Articles | Volume 17, issue 9
https://doi.org/10.5194/tc-17-3987-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-3987-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Environmental controls on observed spatial variability of soil pore water geochemistry in small headwater catchments underlain with permafrost
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Bikini Atoll Road, Los Alamos, New Mexico 87545, USA
Jeffrey M. Heikoop
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Bikini Atoll Road, Los Alamos, New Mexico 87545, USA
Emma Lathrop
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Bikini Atoll Road, Los Alamos, New Mexico 87545, USA
Center for Ecosystem Science and Society, Department of Biological
Sciences, Northern Arizona University, Flagstaff, Arizona 86011, USA
Dea Musa
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Bikini Atoll Road, Los Alamos, New Mexico 87545, USA
Brent D. Newman
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Bikini Atoll Road, Los Alamos, New Mexico 87545, USA
Chonggang Xu
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Bikini Atoll Road, Los Alamos, New Mexico 87545, USA
Rachael E. McCaully
Department of Marine Earth and Atmospheric Sciences, North Carolina
State University, Raleigh, North Carolina 27695, USA
Carli A. Arendt
Department of Marine Earth and Atmospheric Sciences, North Carolina
State University, Raleigh, North Carolina 27695, USA
Verity G. Salmon
Biological and Environmental Systems Science Division and Climate
Change Science Institute, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37831, USA
Amy Breen
International Arctic Research Center, University of Alaska, P.O. Box 757340, Fairbanks, Alaska 99775-7340, USA
Vladimir Romanovsky
Geophysical Institute, University of Alaska Fairbanks, Fairbanks,
Alaska 99775, USA
Katrina E. Bennett
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Bikini Atoll Road, Los Alamos, New Mexico 87545, USA
Cathy J. Wilson
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Bikini Atoll Road, Los Alamos, New Mexico 87545, USA
Stan D. Wullschleger
Biological and Environmental Systems Science Division and Climate
Change Science Institute, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37831, USA
Related authors
Junyan Ding, Nate McDowell, Vanessa Bailey, Nate Conroy, Donnie J. Day, Yilin Fang, Kenneth M. Kemner, Matthew L. Kirwan, Charlie D. Koven, Matthew Kovach, Patrick Megonigal, Kendalynn A. Morris, Teri O’Meara, Stephanie C. Pennington, Roberta B. Peixoto, Peter Thornton, Mike Weintraub, Peter Regier, Leticia Sandoval, Fausto Machado-Silva, Alice Stearns, Nick Ward, and Stephanie J. Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1544, https://doi.org/10.5194/egusphere-2025-1544, 2025
Short summary
Short summary
We used a vegetation model to study why coastal forests are dying due to rising water levels and what happens to the ecosystem when marshes take over. We found that tree death is mainly caused by water-damaged roots, leading to major changes in the environment, such as reduced water use and carbon storage. Our study helps explain how coastal ecosystems are shifting and offers new ideas to explore in future field research.
Anna C. Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data, 17, 2887–2909, https://doi.org/10.5194/essd-17-2887-2025, https://doi.org/10.5194/essd-17-2887-2025, 2025
Short summary
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a dataset of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high-latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753, https://doi.org/10.5194/egusphere-2025-1753, 2025
Short summary
Short summary
Predicting hydrological runoff in Arctic permafrost regions is difficult due to limited observations and complex terrain. We used a detailed physics-based model to improve runoff estimates in a Earth system land model. Our method improved runoff accuracy and worked well across two different Arctic regions. This helps make climate models more reliable for understanding water flow in permafrost areas under a changing climate.
Junyan Ding, Nate McDowell, Vanessa Bailey, Nate Conroy, Donnie J. Day, Yilin Fang, Kenneth M. Kemner, Matthew L. Kirwan, Charlie D. Koven, Matthew Kovach, Patrick Megonigal, Kendalynn A. Morris, Teri O’Meara, Stephanie C. Pennington, Roberta B. Peixoto, Peter Thornton, Mike Weintraub, Peter Regier, Leticia Sandoval, Fausto Machado-Silva, Alice Stearns, Nick Ward, and Stephanie J. Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1544, https://doi.org/10.5194/egusphere-2025-1544, 2025
Short summary
Short summary
We used a vegetation model to study why coastal forests are dying due to rising water levels and what happens to the ecosystem when marshes take over. We found that tree death is mainly caused by water-damaged roots, leading to major changes in the environment, such as reduced water use and carbon storage. Our study helps explain how coastal ecosystems are shifting and offers new ideas to explore in future field research.
Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren N. Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett
The Cryosphere, 19, 393–400, https://doi.org/10.5194/tc-19-393-2025, https://doi.org/10.5194/tc-19-393-2025, 2025
Short summary
Short summary
Temporally continuous snow depth estimates are important for understanding changing snow patterns and impacts on frozen ground in the Arctic. In this work, we developed an approach to predict snow depth from variability in snow–ground interface temperature using small temperature sensors that are cheap and easy to deploy. This new technique enables spatially distributed and temporally continuous snowpack monitoring that has not previously been possible.
Xiaoran Zhu, Dong Chen, Maruko Kogure, Elizabeth Hoy, Logan T. Berner, Amy L. Breen, Abhishek Chatterjee, Scott J. Davidson, Gerald V. Frost, Teresa N. Hollingsworth, Go Iwahana, Randi R. Jandt, Anja N. Kade, Tatiana V. Loboda, Matt J. Macander, Michelle Mack, Charles E. Miller, Eric A. Miller, Susan M. Natali, Martha K. Raynolds, Adrian V. Rocha, Shiro Tsuyuzaki, Craig E. Tweedie, Donald A. Walker, Mathew Williams, Xin Xu, Yingtong Zhang, Nancy French, and Scott Goetz
Earth Syst. Sci. Data, 16, 3687–3703, https://doi.org/10.5194/essd-16-3687-2024, https://doi.org/10.5194/essd-16-3687-2024, 2024
Short summary
Short summary
The Arctic tundra is experiencing widespread physical and biological changes, largely in response to warming, yet scientific understanding of tundra ecology and change remains limited due to relatively limited accessibility and studies compared to other terrestrial biomes. To support synthesis research and inform future studies, we created the Synthesized Alaskan Tundra Field Dataset (SATFiD), which brings together field datasets and includes vegetation, active-layer, and fire properties.
Jacquelyn K. Shuman, Rosie A. Fisher, Charles Koven, Ryan Knox, Lara Kueppers, and Chonggang Xu
Geosci. Model Dev., 17, 4643–4671, https://doi.org/10.5194/gmd-17-4643-2024, https://doi.org/10.5194/gmd-17-4643-2024, 2024
Short summary
Short summary
We adapt a fire behavior and effects module for use in a size-structured vegetation demographic model to test how climate, fire regime, and fire-tolerance plant traits interact to determine the distribution of tropical forests and grasslands. Our model captures the connection between fire disturbance and plant fire-tolerance strategies in determining plant distribution and provides a useful tool for understanding the vulnerability of these areas under changing conditions across the tropics.
Charles E. Miller, Peter C. Griffith, Elizabeth Hoy, Naiara S. Pinto, Yunling Lou, Scott Hensley, Bruce D. Chapman, Jennifer Baltzer, Kazem Bakian-Dogaheh, W. Robert Bolton, Laura Bourgeau-Chavez, Richard H. Chen, Byung-Hun Choe, Leah K. Clayton, Thomas A. Douglas, Nancy French, Jean E. Holloway, Gang Hong, Lingcao Huang, Go Iwahana, Liza Jenkins, John S. Kimball, Tatiana Loboda, Michelle Mack, Philip Marsh, Roger J. Michaelides, Mahta Moghaddam, Andrew Parsekian, Kevin Schaefer, Paul R. Siqueira, Debjani Singh, Alireza Tabatabaeenejad, Merritt Turetsky, Ridha Touzi, Elizabeth Wig, Cathy J. Wilson, Paul Wilson, Stan D. Wullschleger, Yonghong Yi, Howard A. Zebker, Yu Zhang, Yuhuan Zhao, and Scott J. Goetz
Earth Syst. Sci. Data, 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024, https://doi.org/10.5194/essd-16-2605-2024, 2024
Short summary
Short summary
NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) conducted airborne synthetic aperture radar (SAR) surveys of over 120 000 km2 in Alaska and northwestern Canada during 2017, 2018, 2019, and 2022. This paper summarizes those results and provides links to details on ~ 80 individual flight lines. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band SAR data.
Junyan Ding, Polly Buotte, Roger Bales, Bradley Christoffersen, Rosie A. Fisher, Michael Goulden, Ryan Knox, Lara Kueppers, Jacquelyn Shuman, Chonggang Xu, and Charles D. Koven
Biogeosciences, 20, 4491–4510, https://doi.org/10.5194/bg-20-4491-2023, https://doi.org/10.5194/bg-20-4491-2023, 2023
Short summary
Short summary
We used a vegetation model to investigate how the different combinations of plant rooting depths and the sensitivity of leaves and stems to drying lead to differential responses of a pine forest to drought conditions in California, USA. We found that rooting depths are the strongest control in that ecosystem. Deep roots allow trees to fully utilize the soil water during a normal year but result in prolonged depletion of soil moisture during a severe drought and hence a high tree mortality risk.
Chonggang Xu, Bradley Christoffersen, Zachary Robbins, Ryan Knox, Rosie A. Fisher, Rutuja Chitra-Tarak, Martijn Slot, Kurt Solander, Lara Kueppers, Charles Koven, and Nate McDowell
Geosci. Model Dev., 16, 6267–6283, https://doi.org/10.5194/gmd-16-6267-2023, https://doi.org/10.5194/gmd-16-6267-2023, 2023
Short summary
Short summary
We introduce a plant hydrodynamic model for the U.S. Department of Energy (DOE)-sponsored model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). To better understand this new model system and its functionality in tropical forest ecosystems, we conducted a global parameter sensitivity analysis at Barro Colorado Island, Panama. We identified the key parameters that affect the simulated plant hydrodynamics to guide both modeling and field campaign studies.
Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen
Biogeosciences, 20, 2671–2692, https://doi.org/10.5194/bg-20-2671-2023, https://doi.org/10.5194/bg-20-2671-2023, 2023
Short summary
Short summary
Photosynthesis is critical for life and has been affected by the changing climate. Many parameters come into play while modeling, but traditional calibration approaches face many issues. Our framework trains coupled neural networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates.
Ian Shirley, Sebastian Uhlemann, John Peterson, Katrina Bennett, Susan S. Hubbard, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2023-968, https://doi.org/10.5194/egusphere-2023-968, 2023
Preprint archived
Short summary
Short summary
Snow depth has a strong impact on soil temperatures and carbon cycling in the arctic. Because of this, we want to understand why snow is deeper in some places than others. Using cameras mounted on a drone, we mapped snow depth, vegetation height, and elevation across a watershed in Alaska. In this paper, we develop novel techniques using image processing and machine learning to characterize the influence of topography and shrubs on snow depth in the watershed.
Joanmarie Del Vecchio, Emma R. Lathrop, Julian B. Dann, Christian G. Andresen, Adam D. Collins, Michael M. Fratkin, Simon Zwieback, Rachel C. Glade, and Joel C. Rowland
Earth Surf. Dynam., 11, 227–245, https://doi.org/10.5194/esurf-11-227-2023, https://doi.org/10.5194/esurf-11-227-2023, 2023
Short summary
Short summary
In cold regions of the Earth, thawing permafrost can change the landscape, impact ecosystems, and lead to the release of greenhouse gases. In this study we used many observational tools to better understand how sediment moves on permafrost hillslopes. Some topographic change conforms to our understanding of slope stability and sediment transport as developed in temperate landscapes, but much of what we observed needs further explanation by permafrost-specific geomorphic models.
Xiang Huang, Charles J. Abolt, and Katrina E. Bennett
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-8, https://doi.org/10.5194/tc-2023-8, 2023
Manuscript not accepted for further review
Short summary
Short summary
Near-surface humidity is a sensitive parameter for predicting snow depth. Greater values of the relative humidity are obtained if the saturation vapor pressure was calculated with over-ice correction compared to without during the winter. During the summer thawing period, the choice of whether or not to employ an over-ice correction corresponds to significant variability in simulated thaw depths.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Rachael E. McCaully, Carli A. Arendt, Brent D. Newman, Verity G. Salmon, Jeffrey M. Heikoop, Cathy J. Wilson, Sanna Sevanto, Nathan A. Wales, George B. Perkins, Oana C. Marina, and Stan D. Wullschleger
The Cryosphere, 16, 1889–1901, https://doi.org/10.5194/tc-16-1889-2022, https://doi.org/10.5194/tc-16-1889-2022, 2022
Short summary
Short summary
Degrading permafrost and shrub expansion are critically important to tundra biogeochemistry. We observed significant variability in soil pore water NO3-N in an alder-dominated permafrost hillslope in Alaska. Proximity to alder shrubs and the presence or absence of topographic gradients and precipitation events strongly influence NO3-N availability and mobility. The highly dynamic nature of labile N on small spatiotemporal scales has implications for nutrient responses to a warming Arctic.
Noriaki Ohara, Benjamin M. Jones, Andrew D. Parsekian, Kenneth M. Hinkel, Katsu Yamatani, Mikhail Kanevskiy, Rodrigo C. Rangel, Amy L. Breen, and Helena Bergstedt
The Cryosphere, 16, 1247–1264, https://doi.org/10.5194/tc-16-1247-2022, https://doi.org/10.5194/tc-16-1247-2022, 2022
Short summary
Short summary
New variational principle suggests that a semi-ellipsoid talik shape (3D Stefan equation) is optimum for incoming energy. However, the lake bathymetry tends to be less ellipsoidal due to the ice-rich layers near the surface. Wind wave erosion is likely responsible for the elongation of lakes, while thaw subsidence slows the wave effect and stabilizes the thermokarst lakes. The derived 3D Stefan equation was compared to the field-observed talik thickness data using geophysical methods.
Elchin E. Jafarov, Daniil Svyatsky, Brent Newman, Dylan Harp, David Moulton, and Cathy Wilson
The Cryosphere, 16, 851–862, https://doi.org/10.5194/tc-16-851-2022, https://doi.org/10.5194/tc-16-851-2022, 2022
Short summary
Short summary
Recent research indicates the importance of lateral transport of dissolved carbon in the polygonal tundra, suggesting that the freeze-up period could further promote lateral carbon transport. We conducted subsurface tracer simulations on high-, flat-, and low-centered polygons to test the importance of the freeze–thaw cycle and freeze-up time for tracer mobility. Our findings illustrate the impact of hydraulic and thermal gradients on tracer mobility, as well as of the freeze-up time.
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Bob Busey, Sofia T. Avendaño, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, Cathy J. Wilson, and Katrina E. Bennett
The Cryosphere, 15, 4005–4029, https://doi.org/10.5194/tc-15-4005-2021, https://doi.org/10.5194/tc-15-4005-2021, 2021
Short summary
Short summary
Polygon-shaped landforms present in relatively flat Arctic tundra result in complex landscape-scale water drainage. The drainage pathways and the time to transition from inundated conditions to drained have important implications for heat and carbon transport. Using fundamental hydrologic principles, we investigate the drainage pathways and timing of individual polygons, providing insights into the effects of polygon geometry and preferential flow direction on drainage pathways and timing.
Polly C. Buotte, Charles D. Koven, Chonggang Xu, Jacquelyn K. Shuman, Michael L. Goulden, Samuel Levis, Jessica Katz, Junyan Ding, Wu Ma, Zachary Robbins, and Lara M. Kueppers
Biogeosciences, 18, 4473–4490, https://doi.org/10.5194/bg-18-4473-2021, https://doi.org/10.5194/bg-18-4473-2021, 2021
Short summary
Short summary
We present an approach for ensuring the definitions of plant types in dynamic vegetation models are connected to the underlying ecological processes controlling community composition. Our approach can be applied regionally or globally. Robust resolution of community composition will allow us to use these models to address important questions related to future climate and management effects on plant community composition, structure, carbon storage, and feedbacks within the Earth system.
Wu Ma, Lu Zhai, Alexandria Pivovaroff, Jacquelyn Shuman, Polly Buotte, Junyan Ding, Bradley Christoffersen, Ryan Knox, Max Moritz, Rosie A. Fisher, Charles D. Koven, Lara Kueppers, and Chonggang Xu
Biogeosciences, 18, 4005–4020, https://doi.org/10.5194/bg-18-4005-2021, https://doi.org/10.5194/bg-18-4005-2021, 2021
Short summary
Short summary
We use a hydrodynamic demographic vegetation model to estimate live fuel moisture dynamics of chaparral shrubs, a dominant vegetation type in fire-prone southern California. Our results suggest that multivariate climate change could cause a significant net reduction in live fuel moisture and thus exacerbate future wildfire danger in chaparral shrub systems.
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021, https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary
Short summary
Climate warming puts infrastructure built on permafrost at risk of failure. There is a growing need for appropriate model-based risk assessments. Here we present a modelling study and show an exemplary case of how a gravel road in a cold permafrost environment in Alaska might suffer from degrading permafrost under a scenario of intense climate warming. We use this case study to discuss the broader-scale applicability of our model for simulating future Arctic infrastructure failure.
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences, 18, 1769–1786, https://doi.org/10.5194/bg-18-1769-2021, https://doi.org/10.5194/bg-18-1769-2021, 2021
Short summary
Short summary
Humid tropical soils are important sources and sinks of methane. We used model simulation to understand how different kinds of microbes and observed soil moisture and oxygen dynamics contribute to production and consumption of methane along a wet tropical hillslope during normal and drought conditions. Drought alters the diffusion of oxygen and microbial substrates into and out of soil microsites, resulting in enhanced methane release from the entire hillslope during drought recovery.
A. D. Collins, C. G. Andresen, L. M. Charsley-Groffman, T. Cochran, J. Dann, E. Lathrop, G. J. Riemersma, E. M. Swanson, A. Tapadinhas, and C. J. Wilson
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIV-M-2-2020, 1–8, https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-1-2020, https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-1-2020, 2020
Cited articles
Binkley, D., Sollins, P., Bell, R., Sachs, D., and Myrold, D.:
Biogeochemistry of Adjacent Conifer and Alder-Conifer Stands, Ecology, 73,
2022–2033, https://doi.org/10.2307/1941452, 1992.
Breen, A., Iversen, C., Salmon, V., VanderStel, H., Busey, B., and
Wullschleger, S.: NGEE Arctic Plant Traits: Plant Community Composition,
Kougarok Road Mile Marker 64, Seward Peninsula, Alaska, 2016, NGEE Arctic [data set],
https://doi.org/10.5440/1465967, 2020.
Bring, A., Fedorova, I., Dibike, Y., Hinzman, L., Mård, J., Mernild, S.
H., Prowse, T., Semenova, O., Stuefer, S. L., and Woo, M. -K.: Arctic
terrestrial hydrology: A synthesis of processes, regional effects, and
research challenges, J. Geophys. Res.-Biogeo., 121, 621–649,
https://doi.org/10.1002/2015JG003131, 2016.
Brobst, D. A., Pinckney, D. M., and Sainsbury, C. L.:Geology and geochemistry of the Sinuk River Barite deposit, Seward Peninsula, Alaska, https://doi.org/10.3133/ofr7154, 1971.
Bühlmann, T., Hiltbrunner, E., and Körner, C.: Alnus viridis
expansion contributes to excess reactive nitrogen release, reduces
biodiversity and constrains forest succession in the Alps, Alp Botany, 124,
187–191, https://doi.org/10.1007/s00035-014-0134-y, 2014.
Clein, J. S. and Schimel, J. P.: Nitrogen turnover and availability during
succession from alder to poplar in Alaskan taiga forests, Soil Biol.
Biochem., 27, 743–752, https://doi.org/10.1016/0038-0717(94)00232-P,
1995.
Conroy, N., Heikoop, J., Newman, B., Wilson, C., Arendt, C., Perkins, G.,
and Wullschleger, S.: Soil Water Chemistry and Water and Nitrogen Isotopes,
Teller Road Site and Kougarok Hillslope, Seward Peninsula, Alaska, 2016–2019, NGEE Arctic [data set], https://doi.org/10.5440/1735757, 2021.
Corder, G. W. and Foreman, D. I.: Nonparametric statistics for
non-statisticians: a step-by-step approach, Wiley, Hoboken, NJ, 247 pp., ISBN 978-0-470-45461-9,
2009.
Frey, K. E. and McClelland, J. W.: Impacts of permafrost degradation on
arctic river biogeochemistry, Hydrol. Process., 23, 169–182,
https://doi.org/10.1002/hyp.7196, 2009.
Frisbee, M. D., Phillips, F. M., Campbell, A. R., and Hendrickx, J. M. H.:
Modified passive capillary samplers for collecting samples of snowmelt
infiltration for stable isotope analysis in remote, seasonally inaccessible
watersheds 1: laboratory evaluation, Hydrol. Process., 24, 825–833,
https://doi.org/10.1002/hyp.7523, 2010.
Fuchs, M., Nitze, I., Strauss, J., Günther, F., Wetterich, S., Kizyakov,
A., Fritz, M., Opel, T., Grigoriev, M. N., Maksimov, G. T., and Grosse, G.:
Rapid Fluvio-Thermal Erosion of a Yedoma Permafrost Cliff in the Lena River
Delta, Front. Earth Sci., 8, 336, https://doi.org/10.3389/feart.2020.00336,
2020.
Graham, D., Kholodov, A., Wilson, C., Moon, J.-W., Romanovsky, V., and
Busey, B.: Soil Physical, Chemical, and Thermal Characterization, Teller
Road Site, Seward Peninsula, Alaska, 2016, NGEE Arctic [data set], https://doi.org/10.5440/1342956,
2018.
Harms, T. K. and Jones, J. B.: Thaw depth determines reaction and transport
of inorganic nitrogen in valley bottom permafrost soils: Nitrogen cycling in
permafrost soils, Glob. Change Biol., 18, 2958–2968,
https://doi.org/10.1111/j.1365-2486.2012.02731.x, 2012.
Harms, T. K. and Ludwig, S. M.: Retention and removal of nitrogen and
phosphorus in saturated soils of arctic hillslopes, Biogeochemistry, 127,
291–304, https://doi.org/10.1007/s10533-016-0181-0, 2016.
Helsel, D. R.: Nondetects and data analysis: statistics for censored
environmental data, Wiley-Interscience, Hoboken, NJ, 250 pp., ISBN 0471671738, 2005.
Herreid, G. H.: Preliminary geology and geochemistry of the Sinuk River
area, Seward Peninsula, Alaska, Alaska Division of Mines and Minerals, State of Alaska,
https://doi.org/10.14509/353, 1966.
Hiyama, T., Yang, D., and Kane, D.: Permafrost Hydrology: Linkages and
Feedbacks, in: Arctic Hydrology, Permafrost and Ecosystems, Springer, Cham,
471–491, ISBN 978-3-030-50930-9, 2021.
Hopkins, D. M. and Karlstrom, T. N. V.: Permafrost and Ground Water in
Alaska, 69, United States Geological Survey Professional Paper 264-F, 1955.
Huang, Q., Ma, N., and Wang, P.: Faster increase in evapotranspiration in
permafrost-dominated basins in the warming Pan-Arctic, J. Hydrol.,
615, 128678, https://doi.org/10.1016/j.jhydrol.2022.128678, 2022.
Jafarov, E. E., Coon, E. T., Harp, D. R., Wilson, C. J., Painter, S. L.,
Atchley, A. L., and Romanovsky, V. E.: Modeling the role of preferential
snow accumulation in through talik development and hillslope groundwater
flow in a transitional permafrost landscape, Environ. Res. Lett., 13,
105006, https://doi.org/10.1088/1748-9326/aadd30, 2018.
Jessen, S., Holmslykke, H. D., Rasmussen, K., Richardt, N., and Holm, P. E.:
Hydrology and pore water chemistry in a permafrost wetland, Ilulissat,
Greenland, Water Resour. Res., 50, 4760–4774,
https://doi.org/10.1002/2013WR014376, 2014.
Kinniburgh, D. and Cooper, D.: PhreePlot: Creating Graphical Output with
Phreeqc [code], https://www.phreeplot.org/ (last access: 5 September 2023), 2011.
Koch, J. C., Runkel, R. L., Striegl, R., and McKnight, D. M.: Hydrologic
controls on the transport and cycling of carbon and nitrogen in a boreal
catchment underlain by continuous permafrost: C and N Fate in Boreal
Catchments, J. Geophys. Res.-Biogeo., 118, 698–712,
https://doi.org/10.1002/jgrg.20058, 2013.
Kokelj, S. V. and Jorgenson, M. T.: Advances in Thermokarst Research: Recent
Advances in Research Investigating Thermokarst Processes, Permafrost and
Periglac. Process., 24, 108–119, https://doi.org/10.1002/ppp.1779, 2013.
Kurylyk, B. L. and Walvoord, M. A.: Permafrost Hydrogeology, in: Arctic
Hydrology, Permafrost and Ecosystems, Springer, Cham, 493–523, ISBN 978-3-030-50930-9, 2021.
Langford, Z. L., Kumar, J., Hoffman, F. M., Breen, A. L., and Iversen, C.
M.: Arctic Vegetation Mapping Using Unsupervised Training Datasets and
Convolutional Neural Networks, Remote Sensing, 11, 69,
https://doi.org/10.3390/rs11010069, 2019.
Lara, M. J., Nitze, I., Grosse, G., and McGuire, A. D.: Tundra landform and
vegetation productivity trend maps for the Arctic Coastal Plain of northern
Alaska, Sci. Data, 5, 180058, https://doi.org/10.1038/sdata.2018.58, 2018.
Léger, E., Dafflon, B., Robert, Y., Ulrich, C., Peterson, J. E., Biraud, S. C., Romanovsky, V. E., and Hubbard, S. S.: A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska, The Cryosphere, 13, 2853–2867, https://doi.org/10.5194/tc-13-2853-2019, 2019.
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V.,
Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., Matveyeva, N.,
Necsoiu, M., Raynolds, M. K., Romanovsky, V. E., Schulla, J., Tape, K. D.,
Walker, D. A., Wilson, C. J., Yabuki, H., and Zona, D.: Pan-Arctic ice-wedge
degradation in warming permafrost and its influence on tundra hydrology,
Nat. Geosci., 9, 312–318, https://doi.org/10.1038/ngeo2674, 2016.
McCaully, R. E., Arendt, C. A., Newman, B. D., Salmon, V. G., Heikoop, J. M., Wilson, C. J., Sevanto, S., Wales, N. A., Perkins, G. B., Marina, O. C., and Wullschleger, S. D.: High nitrate variability on an Alaskan permafrost hillslope dominated by alder shrubs, The Cryosphere, 16, 1889–1901, https://doi.org/10.5194/tc-16-1889-2022, 2022.
McClelland, J. W., Holmes, R. M., Peterson, B. J., Raymond, P. A., Striegl,
R. G., Zhulidov, A. V., Zimov, S. A., Zimov, N., Tank, S. E., Spencer, R. G.
M., Staples, R., Gurtovaya, T. Y., and Griffin, C. G.: Particulate organic
carbon and nitrogen export from major Arctic rivers, Global Biogeochem.
Cycles, 30, 629–643, https://doi.org/10.1002/2015GB005351, 2016.
Mulligan, J. J.: Examination of the Sinuk iron deposits, Seward Peninsula, Alaska, with a section by Hess, H. D., U.S. Bureau of Mines Open-File Report 8-65, 34 pp., 1965.
Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T.,
Blok, D., Tape, K. D., Macias-Fauria, M., Sass-Klaassen, U., Lévesque,
E., Boudreau, S., Ropars, P., Hermanutz, L., Trant, A., Collier, L. S.,
Weijers, S., Rozema, J., Rayback, S. A., Schmidt, N. M., Schaepman-Strub,
G., Wipf, S., Rixen, C., Ménard, C. B., Venn, S., Goetz, S.,
Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, P.,
Epstein, H. E., and Hik, D. S.: Shrub expansion in tundra ecosystems:
dynamics, impacts and research priorities, Environ. Res. Lett., 6, 045509,
https://doi.org/10.1088/1748-9326/6/4/045509, 2011.
Neff, J.: Barium in the Ocean, in: Bioaccumulation in Marine Organisms,
79–87, ISBN 978-0-08-043716-3, 2002.
Nossov, D. R., Hollingsworth, T. N., Ruess, R. W., and Kielland, K.: Development of Alnus tenuifolia stands on an Alaskan floodplain: patterns of recruitment, disease and succession, J. Ecol., 99, 621–633, https://doi.org/10.1111/j.1365-2745.2010.01792.x, 2011.
O'Donnell, J. A., Douglas, T., Barker, A., and Guo, L.: Changing
Biogeochemical Cycles of Organic Carbon, Nitrogen, Phosphorus, and Trace
Elements in Arctic Rivers, in: Arctic Hydrology, Permafrost and Ecosystems,
Springer, Cham, 315–348, ISBN 978-3-030-50930-9, 2021.
Park, H., Tanoue, M., Sugimoto, A., Ichiyanagi, K., Iwahana, G., and Hiyama,
T.: Quantitative Separation of Precipitation and Permafrost Waters Used for
Evapotranspiration in a Boreal Forest: A Numerical Study Using Tracer Model,
J. Geophys. Res.-Biogeo., 126, e2021JG006645, https://doi.org/10.1029/2021JG006645, 2021.
Parkhurst, D. and Appelo, C. A. J.: Description of input and examples for
PHREEQC version 3: a computer program for speciation, batch-reaction,
one-dimensional transport, and inverse geochemical calculations, U.S.
Geological Survey [code], Reston, VA, https://www.usgs.gov/software/phreeqc-version-3 (last access: 5 September 2023), 2013.
Patzner, M. S., Kainz, N., Lundin, E., Barczok, M., Smith, C., Herndon, E.,
Kinsman-Costello, L., Fischer, S., Straub, D., Kleindienst, S., Kappler, A.,
and Bryce, C.: Seasonal Fluctuations in Iron Cycling in Thawing Permafrost
Peatlands, Environ. Sci. Technol., 56, 4620–4631,
https://doi.org/10.1021/acs.est.1c06937, 2022.
Perdrial, J. N., Perdrial, N., Vazquez-Ortega, A., Porter, C., Leedy, J.,
and Chorover, J.: Experimental Assessment of Passive Capillary Wick Sampler
Suitability for Inorganic Soil Solution Constituents, Soil Sci. Soc.
Am. J., 78, 486–495, https://doi.org/10.2136/sssaj2013.07.0279,
2014.
Petrone, K. C., Hinzman, L. D., Shibata, H., Jones, J. B., and Boone, R. D.:
The influence of fire and permafrost on sub-arctic stream chemistry during
storms, Hydrol. Process., 21, 423–434, https://doi.org/10.1002/hyp.6247,
2007.
Philben, M., Zheng, J., Bill, M., Heikoop, J. M., Perkins, G., Yang, Z.,
Wullschleger, S. D., Graham, D. E., and Gu, B.: Stimulation of anaerobic
organic matter decomposition by subsurface organic N addition in tundra
soils, Soil Biol. Biochem., 130, 195–204,
https://doi.org/10.1016/j.soilbio.2018.12.009, 2019.
Philben, M., Taş, N., Chen, H., Wullschleger, S. D., Kholodov, A.,
Graham, D. E., and Gu, B.: Influences of Hillslope Biogeochemistry on
Anaerobic Soil Organic Matter Decomposition in a Tundra Watershed, J. Geophys. Res.-Biogeo., 125, e2019JG005512, https://doi.org/10.1029/2019JG005512, 2020.
Prowse, T., Bring, A., Mård, J., and Carmack, E.: Arctic Freshwater
Synthesis: Introduction, J. Geophys. Res.-Biogeo., 120, 2121–2131,
https://doi.org/10.1002/2015JG003127, 2015a.
Prowse, T., Bring, A., Mård, J., Carmack, E., Holland, M., Instanes, A.,
Vihma, T., and Wrona, F. J.: Arctic Freshwater Synthesis: Summary of key
emerging issues, J. Geophys. Res.-Biogeo., 120, 1887–1893,
https://doi.org/10.1002/2015JG003128, 2015b.
R Core Team: R: A Language and Environment for Statistical Computing [code], https://www.r-project.org/ (last access: 5 September 2023), 2020.
Raudina, T. V., Loiko, S. V., Lim, A. G., Krickov, I. V., Shirokova, L. S., Istigechev, G. I., Kuzmina, D. M., Kulizhsky, S. P., Vorobyev, S. N., and Pokrovsky, O. S.: Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia, Biogeosciences, 14, 3561–3584, https://doi.org/10.5194/bg-14-3561-2017, 2017.
Raynolds, M. K.: A raster version of the Circumpolar Arctic Vegetation Map
(CAVM), Remote Sens. Environ., 12, 111297, https://doi.org/10.1016/j.rse.2019.111297, 2019.
Romanovsky, V., Cable, W., and Dolgikh, K.: Soil Temperature and Moisture,
Kougarok Road Mile Marker 64, Seward Peninsula, Alaska, beginning 2016, NGEE Arctic [data set],
https://doi.org/10.5440/1581586, 2021a.
Romanovsky, V., Cable, W., and Dolgikh, K.: Soil Temperature and Moisture,
Teller Road Mile Marker 27, Seward Peninsula, Alaska, beginning 2016, NGEE Arctic [data set],
https://doi.org/10.5440/1581437, 2021b.
Rowland, J. C., Jones, C. E., Altmann, G., Bryan, R., Crosby, B. T.,
Hinzman, L. D., Kane, D. L., Lawrence, D. M., Mancino, A., Marsh, P.,
McNamara, J. P., Romanvosky, V. E., Toniolo, H., Travis, B. J., Trochim, E.,
Wilson, C. J., and Geernaert, G. L.: Arctic Landscapes in Transition:
Responses to Thawing Permafrost, Eos Trans. AGU, 91, 229–230,
https://doi.org/10.1029/2010EO260001, 2010.
Salmon, V. G., Breen, A. L., Kumar, J., Lara, M. J., Thornton, P. E.,
Wullschleger, S. D., and Iversen, C. M.: Alder Distribution and Expansion
Across a Tundra Hillslope: Implications for Local N Cycling, Front. Plant
Sci., 10, 1099, https://doi.org/10.3389/fpls.2019.01099, 2019.
Shogren, A. J., Zarnetske, J. P., Abbott, B. W., Iannucci, F., Frei, R. J.,
Griffin, N. A., and Bowden, W. B.: Revealing biogeochemical signatures of
Arctic landscapes with river chemistry, Sci. Rep., 9, 12894,
https://doi.org/10.1038/s41598-019-49296-6, 2019.
Sjöberg, Y., Jan, A., Painter, S. L., Coon, E. T., Carey, M. P.,
O'Donnell, J. A., and Koch, J. C.: Permafrost promotes shallow groundwater
flow and warmer headwater streams, Water Res., 57, e2020WR027463,
https://doi.org/10.1029/2020WR027463, 2020.
Sparks, D. L.: Environmental soil chemistry, 2nd edn., Academic Press,
Amsterdam; Boston, 352 pp., ISBN 0126564469, 2003.
Spence, C., Kokelj, S., McCluskie, M., and Hedstrom, N.: Impacts of
Hydrological and Biogeochemical Process Synchrony Transcend Scale, American Geophysical Union, Fall Meeting 2015,
H13F-1603, 2015.
Sturm, M., Racine, C., and Tape, K.: Increasing shrub abundance in the
Arctic, Nature, 411, 546–547, https://doi.org/10.1038/35079180, 2001.
Sulman, B. N., Salmon, V. G., Iversen, C. M., Breen, A. L., Yuan, F., and
Thornton, P. E.: Integrating Arctic Plant Functional Types in a Land Surface
Model Using Above- and Belowground Field Observations, J. Adv. Model. Earth
Sy., 13, e2020MS002396, https://doi.org/10.1029/2020MS002396, 2021.
Tape, K., Sturm, M., and Racine, C.: The evidence for shrub expansion in
Northern Alaska and the Pan-Arctic: Shrub Expansion in Northern Alaska and
Pan-Arctic, Glob. Change Biol., 12, 686–702,
https://doi.org/10.1111/j.1365-2486.2006.01128.x, 2006.
Tape, K. D., Hallinger, M., Welker, J. M., and Ruess, R. W.: Landscape
Heterogeneity of Shrub Expansion in Arctic Alaska, Ecosystems, 15, 711–724,
https://doi.org/10.1007/s10021-012-9540-4, 2012.
Till, A. B., Dumoulin, J. A., Werdon, M. B., and Bleick, H. A.: Bedrock geologic map of the Seward Peninsula, Alaska, and accompanying conodont data: U.S. Geological Survey Scientific Investigations Map 3131, 2 sheets, scale 1:500,000, 1 pamphlet, 75 pp., and database, https://pubs.usgs.gov/sim/3131/ (last access: 5 September 2023), 2011.
Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N., and Van Cappellen, P.: The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters, Appl. Geochem.,
15, 785–790,
https://doi.org/10.1016/S0883-2927(99)00097-9, 2000.
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F., Alekseychik, P., Amyot, M., Billet, M. F., Canário, J., Cory, R. M., Deshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J., MacMillan, G., Rautio, M., Walter Anthony, K. M., and Wickland, K. P.: Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems, Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015, 2015.
Vonk, J. E., Tank, S. E., and Walvoord, M. A.: Integrating hydrology and
biogeochemistry across frozen landscapes, Nat. Commun., 10, 5377,
https://doi.org/10.1038/s41467-019-13361-5, 2019.
Walker, D. A., Breen, A. L., Druckenmiller, L. A., Wirth, L. W., Fisher, W.,
Raynolds, M. K., Šibík, J., Walker, M. D., Hennekens, S., Boggs,
K., Boucher, T., Buchhorn, M., Bültmann, H., Cooper, D. J., Daniëls,
F. J. A., Davidson, S. J., Ebersole, J. J., Elmendorf, S. C., Epstein, H.
E., Gould, W. A., Hollister, R. D., Iversen, C. M., Jorgenson, M. T., Kade,
A., Lee, M. T., MacKenzie, W. H., Peet, R. K., Peirce, J. L., Schickhoff,
U., Sloan, V. L., Talbot, S. S., Tweedie, C. E., Villarreal, S., Webber, P.
J., and Zona, D.: The Alaska Arctic Vegetation Archive (AVA-AK), Phytocoenologia, 46,
221–229, https://doi.org/10.1127/phyto/2016/0128, 2016.
Wallenberger, F. T. and Bingham, P. A. (Eds.): Fiberglass and Glass
Technology, Springer US, Boston, MA,
https://doi.org/10.1007/978-1-4419-0736-3, 2010.
Walvoord, M. A. and Kurylyk, B. L.: Hydrologic Impacts of Thawing
Permafrost-A Review, Vadose Zone J., 15, vzj2016.01.0010,
https://doi.org/10.2136/vzj2016.01.0010, 2016.
Weiss, M., Hobbie, S. E., and Gettel, G. M.: Contrasting Responses of
Nitrogen-Fixation in Arctic Lichens to Experimental and Ambient Nitrogen and
Phosphorus Availability, Arctic, Antarctic, and Alpine Research, 37,
396–401, https://doi.org/10.1657/1523-0430(2005)037[0396:CRONIA]2.0.CO;2,
2005.
Wilson, C., Bolton, R., Busey, R., Lathrop, E., Dann, J., and Bennett, K.:
End-of-Winter Snow Depth, Temperature, Density and SWE Measurements at
Kougarok Road Site, Seward Peninsula, Alaska, 2018, NGEE Arctic [data set],
https://doi.org/10.5440/1593874, 2020a.
Wilson, C., Bolton, R., Busey, R., Lathrop, E., Dann, J., Charsley-Groffman,
L., and Bennett, K.: End-of-Winter Snow Depth, Temperature, Density and SWE
Measurements at Teller Road Site, Seward Peninsula, Alaska, 2016–2018, NGEE Arctic [data set],
https://doi.org/10.5440/1592103, 2020b.
Wilson, C., Dann, J., Bolton, R., Charsley-Groffman, L., Jafarov, E., Musa,
D., and Wullschleger, S.: In Situ Soil Moisture and Thaw Depth Measurements
Coincident with Airborne SAR Data Collections, Barrow and Seward Peninsulas,
Alaska, 2017, NGEE Arctic [data set], https://doi.org/10.5440/1423892, 2021.
Wrona, F. J., Johansson, M., Culp, J. M., Jenkins, A., Mård, J.,
Myers-Smith, I. H., Prowse, T. D., Vincent, W. F., and Wookey, P. A.:
Transitions in Arctic ecosystems: Ecological implications of a changing
hydrological regime: Terrestrial and Freshwater Ecosystems, J. Geophys. Res.-Biogeo., 121, 650–674, https://doi.org/10.1002/2015JG003133, 2016.
Wullschleger, S. D., Epstein, H. E., Box, E. O., Euskirchen, E. S., Goswami,
S., Iversen, C. M., Kattge, J., Norby, R. J., Van Bodegom, P. M., and Xu,
X.: Plant functional types in Earth system models: past experiences and
future directions for application of dynamic vegetation models in
high-latitude ecosystems, Ann. Bot.-London, 114, 1–16,
https://doi.org/10.1093/aob/mcu077, 2014.
Yang, D., Meng, R., Morrison, B. D., McMahon, A., Hantson, W., Hayes, D. J.,
Breen, A. L., Salmon, V. G., and Serbin, S. P.: A Multi-Sensor Unoccupied
Aerial System Improves Characterization of Vegetation Composition and Canopy
Properties in the Arctic Tundra, Remote Sensing, 12, 2638,
https://doi.org/10.3390/rs12162638, 2020.
Yang, D., Morrison, B. D., Hantson, W., Breen, A. L., McMahon, A., Li, Q.,
Salmon, V. G., Hayes, D. J., and Serbin, S. P.: Landscape-scale
characterization of Arctic tundra vegetation composition, structure, and
function with a multi-sensor unoccupied aerial system, Environ. Res. Lett.,
16, 085005, https://doi.org/10.1088/1748-9326/ac1291, 2021.
Short summary
This study combines field observations, non-parametric statistical analyses, and thermodynamic modeling to characterize the environmental causes of the spatial variability in soil pore water solute concentrations across two Arctic catchments with varying extents of permafrost. Vegetation type, soil moisture and redox conditions, weathering and hydrologic transport, and mineral solubility were all found to be the primary drivers of the existing spatial variability of some soil pore water solutes.
This study combines field observations, non-parametric statistical analyses, and thermodynamic...