Articles | Volume 18, issue 5
https://doi.org/10.5194/tc-18-2509-2024
https://doi.org/10.5194/tc-18-2509-2024
Research article
 | 
22 May 2024
Research article |  | 22 May 2024

Assessment of the impact of dam reservoirs on river ice cover – an example from the Carpathians (central Europe)

Maksymilian Fukś

Related subject area

Discipline: Other | Subject: Freshwater Ice
Forward modelling of synthetic-aperture radar (SAR) backscatter during lake ice melt conditions using the Snow Microwave Radiative Transfer (SMRT) model
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888, https://doi.org/10.5194/tc-18-869-2024,https://doi.org/10.5194/tc-18-869-2024, 2024
Short summary
A comparison of constant false alarm rate object detection algorithms for iceberg identification in L- and C-band SAR imagery of the Labrador Sea
Laust Færch, Wolfgang Dierking, Nick Hughes, and Anthony P. Doulgeris
The Cryosphere, 17, 5335–5355, https://doi.org/10.5194/tc-17-5335-2023,https://doi.org/10.5194/tc-17-5335-2023, 2023
Short summary
Fusion of Landsat 8 Operational Land Imager and Geostationary Ocean Color Imager for hourly monitoring surface morphology of lake ice with high resolution in Chagan Lake of Northeast China
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere, 17, 959–975, https://doi.org/10.5194/tc-17-959-2023,https://doi.org/10.5194/tc-17-959-2023, 2023
Short summary
Mechanisms and effects of under-ice warming water in Ngoring Lake of Qinghai–Tibet Plateau
Mengxiao Wang, Lijuan Wen, Zhaoguo Li, Matti Leppäranta, Victor Stepanenko, Yixin Zhao, Ruijia Niu, Liuyiyi Yang, and Georgiy Kirillin
The Cryosphere, 16, 3635–3648, https://doi.org/10.5194/tc-16-3635-2022,https://doi.org/10.5194/tc-16-3635-2022, 2022
Short summary
Tricentennial trends in spring ice break-ups on three rivers in northern Europe
Stefan Norrgård and Samuli Helama
The Cryosphere, 16, 2881–2898, https://doi.org/10.5194/tc-16-2881-2022,https://doi.org/10.5194/tc-16-2881-2022, 2022
Short summary

Cited articles

Apsîte, E., Elferts, D., and Latkovska, I.: Long-term changes of Daugava River ice phenology under the impact of the cascade of hydro power plants, Proc. Latv. Acad. Sci., 70, 71–77, https://doi.org/10.1515/prolas-2016-0012, 2016. 
Ayalew, L. and Yamagishi, H.: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan, Geomorphology, 65, 15–31, https://doi.org/10.1016/j.geomorph.2004.06.010, 2005. 
Belolipetsky, V. M., Genova, S. N.: Investigation of hydrothermal and ice regimes in hydropower station bays, Int. J. Comput. Fluid Dyn., 10, 151–158, https://doi.org/10.1080/10618569808961681, 1998. 
Cai, H., Piccolroaz, S., Huang, J., Liu, Z., Liu, F., and Toffolon, M.: Quantifying the impact of the Three Gorges Dam on the thermal dynamics of the Yangtze River, Environ. Res. Lett., 13, 054016, https://doi.org/10.1088/1748-9326/aab9e0, 2018. 
Carlson, R. F.: Ice formation on rivers and lakes, North. Eng., 13, 4–9, 1981. 
Download
Short summary
This paper presents a method for determining the impact of dam reservoirs on the occurrence of ice cover on rivers downstream of their location. It was found that the operation of dam reservoirs reduces the duration of ice cover and significantly affects the ice regime of rivers. Based on the results presented, it can be assumed that dam reservoirs play an important role in transforming ice conditions on rivers.