Articles | Volume 18, issue 7
https://doi.org/10.5194/tc-18-3159-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-3159-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Two-dimensional numerical simulations of mixing under ice keels
Sam De Abreu
CORRESPONDING AUTHOR
Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada
Rosalie M. Cormier
Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada
Mikhail G. Schee
Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada
Varvara E. Zemskova
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331-5503, USA
Erica Rosenblum
CORRESPONDING AUTHOR
Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
Nicolas Grisouard
Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada
Related authors
No articles found.
Fangchen Liu and Varvara E. Zemskova
EGUsphere, https://doi.org/10.31223/X51N08, https://doi.org/10.31223/X51N08, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
When sea ice moves along the ocean surface, it can generate waves below the ocean surface. Because these processes occur at spatial and temporal scales smaller than those captured by climate models, they need to be approximated. Here, we (1) find the relevant value ranges and spatial distributions of the parameters that describe this problem to improve this approximation and (2) examine the wave generation and turbulence using numerical experiments for a selected set of parameter values.
Cited articles
Baines, P. G.: A unified description of two-layer flow over topography, J. Fluid Mech., 146, 127–167, https://doi.org/10.1017/S0022112084001798, 1984. a, b, c, d
Barthélemy, A., Fichefet, T., Goosse, H., and Madec, G.: Modeling the interplay between sea ice formation and the oceanic mixed layer: Limitations of simple brine rejection parameterizations, Ocean Model., 86, 141–152, https://doi.org/10.1016/j.ocemod.2014.12.009, 2015. a
Bouffard, D. and Boegman, L.: A diapycnal diffusivity model for stratified environmental flows, Dynam. Atmos. Oceans, 61–62, 14–34, https://doi.org/10.1016/j.dynatmoce.2013.02.002, 2013. a
Brenner, S., Rainville, L., Thomson, J., Cole, S., and Lee, C.: Comparing Observations and Parameterizations of Ice-Ocean Drag Through an Annual Cycle Across the Beaufort Sea, J. Geophys. Res.-Oceans, 126, e2020JC016977, https://doi.org/10.1029/2020JC016977, 2021. a
Brown, K. A., Holding, J. M., and Carmack, E. C.: Understanding Regional and Seasonal Variability Is Key to Gaining a Pan-Arctic Perspective on Arctic Ocean Freshening, Frontiers in Marine Science, 7, 1–25, https://doi.org/10.3389/fmars.2020.00606, 2020. a
Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., and Brown, B. P.: Dedalus: A flexible framework for numerical simulations with spectral methods, Physical Review Research, 2, 023068, https://doi.org/10.1103/PhysRevResearch.2.023068, 2020. a
Carmack, E., Polyakov, I., Padman, L., Fer, I., Hunke, E., Hutchings, J., Jackson, J., Kelley, D., Kwok, R., Layton, C., Melling, H., Perovich, D., Persson, O., Ruddick, B., Timmermans, M.-L., Toole, J., Ross, T., Vavrus, S., and Winsor, P.: Toward Quantifying the Increasing Role of Oceanic Heat in Sea Ice Loss in the New Arctic, B. Am. Meteorol. Soc., 96, 2079–2105, https://doi.org/10.1175/BAMS-D-13-00177.1, 2015. a
Carr, M., Sutherland, P., Haase, A., Evers, K., Fer, I., Jensen, A., Kalisch, H., Berntsen, J., Părău, E., Thiem, Ø., and Davies, P. A.: Laboratory Experiments on Internal Solitary Waves in Ice-Covered Waters, Geophys. Res. Lett., 46, 12230–12238, https://doi.org/10.1029/2019GL084710, 2019. a
Cole, S. T., Toole, J. M., Lele, R., Timmermans, M.-L., Gallaher, S. G., Stanton, T. P., Shaw, W. J., Hwang, B., Maksym, T., Wilkinson, J. P., Ortiz, M., Graber, H., Rainville, L., Petty, A. A., Farrel, S. L., Richter-Menge, J. A., and Haas, C.: Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer, Elementa, 5, 55, https://doi.org/10.1525/elementa.241, 2017. a, b, c
Cole, S. T., Toole, J. M., Rainville, L., and Lee, C. M.: Internal Waves in the Arctic: Influence of Ice Concentration, Ice Roughness, and Surface Layer Stratification, J. Geophys. Res.-Oceans, 123, 5571–5586, https://doi.org/10.1029/2018JC014096, 2018. a
Cummins, P. F.: Numerical Simulations of Upstream Bores and Solitons in a Two-Layer Flow past an Obstacle, J. Phys. Oceanogr., 25, 1504–1515, https://doi.org/10.1175/1520-0485(1995)025<1504:NSOUBA>2.0.CO;2, 1995. a
De Abreu, S., Cormier, R. M., Schee, M. G., Zemskova, V. E., Rosenblum, E., and Grisouard, N.: Two-dimensional Numerical Simulations of Mixing under Ice Keels Python Code (1.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.8170312, 2023a. a
De Abreu, S., Cormier, R. M., Schee, M. G., Zemskova, V. E., Rosenblum, E., and Grisouard, N.: Two-dimensional Numerical Simulations of Mixing under Ice Keels Videos, Zenodo [video], https://doi.org/10.5281/zenodo.8169338, 2023b. a
De Abreu, S., Cormier, R. M., Schee, M. M., Zemskova, V. E., Rosenblum, E., and Grisouard, N.: Two-dimensional Numerical Simulations of Mixing under Ice Keels Data, Zenodo [data set], https://doi.org/10.5281/zenodo.12627827, 2024. a
Dosser, H. V., Chanona, M., Waterman, S., Shibley, N. C., and Timmermans, M.: Changes in Internal Wave-Driven Mixing Across the Arctic Ocean: Finescale Estimates From an 18-Year Pan-Arctic Record, Geophys. Res. Lett., 48, e2020GL091747, https://doi.org/10.1029/2020GL091747, 2021. a
Fer, I. and Sundfjord, A.: Observations of upper ocean boundary layer dynamics in the marginal ice zone, J. Geophys. Res., 112, C04012, https://doi.org/10.1029/2005JC003428, 2007. a, b
Fer, I., Baumann, T. M., Koenig, Z., Muilwijk, M., and Tippenhauer, S.: Upper-Ocean Turbulence Structure and Ocean-Ice Drag Coefficient Estimates Using an Ascending Microstructure Profiler During the MOSAiC Drift, J. Geophys. Res.-Oceans, 127, e2022JC018751, https://doi.org/10.1029/2022JC018751, 2022. a, b
Fine, E. C. and Cole, S. T.: Decadal Observations of Internal Wave Energy, Shear, and Mixing in the Western Arctic Ocean, J. Geophys. Res.-Oceans, 127, e2021JC018056, https://doi.org/10.1029/2021jc018056, 2022. a
Fofonoff, N. and Millard, R.: Algorithms for Computation of Fundamental Properties of Seawater, UNESCO Tech. Pap. Mar. Sci., 44, https://doi.org/10.25607/OBP-1450, 1983. a
Guthrie, J. D. and Morison, J. H.: Not Just Sea Ice: Other Factors Important to Near-inertial Wave Generation in the Arctic Ocean, Geophys. Res. Lett., 48, e2020GL090508, https://doi.org/10.1029/2020GL090508, 2021. a
Helfrich, K. R. and Melville, W. K.: Long Nonlinear Internal Waves, Annu. Rev. Fluid Mech., 38, 395–425, https://doi.org/10.1146/annurev.fluid.38.050304.092129, 2006. a
Hester, E. W., McConnochie, C. D., Cenedese, C., Couston, L.-A., and Vasil, G.: Aspect ratio affects iceberg melting, Physical Review Fluids, 6, 023802, https://doi.org/10.1103/PhysRevFluids.6.023802, 2021. a, b, c
Holland, D. M., Rosales, R. R., Stefanica, D., and Tabak, E. G.: Internal hydraulic jumps and mixing in two-layer flows, J. Fluid Mech., 470, 63–83, https://doi.org/10.1017/S002211200200188X, 2002. a
Holloway, G., Dupont, F., Golubeva, E., Häkkinen, S., Hunke, E., Jin, M., Karcher, M., Kauker, F., Maltrud, M., Morales Maqueda, M. A., Maslowski, W., Platov, G., Stark, D., Steele, M., Suzuki, T., Wang, J., and Zhang, J.: Water properties and circulation in Arctic Ocean models, J. Geophys. Res.-Oceans, 112, 1–18, https://doi.org/10.1029/2006JC003642, 2007. a
Houghton, D. D. and Kasahara, A.: Nonlinear shallow fluid flow over an isolated ridge, Commun. Pure Appl. Math., 21, 1–23, https://doi.org/10.1002/cpa.3160210103, 1968. a
Hutchings, J. K. and Faber, M. K.: Sea-Ice Morphology Change in the Canada Basin Summer: 2006–2015 Ship Observations Compared to Observations From the 1960s to the Early 1990s, Front. Earth Sci., 6, 2006–2015, https://doi.org/10.3389/feart.2018.00123, 2018. a, b
Ilicak, M., Drange, H., Wang, Q., Gerdes, R., Aksenov, Y., Bailey, D., Bentsen, M., Biastoch, A., Bozec, A., Böning, C., Cassou, C., Chassignet, E., Coward, A. C., Curry, B., Danabasoglu, G., Danilov, S., Fernandez, E., Fogli, P. G., Fujii, Y., Griffies, S. M., Iovino, D., Jahn, A., Jung, T., Large, W. G., Lee, C., Lique, C., Lu, J., Masina, S., George Nurser, A. J., Roth, C., Salas y Mélia, D., Samuels, B. L., Spence, P., Tsujino, H., Valcke, S., Voldoire, A., Wang, X., and Yeager, S. G.: An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes, Ocean Model., 100, 141–161, https://doi.org/10.1016/j.ocemod.2016.02.004, 2016. a
Jin, M., Hutchings, J., Kawaguchi, Y., and Kikuchi, T.: Ocean mixing with lead-dependent subgrid scale brine rejection parameterization in a climate model, J. Ocean U. China, 11, 473–480, https://doi.org/10.1007/s11802-012-2094-4, 2012. a
Kwok, R.: Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018), Environ. Res. Lett., 13, 105005, https://doi.org/10.1088/1748-9326/aae3ec, 2018. a, b
Kwok, R. and Rothrock, D. A.: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008, Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2009GL039035, 2009. a
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363, https://doi.org/10.1029/94RG01872, 1994. a
Lavoie, J., Tremblay, B., and Rosenblum, E.: Canada Basin hydrography in the CESM-LE and observations: implications for vertical ocean heat transport in a transitioning sea ice cover, ESS Open Archive, 1–34, https://doi.org/10.1002/essoar.10507467.1, 2021. a
Lawrence, G. A. and Armi, L.: Stationary internal hydraulic jumps, J. Fluid Mech., 936, A25, https://doi.org/10.1017/jfm.2022.74, 2022. a
Liang, X. and Losch, M.: On the Effects of Increased Vertical Mixing on the Arctic Ocean and Sea Ice, J. Geophys. Res.-Oceans, 123, 9266–9282, https://doi.org/10.1029/2018JC014303, 2018. a
Lincoln, B. J., Rippeth, T. P., Lenn, Y., Timmermans, M. L., Williams, W. J., and Bacon, S.: Wind-driven mixing at intermediate depths in an ice-free Arctic Ocean, Geophys. Res. Lett., 43, 9749–9756, https://doi.org/10.1002/2016GL070454, 2016. a
Loken, C., Gruner, D., Groer, L., Peltier, R., Bunn, N., Craig, M., Henriques, T., Dempsey, J., Yu, C.-H., Chen, J., Dursi, L. J., Chong, J., Northrup, S., Pinto, J., Knecht, N., and Zon, R. V.: SciNet: Lessons Learned from Building a Power-efficient Top-20 System and Data Centre, J. Phys. Conf. Ser., 256, 012026, https://doi.org/10.1088/1742-6596/256/1/012026, 2010. a
Lorenz, E. N.: Available Potential Energy and the Maintenance of the General Circulation, Tellus, 7, 157–167, https://doi.org/10.1111/j.2153-3490.1955.tb01148.x, 1955. a
MacKinnon, J. A., Simmons, H. L., Hargrove, J., Thomson, J., Peacock, T., Alford, M. H., Barton, B. I., Boury, S., Brenner, S. D., Couto, N., Danielson, S. L., Fine, E. C., Graber, H. C., Guthrie, J., Hopkins, J. E., Jayne, S. R., Jeon, C., Klenz, T., Lee, C. M., Lenn, Y.-d., Lucas, A. J., Lund, B., Mahaffey, C., Norman, L., Rainville, L., Smith, M. M., Thomas, L. N., Torres-Valdés, S., and Wood, K. R.: A warm jet in a cold ocean, Nat. Commun., 12, 2418, https://doi.org/10.1038/s41467-021-22505-5, 2021. a
Martin, T., Tsamados, M., Schroeder, D., and Feltham, D. L.: The impact of variable sea ice roughness on changes in Arctic Ocean surface stress: A model study, J. Geophys. Res.-Oceans, 121, 1931–1952, https://doi.org/10.1002/2015JC011186, 2016. a
Mashayek, A. and Peltier, W. R.: The `zoo' of secondary instabilities precursory to stratified shear flow transition. Part 1 Shear aligned convection, pairing, and braid instabilities, J. Fluid Mech., 708, 5–44, https://doi.org/10.1017/jfm.2012.304, 2012a. a
Mashayek, A. and Peltier, W. R.: The `zoo' of secondary instabilities precursory to stratified shear flow transition. Part 2 The influence of stratification, J. Fluid Mech., 708, 45–70, https://doi.org/10.1017/jfm.2012.294, 2012b. a
Mashayek, A., Salehipour, H., Bouffard, D., Caulfield, C. P., Ferrari, R., Nikurashin, M., Peltier, W. R., and Smyth, W. D.: Efficiency of turbulent mixing in the abyssal ocean circulation, Geophys. Res. Lett., 44, 6296–6306, https://doi.org/10.1002/2016GL072452, 2017. a
McPhee, M. G.: Turbulent heat and momentum transfer in the oceanic boundary layer under melting pack ice, J. Geophys. Res.-Oceans, 88, 2827–2835, https://doi.org/10.1029/JC088iC05p02827, 1983. a
McPhee, M. G.: Advances in understanding ice – ocean stress during and since AIDJEX, Cold Reg. Sci. Technol., 76–77, 24–36, https://doi.org/10.1016/j.coldregions.2011.05.001, 2012. a, b, c
McPhee, M. G. and Kantha, L. H.: Generation of internal waves by sea ice, J. Geophys. Res.-Oceans, 94, 3287–3302, https://doi.org/10.1029/JC094iC03p03287, 1989. a
McPhee, M. G. and Smith, J. D.: Measurements of the turbulent boundary layer under pack ice, J. Phys. Oceanogr., 6, 696–711, https://doi.org/10.1175/1520-0485(1976)006<0696:MOTTBL>2.0.CO;2, 1976. a
Meier, W. and Stroeve, J.: An Updated Assessment of the Changing Arctic Sea Ice Cover, Oceanography, 35, 10–19, 2022. a
Mortikov, E. V.: Numerical simulation of the motion of an ice keel in a stratified flow, Izv. Atmos. Ocean Phy.+, 52, 108–115, https://doi.org/10.1134/S0001433816010072, 2016. a
Nguyen, A. T., Menemenlis, D., and Kwok, R.: Improved modeling of the arctic halocline with a subgrid-scale brine rejection parameterization, J. Geophys. Res.-Oceans, 114, 1–12, https://doi.org/10.1029/2008JC005121, 2009. a
Niederdrenk, A. L. and Notz, D.: Arctic Sea Ice in a 1.5 °C Warmer World, Geophys. Res. Lett., 45, 1963–1971, https://doi.org/10.1002/2017GL076159, 2018. a
Notz, D. and SIMIP Community: Arctic Sea Ice in CMIP6, Geophys. Res. Lett., 47, e2019GL086749, https://doi.org/10.1029/2019GL086749, 2020. a
Peralta-Ferriz, C. and Woodgate, R. A.: Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling, Prog. Oceanogr., 134, 19–53, https://doi.org/10.1016/j.pocean.2014.12.005, 2015. a
Pite, H. D., Topham, D. R., and van Hardenberg, B. J.: Laboratory Measurements of the Drag Force on a Family of Two-Dimensional Ice Keel Models in a Two-Layer Flow, J. Phys. Oceanogr., 25, 3008–3031, https://doi.org/10.1175/1520-0485(1995)025<3008:LMOTDF>2.0.CO;2, 1995. a, b
Ponce, M., van Zon, R., Northrup, S., Gruner, D., Chen, J., Ertinaz, F., Fedoseev, A., Groer, L., Mao, F., Mundim, B. C., Nolta, M., Pinto, J., Saldarriaga, M., Slavnic, V., Spence, E., Yu, C.-H., and Peltier, W. R.: Deploying a Top-100 Supercomputer for Large Parallel Workloads, in: Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning), ACM, New York, NY, USA, Chicago IL USA, 28 July 20190-1 August 2019, 1–8, https://doi.org/10.1145/3332186.3332195, 2019. a
Rainville, L. and Woodgate, R. A.: Observations of internal wave generation in the seasonally ice-free Arctic, Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2009GL041291, 2009. a
Rainville, L., Lee, C., and Woodgate, R.: Impact of Wind-Driven Mixing in the Arctic Ocean, Oceanography, 24, 136–145, https://doi.org/10.5670/oceanog.2011.65, 2011. a, b
Rampal, P., Weiss, J., and Marsan, D.: Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007, J. Geophys. Res.-Oceans, 114, 1–14, https://doi.org/10.1029/2008JC005066, 2009. a
Rampal, P., Weiss, J., Dubois, C., and Campin, J.-M.: IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline, J. Geophys. Res., 116, C00D07, https://doi.org/10.1029/2011JC007110, 2011. a
Randelhoff, A., Sundfjord, A., and Renner, A. H. H.: Effects of a Shallow Pycnocline and Surface Meltwater on Sea Ice–Ocean Drag and Turbulent Heat Flux, J. Phys. Oceanogr., 44, 2176–2190, https://doi.org/10.1175/jpo-d-13-0231.1, 2014. a
Rippeth, T. P., Lincoln, B. J., Lenn, Y.-D., Green, J. A. M., Sundfjord, A., and Bacon, S.: Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography, Nat. Geosci., 8, 191–194, https://doi.org/10.1038/ngeo2350, 2015. a
Rosenblum, E. and Eisenman, I.: Faster Arctic Sea Ice Retreat in CMIP5 than in CMIP3 due to Volcanoes, J. Climate, 29, 9179–9188, https://doi.org/10.1175/JCLI-D-16-0391.1, 2016. a
Rosenblum, E. and Eisenman, I.: Sea Ice Trends in Climate Models Only Accurate in Runs with Biased Global Warming, J. Climate, 30, 6265–6278, https://doi.org/10.1175/JCLI-D-16-0455.1, 2017. a
Rosenblum, E., Fajber, R., Stroeve, J. C., Gille, S. T., Tremblay, L. B., and Carmack, E. C.: Surface salinity under transitioning ice cover in the Canada Basin: Climate model biases linked to vertical distribution of fresh water, Geophys. Res. Lett., 48, e2021GL094739, https://doi.org/10.1029/2021GL094739, 2021. a
Salehipour, H. and Peltier, W. R.: Diapycnal diffusivity, turbulent Prandtl number and mixing efficiency in Boussinesq stratified turbulence, J. Fluid Mech., 775, 464–500, https://doi.org/10.1017/jfm.2015.305, 2015. a, b, c
Shih, L. H., Koseff, J. R., Ivey, G. N., and Ferzinger, J. H.: Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations, J. Fluid Mech., 525, 193–214, https://doi.org/10.1017/S0022112004002587, 2005. a
Sidorenko, D., Koldunov, N. V., Wang, Q., Danilov, S., Goessling, H. F., Gurses, O., Scholz, P., Sein, D. V., Volodin, E., Wekerle, C., and Jung, T.: Influence of a Salt Plume Parameterization in a Coupled Climate Model, J. Adv. Model. Earth Sy., 10, 2357–2373, https://doi.org/10.1029/2018MS001291, 2018. a
Skyllingstad, E. D., Paulson, C. A., Pegau, W. S., McPhee, M. G., and Stanton, T.: Effects of keels on ice bottom turbulence exchange, J. Geophys. Res.-Oceans, 108, 1–16, https://doi.org/10.1029/2002jc001488, 2003. a, b, c, d
Stroeve, J. and Notz, D.: Changing state of Arctic sea ice across all seasons, Environ. Res. Lett., 13, 103001, https://doi.org/10.1088/1748-9326/aade56, 2018. a, b
Stroeve, J., Holland, M. M., Meier, W., Scambos, T., and Serreze, M.: Arctic sea ice decline: Faster than forecast, Geophys. Res. Lett., 34, L09501, https://doi.org/10.1029/2007GL029703, 2007. a
Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., and Meier, W. N.: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations, Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676, 2012. a
Sumata, H., de Steur, L., Divine, D. V., Granskog, M. A., and Gerland, S.: Regime shift in Arctic Ocean sea ice thickness, Nature, 615, 443–449, https://doi.org/10.1038/s41586-022-05686-x, 2023. a
Tailleux, R.: Understanding mixing efficiency in the oceans: do the nonlinearities of the equation of state for seawater matter?, Ocean Sci., 5, 271–283, https://doi.org/10.5194/os-5-271-2009, 2009. a
Thorndike, A. S. and Colony, R.: Sea ice motion in response to geostrophic winds, J. Geophys. Res., 87, 5845, https://doi.org/10.1029/JC087iC08p05845, 1982. a
Timco, G. and Burden, R.: An analysis of the shapes of sea ice ridges, Cold Reg. Sci. Technol., 25, 65–77, https://doi.org/10.1016/S0165-232X(96)00017-1, 1997. a
Timmermans, M.-L. and Marshall, J.: Understanding Arctic Ocean Circulation: A Review of Ocean Dynamics in a Changing Climate, J. Geophys. Res.-Oceans, 125, 1–35, https://doi.org/10.1029/2018JC014378, 2020. a
Topham, D., Pite, H., Johnston, P., Richards, D., and Birch, J.: Field observations of flow patterns generated by an ice keel in stratified flow, Tech. rep., Canada, Department of Fisheries and Oceans, Ottawa, ISSN 0711-6764, 1988. a
Tsamados, M., Feltham, D. L., Schroeder, D., Flocco, D., Farrell, S. L., Kurtz, N., Laxon, S. W., and Bacon, S.: Impact of variable atmospheric and oceanic form drag on simulations of arctic sea ice, J. Phys. Oceanogr., 44, 1329–1353, https://doi.org/10.1175/JPO-D-13-0215.1, 2014. a
Vallis, G. K.: Basics of Incompressible Turbulence, in: Atmospheric and Oceanic Fluid Dynamics, Chap. 11, Cambridge University Press, Cambridge, 413–444, https://doi.org/10.1017/9781107588417.012, 2017. a
Wadhams, P.: Sea-ice topography of the Arctic Ocean in the region 70° W to 25° E, Philos. T. R. Soc. S.-A, 302, 45–85, https://doi.org/10.1098/rsta.1981.0157, 1981. a
Wadhams, P.: New predictions of extreme keel depths and scour frequencies for the Beaufort Sea using ice thickness statistics, Cold Reg. Sci. Technol., 76–77, 77–82, https://doi.org/10.1016/j.coldregions.2011.12.002, 2012. a, b, c
Wang, D. and Ruuth, S.: Variable Step-Size Implicit-Explicit Linear Multistep Methods for Time-Dependent Partial Differential Equations, J. Comput. Math., 26, 838–855, 2008. a
Winters, K. B. and Armi, L.: Hydraulic control of continuously stratified flow over an obstacle, J. Fluid Mech., 700, 502–513, https://doi.org/10.1017/jfm.2012.157, 2012. a
Winters, K. B., Lombard, P. N., Riley, J. J., and D'Asaro, E. A.: Available potential energy and mixing in density-stratified fluids, J. Fluid Mech., 289, 115, https://doi.org/10.1017/S002211209500125X, 1995. a, b
Winton, M.: Do Climate Models Underestimate the Sensitivity of Northern Hemisphere Sea Ice Cover?, J. Climate, 24, 3924–3934, https://doi.org/10.1175/2011JCLI4146.1, 2011. a
Zhang, F., Pang, X., Lei, R., Zhai, M., Zhao, X., and Cai, Q.: Arctic sea ice motion change and response to atmospheric forcing between 1979 and 2019, Int. J. Climatol., 42, 1854–1876, https://doi.org/10.1002/joc.7340, 2022. a
Zhang, J. and Steele, M.: Effect of vertical mixing on the Atlantic Water layer circulation in the Arctic Ocean, J. Geophys. Res.-Oceans, 112, 1–9, https://doi.org/10.1029/2006JC003732, 2007. a
Zhang, P., Xu, Z., Li, Q., You, J., Yin, B., Robertson, R., and Zheng, Q.: Numerical simulations of internal solitary wave evolution beneath an ice keel, J. Geophys. Res.-Oceans, 127, e2020JC017068, https://doi.org/10.1029/2020JC017068, 2022. a, b, c
Zu, Y., Lu, P., Leppäranta, M., Cheng, B., and Li, Z.: On the Form Drag Coefficient Under Ridged Ice: Laboratory Experiments and Numerical Simulations From Ideal Scaling to Deep Water, J. Geophys. Res.-Oceans, 126, e2020JC016976, https://doi.org/10.1029/2020JC016976, 2021. a
Short summary
Arctic sea ice is becoming more mobile and thinner, which will affect the upper Arctic Ocean in unforeseen ways. Using numerical simulations, we find that mixing by ice keels (ridges underlying sea ice) depends significantly on their speeds and depths and the density structure of the upper ocean. Large uncertainties in our results highlight the need for more realistic numerical simulations and better measurements of ice keel characteristics.
Arctic sea ice is becoming more mobile and thinner, which will affect the upper Arctic Ocean in...