Articles | Volume 17, issue 11
https://doi.org/10.5194/tc-17-4937-2023
https://doi.org/10.5194/tc-17-4937-2023
Research article
 | 
24 Nov 2023
Research article |  | 24 Nov 2023

Local spatial variability in the occurrence of summer precipitation in the Sør Rondane Mountains, Antarctica

Alfonso Ferrone, Étienne Vignon, Andrea Zonato, and Alexis Berne

Related authors

Double moment normalization of hail size number distributions over Switzerland
Alfonso Ferrone, Jérôme Kopp, Martin Lainer, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-2,https://doi.org/10.5194/amt-2024-2, 2024
Preprint under review for AMT
Short summary
Radar and ground-level measurements of clouds and precipitation collected during the POPE 2020 campaign at Princess Elisabeth Antarctica
Alfonso Ferrone and Alexis Berne
Earth Syst. Sci. Data, 15, 1115–1132, https://doi.org/10.5194/essd-15-1115-2023,https://doi.org/10.5194/essd-15-1115-2023, 2023
Short summary
ERUO: a spectral processing routine for the Micro Rain Radar PRO (MRR-PRO)
Alfonso Ferrone, Anne-Claire Billault-Roux, and Alexis Berne
Atmos. Meas. Tech., 15, 3569–3592, https://doi.org/10.5194/amt-15-3569-2022,https://doi.org/10.5194/amt-15-3569-2022, 2022
Short summary
Radar and ground-level measurements of precipitation collected by the École Polytechnique Fédérale de Lausanne during the International Collaborative Experiments for PyeongChang 2018 Olympic and Paralympic winter games
Josué Gehring, Alfonso Ferrone, Anne-Claire Billault-Roux, Nikola Besic, Kwang Deuk Ahn, GyuWon Lee, and Alexis Berne
Earth Syst. Sci. Data, 13, 417–433, https://doi.org/10.5194/essd-13-417-2021,https://doi.org/10.5194/essd-13-417-2021, 2021
Short summary

Related subject area

Discipline: Snow | Subject: Antarctic
Extreme events of snow grain size increase in East Antarctica and their relationship with meteorological conditions
Claudio Stefanini, Giovanni Macelloni, Marion Leduc-Leballeur, Vincent Favier, Benjamin Pohl, and Ghislain Picard
The Cryosphere, 18, 593–608, https://doi.org/10.5194/tc-18-593-2024,https://doi.org/10.5194/tc-18-593-2024, 2024
Short summary
Evolution of Antarctic firn air content under three future warming scenarios
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, and Michiel R. van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2023-2237,https://doi.org/10.5194/egusphere-2023-2237, 2023
Short summary
Characteristics of the 1979–2020 Antarctic firn layer simulated with IMAU-FDM v1.2A
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Max Brils, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 17, 1675–1696, https://doi.org/10.5194/tc-17-1675-2023,https://doi.org/10.5194/tc-17-1675-2023, 2023
Short summary
The sensitivity of satellite microwave observations to liquid water in the Antarctic snowpack
Ghislain Picard, Marion Leduc-Leballeur, Alison F. Banwell, Ludovic Brucker, and Giovanni Macelloni
The Cryosphere, 16, 5061–5083, https://doi.org/10.5194/tc-16-5061-2022,https://doi.org/10.5194/tc-16-5061-2022, 2022
Short summary
Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: approaches to spectrally discriminate red and green communities and their impact on snowmelt
Alia L. Khan, Heidi M. Dierssen, Ted A. Scambos, Juan Höfer, and Raul R. Cordero
The Cryosphere, 15, 133–148, https://doi.org/10.5194/tc-15-133-2021,https://doi.org/10.5194/tc-15-133-2021, 2021
Short summary

Cited articles

Boening, C., Lebsock, M., Landerer, F., and Stephens, G.: Snowfall-driven mass change on the East Antarctic ice sheet, Geophys. Res. Lett., 39, 21, https://doi.org/10.1029/2012GL053316, 2012. a
Braaten, D. A.: Direct measurements of episodic snow accumulation on the Antarctic polar plateau, J. Geophys. Res.-Atmos., 105, 10119–10128, https://doi.org/10.1029/2000JD900099, 2000. a
Bromwich, D. H., Nicolas, J. P., and Monaghan, A. J.: An Assessment of Precipitation Changes over Antarctica and the Southern Ocean since 1989 in Contemporary Global Reanalyses, J. Climate, 24, 4189–4209, https://doi.org/10.1175/2011JCLI4074.1, 2011. a
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016. a
Durán-Alarcón, C., Boudevillain, B., Genthon, C., Grazioli, J., Souverijns, N., van Lipzig, N. P. M., Gorodetskaya, I. V., and Berne, A.: The vertical structure of precipitation at two stations in East Antarctica derived from micro rain radars, The Cryosphere, 13, 247–264, https://doi.org/10.5194/tc-13-247-2019, 2019. a, b, c, d, e, f
Download
Short summary
In austral summer 2019/2020, three K-band Doppler profilers were deployed across the Sør Rondane Mountains, south of the Belgian base Princess Elisabeth Antarctica. Their measurements, along with atmospheric simulations and reanalyses, have been used to study the spatial variability in precipitation over the region, as well as investigate the interaction between the complex terrain and the typical flow associated with precipitating systems.