Articles | Volume 17, issue 1
https://doi.org/10.5194/tc-17-33-2023
https://doi.org/10.5194/tc-17-33-2023
Research article
 | 
09 Jan 2023
Research article |  | 09 Jan 2023

Towards large-scale daily snow density mapping with spatiotemporally aware model and multi-source data

Huadong Wang, Xueliang Zhang, Pengfeng Xiao, Tao Che, Zhaojun Zheng, Liyun Dai, and Wenbo Luan

Related authors

A post-processed carbon flux dataset for 34 eddy covariance flux sites across the Heihe River Basin, China
Xufeng Wang, Tao Che, Jingfeng Xiao, Tonghong Wang, Junlei Tan, Yang Zhang, Zhiguo Ren, Liying Geng, Haibo Wang, Ziwei Xu, Shaomin Liu, and Xin Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-370,https://doi.org/10.5194/essd-2024-370, 2024
Preprint under review for ESSD
Short summary
Dataset of spatially extensive long-term quality-assured land–atmosphere interactions over the Tibetan Plateau
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaomin Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data, 16, 3017–3043, https://doi.org/10.5194/essd-16-3017-2024,https://doi.org/10.5194/essd-16-3017-2024, 2024
Short summary
Simulations of Snow Physicochemical Properties in Northern China using WRF-Chem
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-37,https://doi.org/10.5194/gmd-2024-37, 2024
Revised manuscript under review for GMD
Short summary
A dataset of energy, water vapor, and carbon exchange observations in oasis–desert areas from 2012 to 2021 in a typical endorheic basin
Shaomin Liu, Ziwei Xu, Tao Che, Xin Li, Tongren Xu, Zhiguo Ren, Yang Zhang, Junlei Tan, Lisheng Song, Ji Zhou, Zhongli Zhu, Xiaofan Yang, Rui Liu, and Yanfei Ma
Earth Syst. Sci. Data, 15, 4959–4981, https://doi.org/10.5194/essd-15-4959-2023,https://doi.org/10.5194/essd-15-4959-2023, 2023
Short summary
Review of snow phenology variation in the Northern Hemisphere and its relationship with climate and vegetation
Hui Guo, Xiaoyan Wang, Zecheng Guo, Gaofeng Zhu, Tao Che, Jian Wang, Xiaodong Huang, Chao Han, and Zhiqi Ouyang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-229,https://doi.org/10.5194/tc-2022-229, 2022
Revised manuscript not accepted
Short summary

Related subject area

Discipline: Snow | Subject: Snow Hydrology
Impact of intercepted and sub-canopy snow microstructure on snowpack response to rain-on-snow events under a boreal canopy
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
The Cryosphere, 18, 2783–2807, https://doi.org/10.5194/tc-18-2783-2024,https://doi.org/10.5194/tc-18-2783-2024, 2024
Short summary
Using Sentinel-1 wet snow maps to inform fully-distributed physically-based snowpack models
Bertrand Cluzet, Jan Magnusson, Louis Quéno, Giulia Mazzotti, Rebecca Mott, and Tobias Jonas
EGUsphere, https://doi.org/10.5194/egusphere-2024-209,https://doi.org/10.5194/egusphere-2024-209, 2024
Short summary
Drone-based ground-penetrating radar (GPR) application to snow hydrology
Eole Valence, Michel Baraer, Eric Rosa, Florent Barbecot, and Chloe Monty
The Cryosphere, 16, 3843–3860, https://doi.org/10.5194/tc-16-3843-2022,https://doi.org/10.5194/tc-16-3843-2022, 2022
Short summary
Natural climate variability is an important aspect of future projections of snow water resources and rain-on-snow events
Michael Schirmer, Adam Winstral, Tobias Jonas, Paolo Burlando, and Nadav Peleg
The Cryosphere, 16, 3469–3488, https://doi.org/10.5194/tc-16-3469-2022,https://doi.org/10.5194/tc-16-3469-2022, 2022
Short summary
Two-dimensional liquid water flow through snow at the plot scale in continental snowpacks: simulations and field data comparisons
Ryan W. Webb, Keith Jennings, Stefan Finsterle, and Steven R. Fassnacht
The Cryosphere, 15, 1423–1434, https://doi.org/10.5194/tc-15-1423-2021,https://doi.org/10.5194/tc-15-1423-2021, 2021
Short summary

Cited articles

Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. 
Bonner, H. M., Raleigh, M. S., and Small, E. E.: Isolating forest process effects on modelled snowpack density and snow water equivalent, Hydrol. Process., 36, E14475, https://doi.org/10.1002/hyp.14475, 2022. 
Bormann, K. J., Westra, S., Evans, J. P., and McCabe, M. F.: Spatial and temporal variability in seasonal snow density, J. Hydrol., 484, 63–73, https://doi.org/10.1016/j.jhydrol.2013.01.032, 2013. 
Bormann, K. J., Brown, R. D., Derksen, C., and Painter, T. H.: Estimating snow-cover trends from space, Nat. Clim. Change, 8, 924–928, https://doi.org/10.1038/s41558-018-0318-3, 2018. 
Breiman, L.: Random forests, Mach. Learn. 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Download
Short summary
The geographically and temporally weighted neural network (GTWNN) model is constructed for estimating large-scale daily snow density by integrating satellite, ground, and reanalysis data, which addresses the importance of spatiotemporal heterogeneity and a nonlinear relationship between snow density and impact variables, as well as allows us to understand the spatiotemporal pattern and heterogeneity of snow density in different snow periods and snow cover regions in China from 2013 to 2020.