt detection studies (Bowden et al., 2006;
Liang et al., 2021; Dirscherl et al., 2021b). The European
Space Agency (ESA) facilitates access to various Sentinel-
1 products, including raw level-0 data, processed level-1
single-look complex (SLC) data, and level-1 ground-range-
detected (GRD) data. To accurately determine the peak dates
of landlocked lake area changes, the temporal resolution
of area measurements needs to be at the weekly or daily
timescale. Considering the high-temporal-resolution require-
ment of LLOW detection tasks, we used a total of 330 high-
resolution Sentinel-1 SAR images from the interferomet-
ric wide-swath (IW) GRD products with about 10 m pixel
space, which were acquired from the Alaska Satellite Facility
(ASF) (https://search.asf.alaska.edu/, last access: 23 Novem-
ber 2022). All Sentinel-1 images are from the descending
orbit in order to avoid geometric distortions and orthorec-
tification limitations (Wangchuk et al., 2019). These selected
Sentinel-1 images for CWM, LH, and VH span 2017 to 2021.
However, for SO, where Sentinel-1 images are unavailable
prior to 2019, only the images during 2020 and 2021 were
obtained. The revisit period of Sentinel-1 satellites is 12 d.

https://doi.org/10.5194/tc-18-5347-2024 The Cryosphere, 18, 5347–5364, 2024

http://earthexplorer.usgs.gov/
https://search.asf.alaska.edu/


5350 A. Jiang et al.: Mapping landlocked lakes in Antarctica

By utilizing both Sentinel-1A and Sentinel-1B images, we
obtained a shorter time interval of 6 d between consecutive
Sentinel-1 images. These GRD products play a critical role
in distinguishing the LLOW in the study areas.

Our dataset of wind speed for the four areas and daily-
mean near-surface temperatures for CWM and SO came
from the ERA5-Land dataset obtained from Google Earth
Engine (Muñoz Sabater, 2019). The daily-mean air tempera-
tures for LH and VH were derived from the weather stations
at Zhongshan Station (Ding et al., 2022) and Davis Station.
Hereafter, we use temperature to represent daily-mean air
temperature and daily-mean near-surface temperature. To fa-
cilitate terrain correction, we employed the Copernicus 90 m
global DEM data.

During the Antarctic summer, snow cover on lake sur-
faces undergoes melting, and consequently LLOW will be
present, which can easily be observed through remote sens-
ing techniques. The melting and freezing processes typically
occur between September and April. However, the identifi-
cation of LLOW is challenged by rising-temperature events
during September and December. These occasional tempera-
ture increases can trigger relatively high temperatures and in-
creased snow wetness. This wetness increase can reduce the
backscatter of the snow surface (Shokr and Dabboor, 2020).
These events lead to the lower backscatter of both snow and
snow-covered ice, resulting in similar backscatter character-
istics among ice, snow, and LLOW. During the melting pe-
riod of landlocked lakes, which in general spans September
to December, frozen landlocked lakes may be covered by
wet snow due to rising-temperature events, resulting in low
backscatter. Consequently, these frozen lakes are not LLOW
but are incorrectly identified as LLOW. During January to
April, the melted landlocked lakes have less snow cover and
are less affected by the rising-temperature events. Thus, the
identification of LLOW from January to April is much more
accurate compared to September to December. To evaluate
the influence of rising-temperature events from September to
December, we sampled pixels of open water, land ice layers,
and sea ice layers from several SAR images during this pe-
riod. We also sampled LLOW pixels in January as the refer-
ence for backscattering analysis. We found that the backscat-
ter of sampled land ice layers was as low as that of sampled
LLOW in January in our study areas (Supplement Table S1).
Consequently, our model cannot effectively distinguish be-
tween LLOW and ice layers in these images from September
to December. Our analysis focuses on the changes in LLOW
from January to April, when the identification accuracy is
relatively high.

To train and validate the U-Net and the random forest
(RF) models, we manually annotated ground truth labels
from Landsat 8–9 OLI images and Sentinel-1 images. For
the U-Net model, several Landsat images were selected, and
the pixels in the images were annotated as “open water”,
“ice”, and “rock” to serve as ground truth. To enhance the
classification capability of U-Net in various scales, the side

lengths of Landsat images ranged from 30 pixels to 200 pix-
els. We annotated 23 patches with 17 100 pixels for U-Net.
For the RF model, directly annotating the ground truth in
SAR images is challenging and time-consuming, primarily
due to their complex backscatter characteristics. Therefore,
we conducted a visual interpretation of Sentinel-1 images
with the assistance of Landsat images (Liang and Liu, 2020).
To ensure that the Landsat images represent the surface of
Sentinel-1 images, we selected the Landsat and Sentinel-1
images with the closest dates. Due to the limited availability
of cloud-free Landsat images, we used all cloud-free Land-
sat images from 2017 to 2021 to generate the sample “open
water” and “others”. In addition, to validate the accuracy of
LLOW identification, we also annotated these Sentinel-1 im-
ages as “LLOW” and “others”. We annotated 46 patches with
a size of 300× 300 to train the RF model and validate the
model accuracy. The 46 patches were randomly sampled at a
10 % ratio to generate a sample point set. These points were
then randomly divided into 80 % for training and 20 % for
testing to train and test the RF model. Additionally, we iden-
tified the LLOW with the 46 patches and then calculated the
accuracy, F1 score, and mean intersection over union (mIoU)
to evaluate the identification accuracy.

3 Lake open water identification

The automated detection workflow for LLOW can be di-
vided into three steps (Fig. 2): (1) pre-processing of Land-
sat and Sentinel input images, (2) open water identification,
and (3) post-processing of extracted open water to generate
the LLOW time series. To assess the accuracy of our LLOW
detection workflow, we conducted a comparison between the
identified LLOW and the labeled ground truth.

3.1 Pre-processing

Ensuring a consistent relative location of the study area
in each image enhances the comparability of the detected
LLOW within the study area across different images. To
achieve this, predefined rectangular boundaries were estab-
lished based on projected coordinates. We cropped images
to fit within these specific boundaries, thereby unifying the
relative location of the study area within the predefined
boundaries. For Landsat images, we utilized specified co-
ordinates to apply the resampling technique with a near-
est neighbor (NN) algorithm and perform image cropping.
For Sentinel-1 images, we performed orbital correction, ther-
mal noise removal, radiometric calibration, speckle filtering,
terrain correction, and decibel conversion on the Sentinel-1
level-1 GRD products using ESA’s Sentinel Application Plat-
form (SNAP) software. In addition, the incidence angles in
SAR images were also extracted using SNAP. The corrected
Sentinel-1 images were then reprojected and cropped to align
with the spatial extent of the cropped Landsat images.
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Figure 2. Workflow for detecting the landlocked lake open water (LLOW) in Antarctica.

It is necessary to expand the sample set using data aug-
mentation to prevent the network from overfitting. Conse-
quently, we augmented the annotated 23 sample images 20
times and obtained a total of 483 sample images. Our data
augmentation methods include mirroring, translation, and ro-
tation. Mirroring consists of three scenarios: vertical mirror-
ing, horizontal mirroring, and vertical and horizontal mir-
roring. The translation involved a four-way translation up to
1/10 of the side length. The range of the rotation angle was
0–360°. Any void pixels that arose after data augmentation
were filled by the reflecting adjacent image pixels. Among
the 483 sample images, 80 % were randomly assigned as the
training set and the remaining 20 % as the validation set.

The use of an overlap-tile strategy for splitting large im-
ages into smaller patches has proven to be effective in over-
coming GPU limitations (Ronneberger et al., 2015). Thus,
this strategy was employed before using Landsat images
in the U-Net. We sliced the input images into patches of
300× 300 pixels. There are many small LLOW areas dis-
tributed across the four study areas, especially in LH and VH;
however, the U-Net is not ideal for recognizing small-scale
open water. Therefore, we resampled the patches with NN
from 300×300 pixels to 1024×1024 pixels in order to mag-
nify the small open water area. After land-cover classifica-

tion using U-Net, we again resampled these classified results
of 1024×1024 pixels to 300×300 pixels with NN. To reduce
the border effect caused by U-Net (Dirscherl et al., 2021a),
we only kept the result of 250×250 pixels in the center of the
patch, while discarding the edge with a length of 25 pixels.

3.2 Open water identification

The U-Net neural network is a deep learning network for se-
mantic segmentation based on a fully convolutional network
(Ronneberger et al., 2015), which is faster to train due to its
context-based learning approach (Siddique et al., 2021). In
addition, it does not require the explicit specification of the
input image size to achieve end-to-end semantic segmenta-
tion. For LLOW detection, the U-Net network can effectively
fuse the spatial and spectral information. U-Net can process
the spectral information for land-cover classification and can
also consider the spatial contexts to effectively reduce the
interference of shadows and clouds. Thus, we implemented
a U-Net model to detect open water in Landsat images and
classify the pixels into three types of land cover: ice, open
water, and rock. The backscattering distributions of ice and
rock are similar in single horizontal–horizontal (HH) polar-
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ization, so we classified the pixels of Sentinel-1 images into
only two types: open water and others.

U-Net consists of an encoder and a decoder (Fig. 3). The
encoder and decoder are both mainly composed of double-
convolutional (double-conv) layers and are used to enhance
model depth (Wu et al., 2020). In the double-conv layers, the
batch normalization layer and the leaky rectified linear unit
(LeakyReLU) layer are added to re-correct the data distribu-
tion and achieve nonlinear computation. To avoid gradient
vanishing and facilitate the deepening of the U-Net model
network, we added a residual layer between the double-conv
layers.

Open water bodies exhibit a smooth surface, resulting
in weaker backscatters, while areas with rougher surfaces
generate stronger backscatters. The backscatter of the sur-
face varies across different incidence angles of SAR images
(Wakabayashi et al., 2019). Thus, open water and other fea-
tures can be distinguished based on backscatter and incidence
angles. The RF model, a nonlinear modeling tool, can accu-
rately predict open water and has a high tolerance of noise
and outliers (Huang et al., 2021). We established the RF
model for each study area to identify the open water in SAR
images according to backscatter and incidence angles.

3.3 Post-processing

A landlocked lake is a water region surrounded by a rock re-
gion. Not all open water pixels extracted through the open
water identification models are LLOW areas, such as glacial
rivers and melted water from coastal glaciers. Moreover,
LLOW may be indirectly surrounded by rocks. For example,
LLOW may be enclosed by ice, which in turn is surrounded
by rocks. In our classified results, a classified Landsat im-
age consists of a connected non-rock area and interspersed
rock areas containing LLOW. The breadth-first search (BFS)
algorithm has been proven to be effective in removing the
connected areas (Silvela and Portillo, 2001). Thus, the BFS
algorithm can effectively eliminate the connected non-rock
area while retaining the rock areas. BFS simulates the spread-
ing of seawater in the Antarctic summer and leaves only
rock areas where stable LLOW may exist. Supraglacial lakes,
epiglacial lakes, and seawater are all removed during BFS.
Finally, all the remaining open water pixels derived from
Landsat images are extracted and marked as LLOW.

The use of Landsat images in the visible and near-infrared
bands is significantly hindered by cloud interference, espe-
cially along the Antarctic coast. As mentioned in Sect. 2.2,
within the four study areas over 2014–2022, a total of only
79 Landsat images are suitable for LLOW detection. There-
fore, the number of Landsat images with low cloud cover in
the study areas is insufficient for our time series analysis. To
improve the temporal resolution of LLOW time series, we
used Sentinel-1 SAR images as supplements. SAR images
are not affected by clouds but have limited spectral infor-
mation and lack accuracy in distinguishing ground objects

among open water, rocks, and ice. The open water identified
solely from SAR imagery often includes substantial amounts
of mountain shadows and numbers of lakes that were not sur-
rounded by rocks. Without spatial information on rocks and
ice, the BFS algorithm is invalid for extracting LLOW from
open water. Consequently, SAR images enable the identifi-
cation of only open water instead of LLOW. Using data from
either Landsat 8–9 or Sentinel-1 alone cannot precisely cap-
ture the temporal variation in LLOW. However, combining
the maximum lake area derived from Landsat with the re-
sults obtained from SAR images provides a better approach
to achieving higher temporal resolution and more accurate
results (Miles et al., 2017). Thus, for each study area, we
defined the pixels that are classified as LLOW in multiple
Landsat results as potential LLOW. Specifically, if a pixel
was identified as LLOW two or more times from 2014 to
2022, it was considered a potential LLOW pixel. We aggre-
gated all LLOW distribution images and obtained one poten-
tial LLOW area for each study area. According to the anno-
tated sample set, some LLOW areas are not within the po-
tential LLOW area range. To leverage the resolution advan-
tage of Sentinel-1 and its potential for LLOW identification,
we established a buffer zone for the potential LLOW area
(Wangchuk et al., 2019). As shown in Fig. S1, the rate of
decrease in the ignored LLOW area diminishes as the buffer
radius increases. We selected a buffer radius of 20 m, where
the reduction in LLOW area is most significant, and resam-
pled the potential LLOW area into a 10 m resolution. After
that, we combined the Landsat and Sentinel images, using
the potential extents of LLOW and the open water derived
from SAR, to generate the long-term time series of LLOW.

Because previous cropped images had wide rectangular
boundaries, they still retained large non-research areas. To
ensure consistency of the extracted LLOW in study areas,
we delineated the more detailed coordinate boundaries ac-
cording to the irregular shapes of the study area. The detailed
boundaries were then used to narrow down potential LLOW
regions. It is important to note that identifying LLOW in
SAR images can be challenging due to various factors, such
as strong wind, floating thin ice layers, and sensor speckle
noise (Dirscherl et al., 2021a). These factors can impact the
backscatter of LLOW and make accurate detection of LLOW
difficult. For instance, congealed ice generates large bub-
bles, and the bubbles entrained within the ice layer enhance
backscatters (Hirose et al., 2008). Consequently, LLOW cov-
ered by only a few floating ice layers or affected by strong
winds may exhibit higher backscatter coefficients and cannot
be detected by our threshold segmentation model. Instances
of strong winds and floating ice have temporary effects on
the entire study area and result in significant underestima-
tion of LLOW. Therefore, we discarded the underestimated
LLOW results and generated a total of 285 long-term time
series images of LLOW. The LLOW time series with com-
bined Landsat and Sentinel images have a spatial resolution
of 10 m and a time resolution of ∼ 6 d.
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Figure 3. The structure of U-Net and the double-conv layer. The numbers on the left of the double-conv blocks represent the image sizes.
The numbers above the double-conv blocks represent the feature channels after each operation. Double-conv blocks are able to double the
feature channels in the encoder, while they halve the feature channels in the decoder.

3.4 Accuracy assessment

The accuracy of classification models is estimated by a con-
fusion matrix, accuracy, an F1 score, and a mean IoU. The
formulas are presented in Eqs. (1), (2), (3), (4), and (5):

Accuracy=
TP
TS

, (1)

F1 = 2×
Precision×Recall
Precision+Recal

, (2)

Precision=
TP

TP+FP
, (3)

Recall=
TP

TP+FN
, (4)

mIoU=
1
N

∑N

i=1

TPi

TPi +FPi +FNi

, (5)

where N is the number of categories, TS is the total number
of samples, TP is the number of results classified as true pos-
itive, FP is the number of results classified as false positive,
TN is the number of results classified as true negative, and
FN is the number of results classified as false negative in the
confusion matrix.

4 Results

4.1 Classification results

Figure 4 illustrates the process and intermediate results in-
volved in the LLOW identification. The Landsat images were
accurately classified into open water, ice, and rocks through
the use of U-Net (Fig. 4e, f, g, and h). Compared to the im-
ages of the false color band combination, the results derived
from threshold segmentation contained a large number of er-
rors (Fig. 4m, n, o, and p). For example, smooth ice layers
were misidentified as open water in Fig. 4p. However, we
obtained information on potential LLOW areas through the
results of U-Net. To rectify these errors, masking of poten-
tial LLOW areas was employed (Fig. 4q, r, s, and t), signifi-
cantly improving the accuracy of LLOW identification based
on SAR images.

Figure 5 shows the classification results obtained by U-Net
for extracts from all Landsat test scenes. The U-Net network
has generally shown good recognition performance across
various terrains in all four study areas. Specifically, it effec-
tively mitigates the impacts of diverse brightness and con-
trast levels in VH (Fig. 5a and b). Moreover, it accurately
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Figure 4. The intermediate images and results in the workflow of landlocked lake open water (LLOW) identification. The first row displays
the Landsat images by the false color band combination 7–4–3 (RGB). The white regions in these images represent the void data in band 7,
4, or 3. The second row exhibits the classification results of U-Net. The third, fourth, and fifth rows represent the Sentinel images, the results
of threshold segmentation, and the results of detected LLOW, respectively.

distinguishes mountain shadows from water bodies in LH
without any misclassification (Fig. 5c and d). Notably, in
SO, the presence of ice undulations causes numerous shad-
ows. U-Net correctly identifies these shadows as ice (Fig. 5e),
which can be a challenging task when using threshold meth-
ods. In addition, in both SO and CWM, there are partially
melted lakes primarily composed of ice, which appears gray-
ish (Fig. 5e and f). U-Net successfully identifies these lakes
as ice surfaces, preventing any overestimation of open water
areas.

Figure 6 displays LLOW results obtained through the fu-
sion of Landsat and SAR images. A comparison within each
row highlights differences between varied areas. For exam-
ple, SO, the highest-latitude area, appears completely frozen
in April (Fig. 6h), while the lower-latitude areas like CWM
still exhibit LLOW during the same month (Fig. 6e). By con-
trasting the upper row with the lower row, temporal differ-
ences can be observed within the same area, where lakes
show larger open water areas in the relatively warmer month
of February (e.g., Fig. 6d and h).
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Figure 5. Comparison between the Landsat images and auto-generated classification examples of U-Net. The upper row displays Landsat 8
images, using the false color band combination 7–4–3 (RGB) to enhance feature distinction. The lower row shows the corresponding auto-
generated classification results of U-Net. Panels (a) and (b) represent the Vestfold Hills (VH), panels (c) and (d) represent the Larsemann
Hills (LH), panel (e) represents Schirmacher Oasis (SO), and panel (f) represents Clearwater Mesa (CWM).

Figure 6. The landlocked lake open water (LLOW) area changes over time obtained through the fusion of Landsat and SAR images. The
upper row shows the LLOW results in February, with the lower row representing the LLOW results in April. Panels (a) and (e) represent
Clearwater Mesa (CWM), panels (b) and (f) represent the Larsemann Hills (LH), panels (c) and (g) represent the Vestfold Hills (VH), and
panels (d) and (h) represent Schirmacher Oasis (SO).

4.2 Model validation

We compared the accuracy of LLOW identification between
results obtained before applying the potential LLOW area
mask and those obtained after applying the mask in LH

(Fig. 7). Prior to applying the mask, the RF model identified
a large number of false LLOW instances in low-backscatter
pixels. The LLOW identification only based on SAR images
resulted in a mIoU value of only 0.29 when compared to the
ground truth labels. However, the masking process based on
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potential LLOW areas successfully reduced the majority of
false LLOW instances and improved the mIoU value to 0.74.
The increase in the mIoU suggests that masking using po-
tential LLOW areas can compensate for the lack of spectral
information in Sentinel-1 images, thereby enhancing the ac-
curacy of the LLOW identification model.

Our land-cover classification model, based on U-Net, has
achieved average accuracy, F1 score, and mIoU values of
0.93, 0.90, and 0.82, respectively, on the test datasets, in-
dicating reliable and accurate classification of land cover.
The LLOW identification model yielded mean accuracy, F1
score, and mIoU values of 0.94, 0.89, and 0.81, respectively,
for four study areas on the test set. We further validated the
model performance on four test patches (Fig. 8). The LLOW
identification model yielded F1 scores ranging from 0.88 to
0.95 and mIoU ranging from 0.81 to 0.90. Among the four ar-
eas, SO exhibited the highest mIoU value of 0.90, suggesting
the most similar spatial distribution between the predicted
LLOW and the ground truth. LH showed the lowest mIoU
of 0.81, while CWM and VH showed mIoU values of 0.82
and 0.83, respectively. In VH and SO, the locations and areas
of LLOW were well recognized (Fig. 8k and l). In LH, the
spatial distribution of LLOW was also accurately detected,
although there were some inconsistencies in the boundaries
between the ground truth and the predicted lakes (Fig. 8j).
In addition, in CWM, the model successfully identified all
LLOW areas, but it misclassified the areas covered by float-
ing ice with low backscatter (Fig. 8a) as LLOW. Overall, our
model demonstrated proficiency in detecting LLOW areas,
providing reliable information on the spatial distribution and
extent of LLOW.

4.3 Seasonal variations in LLOW area

The study focused on changes in LLOW from January to
April across four different areas in Antarctica. Figure 9
presents the spatial and temporal variations in the LLOW
area during the study period. Our results indicate an ini-
tial increase followed by a decreasing trend in the overall
LLOW area. Notably, the occurrence and duration of max-
imum LLOW areas varied among the study areas, with the
highest value observed in early January in CWM, while SO
in inland Antarctica experienced its peak LLOW area at the
end of January, lasting for less than two satellite revisit cy-
cles (12 d). The rate of decrease in LLOW area slowed down
from late March, approaching a relatively stable low-value
stage. By April, the LLOW areas had reduced to approxi-
mately 20 % of their maximum value for CWM, while LH
and SO at higher latitudes decreased to 10 % of their maxi-
mum or approached zero.

In addition to seasonal variations, interannual variations
in LLOW areas were observed. For example, LH exhibited
significant variation in LLOW areas in different years, with
the maximum recorded in 2018 being only 60 % of that in
2019 (Fig. 9b). Furthermore, CWM experienced a signifi-

cant freezing and thawing process in March 2017, when the
LLOW area dropped to less than 50 % of its maximum before
subsequently rebounding to the maximum value (Fig. 9a).

5 Discussion

The changes in LLOW areas can be categorized into two dis-
tinct phases: the growth phase and the decline phase (Fig. 9).
The growth phase spans the initiation of our data collection
until the maximum LLOW area is reached, while the decline
phase extends from the maximum area to the minimum area
after reaching the peak. In the following sections, we discuss
these two phases separately.

5.1 Growth phase of LLOW area

With the onset of austral summer, lake surface ice and snow
melt, resulting in the generation of meltwater, which con-
tributes to an increase in the LLOW area. This process is
closely associated with the changes in temperature, espe-
cially the occurrence of days with temperatures exceeding
0 °C (Braithwaite and Hughes, 2022; Li et al., 2021; Wake
and Marshall, 2015; Maisincho et al., 2014; Barrand et al.,
2013; Johansson et al., 2013). Thus, we evaluate the positive
degree day (PDD) sum, which represents the cumulative sum
of temperatures above the melting point during a specific pe-
riod (Cogley et al., 2011). In this study, the PDD for a given
day is calculated as the sum of temperatures exceeding 0 °C
from 1 November of the previous year until the current day.
It is important to note that we only analyzed the PDD for
LH and VH in this study, considering that automatic weather
station (AWS) data are only available at these two sites. The
PDD is calculated using Eq. (6):

PDDn =

n∑
i=0

{
Ti, Ti > 0
0, Ti ≤ 0.

(6)

Here, the positive degree day sum prior to the day n is de-
noted as PDDn (°C), and Ti represents the station mean tem-
perature (°C) measured on day i. Figure 10 illustrates the re-
lationship between PDD and LLOW area change over time in
LH and VH. During the growth phase of the LLOW area, the
average R2 value is around 0.9, indicating that PDD can ex-
plain ∼ 90 % of the increase in LLOW area. However, there
was a notable exception in LH in 2019, characterized by an
unusual cooling event from middle to late January. This event
persisted for several consecutive days with temperatures be-
low 0 °C, resulting in a decline in the LLOW area. In addi-
tion, since the LLOW area had already reached its maximum
at the beginning of January in LH in 2018, the growth phase
was short and less discernible, leading to a lack of significant
correlation between PDD and the LLOW area.

PDDs can also influence the year-to-year fluctuations in
LLOW area, but the relationship between changes in PDD
and LLOW area is nonlinear. For instance, the maximum
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Figure 7. Accuracy comparison of LLOW identification before and after masking in LH. The background images are displayed from the
false color combination of the 7–4–3 bands. The result before masking was derived from threshold segmentation.

Figure 8. Validation of the landlocked lake identification model in the testing dataset for four areas. The four columns of images are validation
images for CWM, LH, VH, and SO. The first, second, and third rows are ground truth, predicted, and spatial error images, respectively. The
background images are displayed from the false color combination of the 7–4–3 bands. The spatial distribution of classification errors is
obtained from overlapping ground truth and predicted images.
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Figure 9. The landlocked lake open water (LLOW) area changes in CWM (a), LH (b), VH (c), and SO (d) from January to April. The red
interval represents the growth phase of the LLOW area, while the blue interval represents the decline phase of the LLOW area.

PDD in 2017 was more than 2 times higher than that in 2018
in LH, yet the maximum area increased by 50 % (Fig. 10a
and b). The maximum area of VH remained relatively sta-
ble over the 5 years. When PDD reaches a certain threshold,
all LLOW areas have already melted, so further increases in
PDD do not lead to changes in LLOW area. Therefore, across
different years, significant differences in PDD can result in
minimal variation in LLOW areas. Based on this, it can be in-
ferred that the threshold for PDD in LH is likely between 25
and 35 °C. When PDD exceeds 35 °C, the maximum LLOW
area stays relatively invariant at ∼ 0.5 km2.

5.2 Decline phase of LLOW area

Cumulation of successive negative air temperature days con-
tributes to the lowering of water temperature and the com-
mencement of the water freezing process, i.e., the forma-
tion and longer-term persistence of ice cover (Graf and Tom-
czyk, 2018). Therefore, we calculate the negative degree day
(NDD) sum by using Eq. (7), which represents the cumula-
tive sum of temperatures below the melting point during a

specific period.

NDDn =

n∑
i=0

{
Ti, Ti < 0
0, Ti ≥ 0.

(7)

Here, the negative degree day sum prior to the day n is de-
noted as NDDn (°C), and Ti represents the station mean tem-
perature (°C) measured on day i. The relationship between
the LLOW area and NDD in each area during the freezing
season is significant (Table 1). The calculation of the R2

value was based on a linear fit of the NDD and the LLOW
area, ranging from the maximum LLOW area to the mini-
mum. In all four study areas, the R2 values were found to
be greater than 0.5. This indicates a strong response of the
LLOW area to NDD changes during the decline phase of the
LLOW area.

The relationship between the LLOW area and NDD in
CWM in 2017 exhibited a relatively low R2 value (0.52).
During that year, sharp declines and subsequent rebounds of
the LLOW area were observed (Fig. 11). As temperatures
plummeted, the LLOW area decreased rapidly, nearly reach-
ing its nadir simultaneously. Conversely, with rising tem-
peratures, the LLOW area responded promptly, highlighting
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Figure 10. The positive degree day (PDD) sums and landlocked lake open water (LLOW) area change during the 2017 (a), 2018 (b), 2019
(c), 2020 (d), and 2021 (e) melt seasons in the Larsemann Hills (LH) and during the 2017 (f), 2018 (g), 2019 (h), 2020 (i), and 2021 (j) melt
seasons in the Vestfold Hills (VH). In the figure, the red interval represents the growth phase of the LLOW area. The R2 value in the figure
is calculated from a linear fit of PDD and LLOW area during the growth phase.
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Table 1. R2 of the LLOW area and negative degree days in the
freezing phase between 2017 and 2021.

Year CWM LH VH SO

2017 0.52∗∗ 0.95∗∗ 0.72∗∗

2018 0.84∗∗ 0.94∗∗ 0.85∗∗

2019 0.73∗∗ 0.75∗∗ 0.82∗∗

2020 0.88∗∗ 0.85∗∗ 0.78∗∗ 0.78∗∗

2021 0.57∗∗ 0.59∗∗ 0.86∗∗ 0.97∗∗

Average 0.71 0.82 0.81 0.88

∗∗ p < 0.01.

Figure 11. The temperature and the landlocked lake open water
(LLOW) area in CWM in 2017. The yellow interval represents the
declines and rebounds of lake area and temperature.

temperature’s predominant influence on fluctuations in the
LLOW area. Therefore, using NDD instead of temperature
to explain variations in the LLOW area during the freezing
phase may overlook these instances of temperature-driven re-
bounds during the decline phase.

During the freezing stage, the depth of a lake will affect
the time of lake-ice formation (Kirillin et al., 2012), which
in turn affects the reduction in LLOW area. Shallower lakes
tend to lose heat more quickly, leading to earlier ice cover
formation. In contrast, deeper lakes possess greater heat ca-
pacity, resulting in a slower cooling process and delayed
ice formation. For instance, VH and LH are close to each
other with similar temperature conditions, so the LLOW area
should begin to decrease around the same time. However, in
LH, the LLOW area started to decrease continuously from
late January, approximately 1 to 2 weeks earlier than in VH.
This discrepancy may be attributed to the fact that the aver-
age lake depth in VH is ∼ 30 m, with some lakes exceeding
∼ 100 m in depth, whereas LH consist of lakes with an aver-
age depth of 10 m (Shevnina and Kourzeneva, 2017; Harris
and Burton, 2010).

5.3 Model limitation

The backscatter of LLOW is mainly disturbed by two types
of factors: the first is external factors, such as wind speed and
direction, SAR image incidence angles, and mountain shad-
ows; the second is the LLOW surface cover, such as float-
ing ice and snow. Firstly, when the open water is disturbed
by wind, the backscatter increases. Additionally, the inci-
dence angles and topography also affect the backscatter of
open water. Because the steep terrain yields mountain shad-
ows and identification errors (Dirscherl et al., 2021a), we cal-
culated the slopes from a DEM to evaluate the influence of
topography. To evaluate the influence of wind, incidence an-
gles, and topography, we sampled within the LLOW areas
of the four study areas between 2017 and 2021 from the 46
sample patches (Figs. S3, S4, S5, and S6). However, there
is no obvious linear correlation between LLOW backscatter
and wind, incidence angles, or slope. Moreover, we added
the wind speed, incidence angles, and slope as input fea-
tures for the RF model in open water identification. How-
ever, only incidence angle yields a significant feature impor-
tance. This indicates that the incidence angle is much more
important for open water detection compared to wind speed
and slope. Thus, our RF model did not consider the wind
features and slope. Secondly, unstable factors such as float-
ing ice layers led to fluctuations of the LLOW area. The
backscatter of LLOW can be influenced by the floating ice
layer and snow covering open water, making accurate iden-
tification challenging. By comparing our spatial errors with
input SAR images, we found that the floating ice layers di-
rectly caused the false positive errors (Fig. 8i). Furthermore,
the presence of a blue ice layer with low backscatters can lead
to overestimation of LLOW (Table S1). Despite our efforts to
remove significantly underestimated results, as mentioned in
Sect. 3.3, these factors remain the causes of fluctuations in
the LLOW area time series.

Although the LLOW identification model has these limita-
tions, our findings demonstrate its strong performance across
the four study areas. The deep learning approach, namely U-
Net, enhanced model robustness across diverse environmen-
tal conditions such as various surrounding features, cloud
covers, lighting conditions, and mountain shadows. Using
the RF model to identify open water in SAR images can
also overcome unstable factors such as cloud cover, pro-
ducing a stable high-resolution time series of open water
areas. Therefore, our method has the potential to perform
well in other regions, such as identifying the other land-
locked lakes in Antarctica or detecting numerous landlocked
lakes along the coastal areas of Greenland. Additionally,
our proposed method for distinguishing between seawater,
supraglacial lakes, and landlocked lakes can be applied to
the identification of thermokarst lakes, such as the numerous
thermokarst lakes on the Alaska North Slope. The BFS algo-
rithm can distinguish between open rivers and closed lakes
on plain permafrost. By utilizing BFS and the fusion of Land-
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sat and Sentinel-1 images, we can differentiate thermokarst
lakes and river drainages within an image. Consequently,
the growth of thermokarst lakes and their integration into
river systems can also be detected. Additionally, by com-
bining Landsat and Sentinel-1 images, we overcame the se-
vere cloud interference in the optical images in the Antarc-
tic, significantly improving the detection frequency of land-
locked lakes. We also addressed the challenge of obtaining
surrounding land-cover information on water in SAR images,
thereby successfully generating the high-resolution LLOW
products. By providing reliable long-term LLOW time series
products, our model contributes to a deeper understanding of
the dynamic changes in LLOW under a changing climate.

6 Conclusion

We proposed an automated detection workflow for LLOW
based on deep learning and multi-source satellite images. By
utilizing the BFS algorithm and combining Landsat 8–9 OLI
and Sentinel-1 SAR images, we successfully distinguished
the LLOW from other open waters, overcoming the limita-
tion of models based solely on optical or SAR images. In our
model accuracy assessment, our U-Net model and LLOW
identification model achieved average F1 score values of 0.90
and 0.89, respectively, on the testing datasets. Our model ac-
curately recognizes both large-scale and small-scale LLOW
in the testing images. Applying our LLOW identification
model to four typical coastal Antarctic areas, we mitigated
cloud and shadow interference and generated high-resolution
spatiotemporal LLOW area time series from January to April
between 2017 and 2021.

The seasonal changes in LLOW area can be categorized
into two phases: the growth phase and the decline phase. The
growth phase includes the period from the initiation of our
data collection until the maximum LLOW area is reached,
while the decline phase extends from the maximum area to
the minimum area after reaching the peak. We found that dur-
ing expansion of LLOW area, ∼ 90 % of the changes are ex-
plained by PDDs. PDDs can also influence the interannual
variations in LLOW area, but the changes in PDD and LLOW
area are not proportional. Furthermore, during the decline
phase, NDDs accounted for more than 50 % of changes in
LLOW area. Our model provides long-term LLOW time se-
ries products that help us better understand how lakes change
under a changing climate.
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