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Abstract. Snow density plays a critical role in estimating wa-
ter resources and predicting natural disasters such as floods,
avalanches, and snowstorms. However, gridded products for
snow density are lacking for understanding its spatiotempo-
ral patterns. In this study, considering the strong spatiotem-
poral heterogeneity of snow density, as well as the weak
and nonlinear relationship between snow density and the
meteorological, topographic, vegetation, and snow variables,
the geographically and temporally weighted neural network
(GTWNN) model is constructed for estimating daily snow
density in China from 2013 to 2020, with the support of
satellite, ground, and reanalysis data. The leaf area index of
high vegetation, total precipitation, snow depth, and topo-
graphic variables are found to be closely related to snow den-
sity among the 20 potentially influencing variables. The 10-
fold cross-validation results show that the GTWNN model
achieves an R2 of 0.531 and RMSE of 0.043 g cm−3, out-
performing the geographically and temporally weighted re-
gression model (R2

= 0.271), geographically weighted neu-
ral network model (R2

= 0.124), and reanalysis snow density
product (R2

= 0.095), which demonstrates the superiority of
the GTWNN model in capturing the spatiotemporal hetero-
geneity of snow density and the nonlinear relationship to
the influencing variables. The performance of the GTWNN
model is closely related to the state and amount of snow, in
which more stable and plentiful snow would result in higher

snow density estimation accuracy. With the benefit of the
daily snow density map, we are able to obtain knowledge of
the spatiotemporal pattern and heterogeneity of snow density
in China. The proposed GTWNN model holds the potential
for large-scale daily snow density mapping, which will be
beneficial for snow parameter estimation and water resource
management.

1 Introduction

Seasonal snow cover occupies an important position in the
global surface energy balance, hydrological cycle, and cli-
mate system (Bormann et al., 2018; Hall and Qu, 2006;
Hernández et al., 2015; Li et al., 2018), which accounts for
approximately 50 % of the land area in winter in the Northern
Hemisphere (Frei and Robinson, 1999). Snowmelt water not
only provides fresh water for one-sixth of the world’s popula-
tion, but also affects agriculture and ecosystems downstream
(Barnett et al., 2005). Snow density is an important variable
of snowpack, which influences the thermal, mechanical, and
optical properties of snow layers (Surendar et al., 2015). It
plays an important role in predicting natural disasters such as
floods, avalanches, and snowstorms, establishing hydrologi-
cal models, as well as water resource management (Fayad et
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al., 2017; Judson and Doesken, 2000; Roebber et al., 2003;
Schweizer et al., 2003).

Snow water equivalent (SWE) is critical for evaluating the
contribution of snow cover to water resources (Niedzielski
et al., 2019; Varade et al., 2020), which can be obtained
by multiplying snow depth (SD) and snow density. Since
the 1970s, algorithms for retrieving SD using passive mi-
crowave remote sensing have been continuously optimized
(Chang et al., 1987; Gharaei-Manesh et al., 2016; Pulliainen
et al., 1999). However, the SWE products obtained by pas-
sive microwave remote sensing are mostly produced with
a fixed value of snow density (Che et al., 2016; Pulliainen
et al., 2020), due to the limited knowledge of snow den-
sity distribution. The snow density changes with time, and
there is also strong spatial heterogeneity (Yang et al., 2019;
Zhong et al., 2014). Snow density serves as a key variable for
the accuracy of SWE products (McCreight and Small, 2014;
Zaremehrjardy et al., 2021). For example, Yang et al. (2020)
evaluated the accuracy of the GlobSnow-2 SWE product and
found that using a fixed snow density would result in over-
estimated SWE in China. Therefore, the daily gridded snow
density product will benefit for the estimation of SWE.

The fresh snow density is determined by the environment
of falling snow, such as air temperature, relative humidity,
and air pressure. After that, the size, shape, and packing of
snow crystals are affected by the accumulation, sublimation,
and melting of snow crystals on the surface, which leads
to changes in snow density (Nakaya, 1951; Roebber et al.,
2003). Snow density will also increase with snow age and SD
due to the metamorphism and compaction, and the change
rate is mainly influenced by melt–refreeze events and wind
erosion (Bormann et al., 2013; Meløysund et al., 2007). For
example, the snow density in Northwest and Northeast China
from 1999 to 2008 was found to be closely related to SD,
as indicated by stepwise regression analysis of snow density
and temperature, precipitation, SD, and wind speed (Dai and
Che, 2011).

The terrain and surface types also play an important role in
snow density (Clark et al., 2011; Judson and Doesken, 2000).
For example, snow density of tundra snow was found to be
lower at higher elevations and even decreased by approxi-
mately 0.006 g cm−3 with each 100 m increase in elevation
in the former Union of Soviet Socialist Republics (USSR)
(Zhong et al., 2014), which is indirectly affected by energy
balance; temperature decreases with elevation in general (El-
der et al., 1998). The indirect effect of slope on snow den-
sity includes two ways, one is redistribution of snow via
avalanching and wind transport and another is the amount
of radiation received, which results in changes in snow grain
size, porosity, and density. Slopes with high radiation inputs
will be more likely to have snowmelt, introducing liquid wa-
ter into the snow, which also increases snow density by fill-
ing the pore space with liquid water (Wetlaufer et al., 2016).
The average snow density in forest areas was 8 %–13 % less
than that in open areas (Zhong et al., 2014), and these ob-

served density differences are attributed to either mass, de-
livery, wind, or radiation effects (Bonner et al., 2022). Mass
effect is a reduction in the snow mass due to canopy inter-
ception loss, with lower compaction rates and snow density.
Delivery effect refers to how snow is trapped by the canopy
and then delivered to the underlying snowpack, either as un-
loaded snow or draining melt water. Wind effect occurs when
wind speed is reduced by forest obstruction, resulting in a
higher snow density relative to open areas because of wind
packing. Radiation effect can control snow layer temperature
and melt–refreeze cycles to change snow density (Essery et
al., 2008; Storck et al., 2002; Winstral and Marks, 2014).

The spatial and temporal differences in the distribution
of multiple complex influencing variables result in obvious
spatiotemporal heterogeneity of snow density. In the former
USSR, snow density will increase with latitude, while the
snow density of the Altai Mountains in China is more related
to longitude (Zhong et al., 2014, 2021b). The average snow
density shows obvious inter-monthly variation in the three
major seasonal snow cover areas of China from 1957 to 2009
(Ma and Qin, 2012), and the monthly maximum snow den-
sity moved from north to south from October to January (Dai
and Che, 2011). Moreover, this spatiotemporal heterogeneity
is also reflected in the relationship between snow density and
its influencing factors. The SD is often used to estimate snow
density by different models (Lundberg et al., 2006; Sturm
et al., 2010). However, the relationship between them is not
robust in different time and space, where the positive and
negative relationship and the significance of correlation co-
efficient vary greatly at small scales (López-Moreno et al.,
2013).

To understand the spatiotemporal heterogeneity of snow
density, people often use the ground observation data, but it is
difficult to achieve large-scale monitoring due to the complex
environment and limited number of the stations. One method
to explain the spatial and temporal variations in snow density
is to use a physical model, such as the coupled energy and
mass-balance model ISNOBAL (Hedrick et al., 2018; Marks
et al., 1999), which can explicitly simulate a number of snow-
pack properties including snow density and SWE at the re-
gional scale, and add a physical basis of energy exchange
in the snowpack. However, snow density physical models
are complex and cannot achieve large-scale spatialization of
snow density (Raleigh and Small, 2017). Another common
method is to use statistical models trained by the climatic
and snow variables to produce a snow density map, such
as multiple linear regression (MLR) and binary regression
tree analysis (Meløysund et al., 2007; Mizukami and Perica,
2008; Wetlaufer et al., 2016). However, the simple statistical
models may not well capture the complicated nonlinear re-
lationship of multiple influencing variables for snow density.
More importantly, the models were mostly constructed for
each observation independently and neglected the spatiotem-
poral heterogeneity of snow density as well as the relation-
ship to its influencing variables.
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Geographically weighted regression (GWR) is a model
that considers spatial heterogeneity by using local multi-
ple linear regression technology (Fotheringham et al., 1998).
To further incorporate temporal dependency, the geograph-
ically and temporally weighted regression (GTWR) model
has been introduced for many disciplines, such as meteorol-
ogy, hydrology, and social economics (Chen et al., 2017; He
and Huang, 2018; Huang et al., 2010). The machine learning
approaches such as random forests (RF) (Breiman, 2001) and
general regression neural network (GRNN) (Specht, 1991)
have become popular to fit nonlinear relationships, and it
is in the initial stage for estimating snow density (Broxton
et al., 2019). We can incorporate geographical and tempo-
ral weights into a neural network model to capture the spa-
tiotemporally variable and nonlinear relationship between
snow density and its influencing variables. In addition, con-
sidering the impact of different influencing variables, the
satellite data can provide information on the snow-related
and topography-related variables, and the reanalysis data can
provide information on the meteorology-related variables for
estimating snow density based on the true value provided
by ground observations. Consequently, to achieve large-scale
snow density mapping, we can develop a geographically and
temporally weighted neural network (GTWNN) model by
considering the multiple influencing variables with the sup-
port of satellite, ground, and reanalysis data, which not only
considers the spatiotemporal heterogeneity for snow density,
but also explains the nonlinear relationship between snow
density and different influencing variables.

The main objectives of this study are (1) to develop a
GTWNN model for improving snow density mapping by ad-
dressing the spatiotemporal heterogeneity and capturing the
nonlinear relationship between snow density and its influenc-
ing variables; (2) to validate the effectiveness of the proposed
model in various situations and to understand the relationship
between snow density and its influencing variables; and (3) to
achieve daily snow density mapping by integrating satellite,
ground, and reanalysis data and to understand the spatiotem-
poral pattern of snow density in China.

2 Study area and data

2.1 In situ snow density

We aim to achieve snow density mapping in China, where
Xinjiang, Northeast China–Inner Mongolia, and the Tibetan
Plateau are the three major regions with stable seasonal snow
cover, covering a total area of approximately 4 200 000 km2

(Huang et al., 2016). Snow cover in other areas of China
melts rapidly because of the relatively high temperature and
is thus not viewed as stable seasonal snow cover. The daily
SD and snow pressure measurements are collected from
the China Meteorological Administration (CMA) to calcu-
late snow density, including 984 stations from 2013 to 2020

(Fig. 1). In addition, 585 snow pits of the snow survey dataset
from measurement routes in typical regions from 2017 to
2019 are also used (Che, 2021), which are collected from the
National Cryosphere Desert Data Center (http://www.ncdc.
ac.cn, last access: 21 June 2022). The ground observations
are concentrated in the snow season, with few observations
in summer from June to August. Therefore, the study fo-
cuses on estimating snow density in the snow season from
September to May of the next year. To further analyze the es-
timation results, the snow season is roughly divided into the
snow accumulation period (September–November, autumn),
the snow stable period (December–February of the next year,
winter), and the snowmelt period (March–May, spring) ac-
cording to the division of season (Ke et al., 2016).

2.2 Satellite and reanalysis data

The ECMWF ERA-5 land hourly dataset is adopted to
provide data on meteorological variables, vegetation vari-
ables, and some snow variables, which is a climate reanal-
ysis dataset providing a consistent view of the evolution of
land variables over several decades at a spatial resolution of
0.1◦×0.1◦ (https://cds.climate.copernicus.eu, last access: 21
June 2022) (Muñoz-Sabater, 2019). We extract the 10 m u-
component of wind (U10), 10 m v-component of wind (V10),
2 m temperature (T2M), surface pressure (SP), total precip-
itation (TP), snowmelt (SMLT), snowfall (SF), temperature
of snow layer (TSN), snow evaporation (ES), and leaf area
index of high vegetation (LAI_HV), and calculate their daily
average or accumulation accordingly.

The satellite products of snow albedo (SA), snow depth
(SD), and snow cover area (SCA) from 2013 to 2020 are
collected from the National Cryosphere Desert Data Center
(http://www.ncdc.ac.cn, last access: 21 June 2022) (Hao et
al., 2021b; Xiao et al., 2020; Yang et al., 2019), with spatial
resolutions of 0.01◦, 25, and 5 km, respectively. Based on the
SCA data, the snow cover duration (SCD) is calculated to
account for the impact of snow duration on snow density.
In addition, the MODIS land vegetation cover classification
product (MCD12Q1) is used for obtaining the surface types,
with the spatial resolution of 500 m.

The topographical variables of elevation are obtained from
the Shuttle Radar Topography Mission (SRTM) digital eleva-
tion model with a spatial resolution of 30 m, and then slope
and aspect are derived based on the elevation.

2.3 Data integration

Three kinds of data are used, including ground observation
data, satellite data, and reanalysis data, where the ground ob-
servation data are used to provide the true value of snow den-
sity, and the satellite and reanalysis data are used to provide
information of different influencing variables of snow den-
sity. Before the model development, data pre-processing is
conducted. Firstly, since the spatial resolution varies among
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Figure 1. Spatial distribution of collected ground observations of snow density.

the different influencing variables on snow density, they are
resampled to 25 km for snow density mapping using average
or accumulation resampling methods depending on the data
type. The spatial resolution of 25 km is determined to match
that of most SD and SWE products by passive microwave
remote sensing. The elevation and slope are resampled to
25 km by average, and the standard deviation of elevation
(ELEVATION_STD) and slope (SLOPE_STD) are also cal-
culated to reflect the topographic relief within the range of
25 km. Accordingly, the ground observations of snow den-
sity measured at multiple sites are averaged for each 25 km
grid cell. In addition, to eliminate the influence of differ-
ent dimensions, the min–max normalization method is ap-
plied to normalize different influencing variables except for
MCD12Q1 data. After that, we collect 16 935 samples for
model establishment and validation, where a sample refers
to a grid cell with ground observations of snow density and
its influencing variables.

3 Methodology

3.1 GTWNN model

The GTWNN model is a spatiotemporally aware model com-
posed of a geographically and temporally weighted (GTW)
model to capture spatiotemporal heterogeneity and a gen-
eralized regression neural network (GRNN) to deal with

the weak and nonlinear relationships between snow den-
sity and its influencing variables, including the meteorolog-
ical variables, topographical variables, vegetation variables,
and snow variables, which could be expressed as shown in
Eq. (1), and its schematic is shown in Fig. 2.

snow density= f(S, T) (x, y) , (1)

where “snow density” is the estimated snow density in each
cell, “(S, T)” presents the spatial and temporal distance be-
tween the sample point and the prediction point, x refers to
the influencing variables of snow density, and y refers to the
ground observation data.

The GTW model explores the spatiotemporal heterogene-
ity through local weighting, which can assess the impact of
sample points on prediction points in terms of the spatial and
temporal distances (Fig. 2). The weight of each sample point
is calculated by the commonly used bi-square function (Guo
et al., 2008), as shown in Eqs. (2) and (3).

d i
ST =

√[(
jp− j i

s
)2
+
(
kp− ki

s
)2]
+ϕ(tp− t is )

2, (2)

W i
GT =


[
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d i
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]2

, d i
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0, d i
ST ≥ hST

, (3)
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Figure 2. Schematic of the GTWNN model for the estimation of snow density, where GTW refers to the geographically and temporally
weighted, and GRNN refers to the generalized regression neural network.

where d i
ST denotes the spatial and temporal distance between

the ith (i = 1, 2, . . . , N ) sample point “s” and the predic-
tion point “p”, in which j and k represent the location of
point; and t represents the time, as shown in Fig. 2. W i

GT in-
dicates the weight of the sample point in the GTW model.
The spatiotemporal nonnegative parameters known as band-
width hST and scale factor ϕ are the two key parameters in
the GTW model (Huang et al., 2010). In essence, there are
two weighting regimes for setting hST: fixed kernel and adap-
tive kernel. To reduce the “weak data” problem, that is, the
spatial distribution of snow density observations is uneven,
the adaptive kernel is selected to adapt the localization pat-
terns of the observations by changing the kernel size auto-
matically. The kernel will be large in regions with sparsely
distributed observations and small when the data are abun-
dant. The scale factor ϕ balances the different effects of the
spatial and temporal distances in their respective metric sys-
tems. When ϕ = 0, the temporal distance has no effect on the
weight, indicating that the sample at any time will be con-
sidered. When ϕ =∞, only the samples with the same date
of the prediction point have an influence on the prediction,
and GTW degrades into the classic geographically weighted
(GW) model.

A common GRNN architecture consists of four layers (Li
et al., 2020), as shown in Fig. 2. The first layer is the input
layer receiving the influencing parameters x, the number of
neurons is equal to the input vector dimension N , and the
number of influencing variables is m. The pattern layer is
the radial base layer, and the weight of each neuron i in the
pattern layer W i

GRNN is calculated by the difference in the in-
fluencing variables between the sample and prediction points
using a Gaussian function:

W i
GRNN = e

−
1
2

(
D(xp−xi

s )

spread

)2

, (4)

where xi
s and xp represent the influencing variable values of

the sample and prediction points, D() refers to the Euclidean
distance, and “spread” is a parameter to control the smooth-
ness of the fitting function. Successively, there are two kinds
of neurons in the summation layer. One is the denominator
unit (SW) for calculating the algebraic sum of each neuron,
in which the weight of each neuron i in the summation layer
is the snow density of sample point yi , and the other is the
molecular unit (SS) for calculating the weighted sum of the
pattern layer neurons. Finally, by combining the GTW and
GRNN, the output snow density of the prediction point can
be expressed as Eq. (5), where W i

GT captures the spatiotem-
poral heterogeneity and W i

GRNN relates to the nonlinear rela-
tionship between snow density and its influencing variables.

snow density=
SW

SS
=

∑N
i (W i

GT ·W
i
GRNN · yi)∑N

i (W i
GT ·W

i
GRNN · 1)

(5)

3.2 Parameter determination and model evaluation
method

There are three essential parameters in the GTWNN model,
including the spatiotemporal bandwidth hST and the scale
factor ϕ of the GTW model, and the “spread” of GRNN
model. To evaluate the model performance as well as to de-
termine the optimal parameters, the 10-fold cross-validation
technique is adopted (Fotheringham et al., 2003; Rodriguez
et al., 2010), that is, all the collected samples are randomly
divided into 10 folds, nine folds are exploited for the model
fitting, and one fold is used for the validation. The above
steps are repeated 10 times so as to evaluate the model perfor-
mance on each fold of the validation samples. Finally, a scale
factor ϕ of 0.01, a “spread” of 0.5, and an adaptive bandwidth
regime hST of 8 are obtained, which can achieve the best per-
formance.
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In addition, the coefficient of determination (R2, unit-
less), the mean absolute prediction error (MAE, g cm−3), and
the root mean squared prediction error (RMSE, g cm−3) are
adopted to evaluate the performance of the GTWNN model.

4 Results

4.1 Descriptive statistics of ground observations

Snow density has strong spatiotemporal heterogeneity, and
we calculated statistics of the 16 935 samples generated from
ground observations in terms of the snow density and the
number of observations in different years, months, and snow
cover regions, as shown in Fig. 3, which show the dispersion
and variation fluctuations in snow density and can be used to
verify the results of snow density mapping.

The snow density averaged in China from 2013 to 2020
is 0.140 g cm−3. The mean and median snow density val-
ues change slightly from 2013 to 2020 except for the fluc-
tuation in 2019 with a snow density of 0.180 g cm−3. For
the monthly variation, the mean snow density tends to in-
crease from 0.120 g cm−3 in October with the accumulation
of snow and achieves the highest value of 0.162 g cm−3 in
March. Snow density also varies spatially. Among the three
major snow cover regions, Xinjiang has the largest mean
snow density (0.159 g cm−3), successively followed by the
Tibetan Plateau and Northeast China–Inner Mongolia.

In addition to the spatiotemporal variation in snow density,
the number of ground observations also varies. The number
of observation samples from 2013 to 2018 ranged from 2250
to 3250 but decreased to less than 750 in 2019 and 2020,
mainly because of the lack of observations at many meteo-
rological stations. The number of observation samples varies
in different months mainly because of the richness of snow,
which is higher in the snow stable period than in other pe-
riods. The number of observation samples varies spatially
mainly because of the distribution of meteorological stations,
where Northeast China–Inner Mongolia has the most sta-
tions, followed by Xinjiang and the Tibetan Plateau.

4.2 Model validation

4.2.1 Relationship between snow density and its
influencing variables

The Pearson correlation coefficient between snow density
and its influencing variables is calculated to indicate the im-
portance of the variables in each month, as shown in Fig. 4a,
where September and May are not included because of the
small number of ground observations. The influencing vari-
ables and the corresponding correlation coefficient values are
various in different months because of the heterogeneity of
snow. In addition, we calculate the average value from Octo-
ber to April for the positive and negative correlation coeffi-
cients, respectively, to indicate the importance of each influ-

encing variable for snow density. We also count the number
of months with positive or negative correlations and mark
the correlations that appear in more months as “main corre-
lation”, to clearly show the relationship between snow den-
sity and different influencing variables, as shown in Fig. 4b.
In general, the correlations between snow density and all in-
fluencing variables are very weak, with the maximum aver-
age correlation coefficient of only 0.123, which indicates the
great difficulty for the estimation task of snow density.

For the eight snow variables, SD shows apparently higher
importance because it has the larger average correlation coef-
ficient of 0.087, followed by ES and SMLT with an average
correlation coefficient of 0.082. It is noted that snow den-
sity is mainly negatively correlated with SF, SA, and SCD,
and positively correlated with other snow variables, indicat-
ing that the less new snowfall, more snowmelt, and deeper
snow depth tend to have higher snow density. Among the five
meteorological variables, TP has the highest average correla-
tion coefficient of 0.110, indicating that higher precipitation
can increase snow density. All five topographical variables
show high positive correlation, with an average correlation
coefficient value of approximately 0.1. Surprisingly, the vari-
able LAI_HV has the largest positive correlation coefficient
among all the variables, indicating the importance of vegeta-
tion for snow density estimation. In summary, LAI_HV has
the strongest correlation with snow density, followed by the
TP, SD, and topographic variables among the 20 variables.

4.2.2 Accuracies of the GTWNN model in different
regions

The snow density estimation accuracies of the GTWNN
model are assessed over China (Fig. 5a) and different snow
cover regions, including Xinjiang (Fig. 5c), the Tibetan
Plateau (Fig. 5d), Northeast China–Inner Mongolia (Fig. 5e),
and other areas with instantaneous snow cover (Fig. 5f). To
clearly present the snow density errors between estimated
values and observed values, the frequency of errors together
with the Gaussian fitting curve are calculated and shown in
Fig. 5b.

Figure 5a shows that the R2, MAE, and RMSE values
over China are 0.531, 0.028, and 0.043 g cm−3, respectively,
which indicates that the GTWNN model is able to account
for 53.1 % of daily snow density variations. The linear fit-
ting curve is very close to the 1 : 1 line with a slope of 0.906,
and most of the points are concentrated on the trend line, es-
pecially in the range of 0.1–0.25 g cm−3. Figure 5b further
demonstrates the concentration since most of the errors are
smaller than ±0.04 g cm−3. It is noted that the number of es-
timated values greater than 0.3 g cm−3 is rare, indicating that
the GTWNN model would underestimate the very large snow
density.

Among the three stable seasonal snow cover regions,
Xinjiang achieves the highest R2 of 0.633 and the low-
est RMSE of 0.038 g cm−3 and MAE of 0.022 g cm−3, fol-
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Figure 3. Descriptive statistics of the snow density and the number of ground observations in different years (a), months (b), and snow cover
regions (c).

lowed by Northeast China–Inner Mongolia. Although North-
east China–Inner Mongolia has more observation samples
than Xinjiang, the lower accuracies in Northeast China–Inner
Mongolia would mainly be caused by greater forest and less
stable snow cover in Northeast China–Inner Mongolia than in
Xinjiang. The Tibetan Plateau has the lowest R2 of 0.517 and
the highest RMSE and MAE, which is mainly caused by the
high variation fluctuations of snow density and sparse mete-
orological stations, as indicated in Fig. 3c. Compared with
the stable regions, the estimation accuracies in other areas of
China are apparently lower, with an R2 of 0.183, which is
caused by the rapid melting of snow and sparse observations.

4.2.3 Accuracies of the GTWNN model in different
months

The snow density estimation accuracies of each month are as-
sessed over the entire study area to reveal the effectiveness of
the GTWNN model in different months, as shown in Table 1.
In the snow season, the snow stable period achieves the best
estimation performance with R2 0.587, RMSE 0.038 g cm−3,
and MAE 0.023 g cm−3. Within the snow stable period, the

highest R2 (0.597) appears in January, together with the low-
est RMSE (0.037 g cm−3) and MAE (0.022 g cm−3), which
is because of the stable snow state and the relatively sufficient
observation samples.

The accuracies in the snow accumulation and snowmelt
period are inferior to those in the snow stable period, which
is mainly caused by the relatively rapid changes in snow as
well as the sparser observations, especially for the months of
October, April, and May. It is noted that the observation error
cannot be ignored, which may be caused by less snow in the
early stage of snow accumulation period, or the large water
content in the snowmelt period, making the observation more
difficult. The accuracies in November and March are appar-
ently higher than those in October, April, and May, mainly
because the snow in these 2 months does not change so fast.
The accuracies in September are not involved in the analysis
because there are only 11 observations.

According to above results, we can safely conclude that
the snow density estimation achieves the best performance
in the snow stable period over the entire study area, and the
estimations in November and March are also acceptable con-
sidering both the accuracies and the number of observations.
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Figure 4. Correlation coefficients between snow density and its influencing variables in each month (a), and the average value of the positive
and negative correlation coefficients, where the main correlation marked as shade refers to the positive or the negative correlation that occurs
in more months than the other (b).

Figure 5. Accuracies of the estimated snow density in China (a) and different snow cover regions (c, d, e, f), and the histogram of the snow
density errors between estimated and observed values (b).
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Table 1. Accuracies of snow density estimation in different months.

Snow cover period Month Number Slope R2 RMSE MAE

Snow accumulation period September 11 0.141 0.005 0.051 0.038
October 253 0.559 0.120 0.058 0.041
November 1960 0.862 0.475 0.048 0.032

Snow stable period December 2952 0.939 0.584 0.040 0.025
January 4688 0.940 0.597 0.037 0.022
February 4491 0.916 0.577 0.038 0.024

Snowmelt period March 1970 0.886 0.473 0.054 0.035
April 510 0.362 0.056 0.064 0.046
May 92 0.561 0.102 0.071 0.050

Furthermore, to clearly reveal the monthly accuracies of
the GTWNN model in different snow cover regions, the snow
density estimation accuracies for each snow period and part
of the months are assessed in different snow cover regions,
as shown in Fig. 6.

In different snow periods, the snow stable period also
achieves the highest R2 in different snow cover regions ex-
cept for the Tibetan Plateau, as shown in Fig. 6a. The snow
in Xinjiang, Northeast China–Inner Mongolia, and other ar-
eas of China is concentrated in the coldest months, and the
state of the snow is more stable in these months, resulting in
a higher R2. The accuracies on the Tibetan Plateau decrease
from the snow accumulation period to the snowmelt period.
This is because snow accumulates early and disappears late
in the Tibetan Plateau, and the shallow snow depths make it
difficult to maintain snow cover, resulting in more snow in
autumn and spring and less snow in winter (Li and Mi, 1983;
Zhong et al., 2021a). In addition, the snow has a large water
content and changes rapidly in the snowmelt period, which
results in a lower estimation accuracy in spring. Hence, com-
bining the relatively large amount and the stable state of snow
in the snow accumulation period, the snow density estimation
accuracy is the highest in this period on the Tibetan Plateau.

We choose the three months of the snow stable period and
November and March to analyze monthly accuracies in dif-
ferent regions because of the relatively higher overall accura-
cies in these months, as shown in Table 1, and the results are
shown in Fig. 6b. In most cases, the accuracies in Xinjiang,
Northeast China–Inner Mongolia, and other areas of China
first increase and then decrease from November to March and
achieve the highest accuracies in January or February, when
the snow cover is plentiful and stable. However, the accuracy
on the Tibetan Plateau changes oppositely and achieves the
highest accuracy in November because of the specialty of the
snow amount changes within a year, as discussed above.

Therefore, we conclude that the accuracies of the GTWNN
model are generally related to the stability and the amount of
snow. The snow density estimations achieve the highest R2

in the snow stable period in Xinjiang, Northeast China–Inner

Mongolia, and other areas of China because of the concen-
tration and stability of snow in this period, and achieve the
highest R2 during the snow accumulation period in the Ti-
betan Plateau because of the relatively large amount and sta-
bility of snow in this period.

4.3 Model comparison

4.3.1 Comparison with other regression models

The GTWNN model is compared with five other regression
models to demonstrate its advantages for snow density es-
timation by capturing the spatiotemporal heterogeneity of
snow density and its nonlinear relationship to influencing
variables, as shown in Table 2. The models involved for com-
parison include the multiple linear regression (R) model, ge-
ographically weighted regression (GWR) model, geograph-
ically and temporally weighted regression (GTWR) model,
general regression neural network (GRNN) model, and ge-
ographically weighted neural network (GWNN) model. It is
noted that the original R and GRNN models are global re-
gression models established on all samples, regardless of the
geographical and temporal weights. The R model captures
the linear relationship between snow density and its influ-
encing variables, and the GRNN has nonlinear mapping abil-
ity (Specht, 1991). Meanwhile, the GWR (Fotheringham et
al., 1998) and GWNN models are spatial local models con-
structed from R and GRNN by setting a bandwidth h, in
which the sample points have different weights (WG) accord-
ing to the spatial distance (ds). The GTWR and GTWNN
models further incorporate temporal dependencies, which
adds a new scale factor ϕ to balance the different weights
of the spatial and temporal distances. The optimal parame-
ters of the compared models are determined by the 10-fold
cross validation strategy as that for the GTWNN model.

The accuracies achieved by GTWNN are apparently
higher than those achieved by GRNN and GWNN, which
demonstrates the effectiveness of both the spatial and tem-
poral dependences on improving the estimation of hetero-
geneous snow density. It is noted that the GWNN performs
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Figure 6. Accuracies of snow density estimation in different snow periods (a) and months (b) over different snow cover regions.

Table 2. Accuracies of various regression models for estimating daily snow density.

Model Full name of model Slope R2 RMSE MAE

R Multiple linear regression 0.783 0.015 0.060 0.044
GWR Geographically weighted regression 0.069 0.022 0.143 0.091
GTWR Geographically and temporally weighted regression 0.398 0.271 0.070 0.043
GRNN General regression neural network 2.394 0.033 0.062 0.046
GWNN Geographically weighted neural network 0.489 0.124 0.062 0.043
GTWNN Geographically and temporally weighted neural network 0.906 0.531 0.043 0.028

inferiorly to the GRNN model with only spatial dependence,
which may be caused by the sparse distribution of the stations
and indirectly suggests that the temporal dependency makes
a notable contribution to improving the GRNN model. The
similar accuracy differences among R, GWR, and GTWR
also demonstrate the importance of the spatial and temporal
dependences for snow density estimation.

Comparing the GTWNN, GWNN, and GRNN models
with the GTWR, GWR, and R models, the former three mod-
els based on GRNN achieve apparently higher accuracies
than the latter three models based on R. The accuracy dif-
ferences mainly come from the difference between the base
regression models GRNN and R, where R is a linear model
and GRNN can model nonlinear relationships. Considering
that the correlation coefficients between snow density and
its influencing variables are relatively weak, the results show
that the nonlinear GRNN models can better overcome the
weak correlations than the linear R models.

4.3.2 Comparison with reanalysis snow density product

The reanalysis product ERA-5 also provides gridded daily
snow density data, which are produced by comprehensively
considering various influencing variables, such as snow pres-
sure, viscosity, near surface air temperature, and wind speed
(Muñoz-Sabater, 2019). We compare the snow density esti-
mated by the GTWNN model and that in ERA-5, and the
results are shown in Fig. 7.

In Fig. 7a, the R2, RMSE, and MAE of ERA-5 snow den-
sity in the study area are 0.095, 0.061, and 0.047 g cm−3, re-
spectively, the performance of which is apparently inferior
to that by the GTWNN model. The ERA-5 snow density is

mostly concentrated near 0.15 g cm−3, which leads to many
overestimations and underestimations. Figure 7b and c fur-
ther show that the snow density estimated by the GTWNN
model has higher accuracies than the ERA-5 product in dif-
ferent snow periods and different snow cover regions.

4.4 Mapping of snow density

4.4.1 Spatial distribution

The spatial distribution of snow density in different snow pe-
riods and the entire snow season in China are mapped and
shown in Fig. 8a–d by calculating the average of the daily
snow density estimated by the GTWNN model from 2013 to
2020. It is noted that the estimated daily snow density maps
are masked by the daily snow cover product to remove the
non-snow pixels (Hao et al., 2021b). In addition, to under-
stand the spatiotemporal heterogeneity of snow density, we
also calculate the mean snow density and coefficient of vari-
ation (CV) in different snow periods and regions, as shown
in Fig. 8e and f.

In the snow accumulation period, the mean snow density
is generally lower than 0.13 g cm−3, and the difference of
mean snow density in different snow cover regions is small
(Fig. 8e), except for the Northeast Plain and North China
Plain (Fig. 8a), in which the liquid water content within snow
is much higher than that in other areas (Dai and Che, 2011).
In the snow stable period, the mean snow density of China in-
creases to 0.145 g cm−3, especially Xinjiang and the Tibetan
Plateau are above average in China (Fig. 8e). The highest
snow density occurs in the western Tibetan Plateau and South
China (Fig. 8b), which has abundant precipitation and snow
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Figure 7. Accuracies of the ERA-5 snow density product in the study area (a) and the comparison of snow density estimated by the GTWNN
model with that of ERA-5 in different snow periods (b) and different snow cover regions (c).

density values above 0.2 g cm−3. In the snowmelt period, the
mean snow density continues to increase to 0.153 g cm−3,
especially increasing to 0.178 g cm−3 in northern Xinjiang
(Fig. 8e) and over 0.16 g cm−3 in the Changbai Mountain
of Northeast China (Fig. 8c). For the mean snow density of
the entire snow season shown in Fig. 8d and e, the mean
snow density is 0.138, 0.151, and 0.156 g cm−3 in Northeast
China–Inner Mongolia, Xinjiang, and the Tibetan Plateau re-
spectively. As shown in Fig. 8d, northern Xinjiang, the north-
west Tibetan Plateau, and Northeast China have relatively
higher snow density than Inner Mongolia and the southeast
Tibetan Plateau in the three major snow cover regions, which
may be related to latitude, elevation, and surface type (Zhong
et al., 2014, 2021b).

The mean CV of snow density generally increases across
China from the snow accumulation period (0.170) to the
snowmelt period (0.192), as shown in Fig. 8f. However, the
CV in different snow cover regions varies apparently. It con-
tinuously decreases in Xinjiang and the Tibetan Plateau from
the snow accumulation period to the snowmelt period. How-
ever, the CV in Northeast China–Inner Mongolia achieves
the lowest in the snow stable period, but that of the other area
reaches the highest in the snow stable period, which may be
related to the different snow classes, and the surface type,
elevation, and altitude will also affect the variety of snow
density. Totally in the whole snow season, Xinjiang shows
the lowest CV, and Northeast China–Inner Mongolia has the
largest CV among the three snow cover regions.

4.4.2 Temporal change

To reflect the monthly change in snow density in different
snow cover regions, we calculate the mean snow density in
each month of the snow season from January 2013 to De-
cember 2020, as shown in Fig. 9a–e, as well as the monthly
mean snow density of the 8 years, as shown in Fig. 9f.

Figure 9a–e shows that the snow density in different re-
gions as well as the entire study area tends to increase from
the start of snow accumulation to the peak and then decrease
until the late snowmelt period in each year. In the snow accu-
mulation and stable periods, snow density increases with the
snow accumulation and mechanical compaction. In the early
snowmelt period, snow surface melt decreases snow depth
while increasing snow density via meltwater percolation, and
then, most of the snow melts into water and the snow density
decreases (McCreight and Small, 2014).

However, the snow density fluctuations appear different
over time and space. Specifically, the months with the maxi-
mum and minimum snow density are various in different re-
gions, which may be related to the climatic conditions. The
monthly changes in Xinjiang and the Tibetan Plateau are sim-
ilar and apparently different from those in Northeast China–
Inner Mongolia, which is because the temperature and gra-
dient between snow and atmosphere is small in Northeast
China (Ebner et al., 2016), with low air temperature and
vapor pressure in the snow stable period (Ji et al., 2017).
In addition, snow cover is relatively shallow, and the meta-
morphism caused by the compaction is not significant (Yang
et al., 2020), which allows the snow density in Northeast
China–Inner Mongolia to fluctuate less during the seasonal
changes. However, the seasonal evolution of snow density is
obvious at the high altitudes and elevation areas of Xinjiang
and the Tibetan Plateau, possibly because of the relatively
high water vapor (Ji et al., 2017) and the temperature cycling
between day and night that accelerates snow metamorphism
(Ebner et al., 2016).

In addition, the monthly mean snow density from the es-
timated daily snow density map in Fig. 9f shows a similar
pattern with that from the ground observations in Fig. 3b,
which further demonstrates the effectiveness of the proposed
GTWNN model for snow density estimation.
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Figure 8. Spatial distribution of mean snow density in different snow periods in China from 2013 to 2020, including the snow accumulation
period (a), snow stable period (b), snowmelt period (c), and entire snow season (d), as well as the mean snow density (e) and coefficient of
variation (f) in different snow periods and snow cover regions.

5 Discussion

5.1 Essential issues of constructing and applying the
GTWNN model

The constructed GTWNN model achieves daily snow den-
sity mapping by integrating a variety of influencing variables
with the support of remote sensing, ground observation, and
reanalysis data. Even though the validated accuracies are ac-
ceptable, it is also necessary to address three essential issues
for constructing and applying the model: (1) the weak cor-

relation between influencing variables and snow density, (2)
the model evaluation and parameter estimation, and (3) the
relation to the state of snow.

For the first issue, we found that the influencing variables
have relatively limited explanatory abilities for estimating
snow density, as indicated by the weak correlations in Fig. 4,
which may be an important reason for the low accuracy of
the GTWNN model for snow density estimation with an R2

of 0.531. For example, Li et al. (2020) established a GTWNN
model for estimating ground-level PM2.5 with the input of
satellite-derived aerosol optical depth (AOD) and meteoro-
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Figure 9. Mean snow density in each month of the snow season from January 2013 to December 2020 in different snow cover regions,
including Xinjiang (a), Northeast China–Inner Mongolia (b), the Tibetan Plateau (c), other area (d), and the entire study area (e), as well as
the monthly mean snow density of the 8 years (f).

logical data, and the model achieved an R2 value of 0.80,
which may be related to the higher linear correlation between
AOD and PM2.5 with an R2 of 0.75 (Xin et al., 2016). Con-
sidering the weak correlations between snow density and its
influencing variables, it could be challenging to achieve a
very high estimation accuracy for snow density.

In addition, the accuracy of influencing variables would
also affect the GTWNN model estimation accuracy. We
downloaded the instantaneous near surface (2 m) air temper-
ature and precipitation from the China meteorological forc-
ing dataset (CMFD), with a spatial resolution of 0.1◦ for
comparison. CMFD is the high spatial-temporal resolution
gridded near-surface meteorological dataset in China, which
was made through fusing remote sensing products, reanaly-
sis datasets, and in situ station data (He et al., 2020). Since
CMFD only provides data until 2018, we use CMFD data
to replace the temperature and precipitation data of ERA-5,
and the accuracies of the models with different influencing
variables from 2013 to 2017 are shown in Table 3. The accu-
racies of the new model with CMFD are slightly higher than
those of the original model indicated by R2, but the RMSE

and MAE remain the same. However, considering the high
spatiotemporal resolution and rich variables, especially the
temporal coverage of ERA-5 data (1950–), we finally choose
the ERA-5 data in our study.

For the second issue, there are three essential parameters
in the GTWNN model, including the scale factor ϕ and the
spatiotemporal bandwidth hST, and the “spread”. Especially
for the bandwidth, when we choose the adaptive bandwidth
regime hST = 6, the R2 of the estimated snow density could
achieve a higher value of 0.542. However, there will be ab-
normal block patterns in the snow density map caused by
the limited number of samples. Specifically, in a small area
constrained by hST = 6, the same samples can be selected
for estimating the snow density of different nearby grids.
Since the spatiotemporal weights and the weights of influ-
encing variables are too similar, it results in the block phe-
nomenon over areas composed of grids with very similar
snow density. Therefore, even though a relatively smaller hST
could achieve a higher R2, we have to increase the bandwidth
hST = 8 to avoid the abnormal block patterns that are incon-
sistent with our common sense.
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Table 3. Accuracy comparison of estimated snow density with different sources of influencing variables.

Year GTWNN model with ERA-5 data GTWNN model with CMFD data

R2 RMSE MAE R2 RMSE MAE

2013 0.499 0.041 0.025 0.495 0.041 0.025
2014 0.521 0.040 0.024 0.531 0.039 0.024
2015 0.473 0.042 0.027 0.482 0.042 0.027
2016 0.560 0.038 0.023 0.575 0.037 0.023
2017 0.591 0.040 0.023 0.587 0.040 0.023

Overall 0.529 0.040 0.024 0.534 0.040 0.024

For the third issue, it is noted that the accuracy of the snow
density estimation model is closely related to the stability
and amount of snow. The R2 values in the three major snow
cover regions are apparently higher than those in the other
areas in China because of the more stable and larger amount
of snow, as shown in Fig. 5. In addition, the accuracy dif-
ferences in different months show that the GTWNN model
achieves higher performance when snow is more stable, such
as the snow stable period, the late snow accumulation pe-
riod, and the early snowmelt period. Hence, when applying
the GTWNN model, if the snow is stable and plentiful, the
estimated snow density would be more credible. In contrast,
if the snow changes rapidly, distributes sparsely, or the ob-
servation difficulty increases, such as in the early snow accu-
mulation period and the late snowmelt period, the estimated
snow density would be less credible and need to be used with
caution.

5.2 Advantages and limitations

Even though the ground measurement accuracy continues to
improve by advanced measurement instruments (Hao et al.,
2021a), it is limited to obtaining the large-scale spatial distri-
bution of snow density, and gridded snow density data are ur-
gently needed. To obtain the gridded snow density, snow pa-
rameters such as snow depth (Jonas et al., 2009; McCreight
and Small, 2014) and meteorological data such as temper-
ature and wind speed (Helfricht et al., 2018; Judson and
Doesken, 2000; Valt et al., 2018) were used to estimate snow
density mainly by using a linear regression model. The lin-
ear regression model is globally oriented and thus cannot ef-
fectively deal with the spatiotemporal heterogeneity of snow
density. Accordingly, previous studies mostly achieve snow
density estimation in regions that are not very large in size.
The constructed GTWNN in this study considers the spatial
and temporal dependences of snow density, which allows it
to effectively deal with the spatiotemporal heterogeneity of
snow density and thus hold the potential of being applied to
large-scale areas, as demonstrated by the apparently higher
accuracies than the linear regression model in our study area.
In addition, it is important to overcome the weak correla-
tion between snow density and its influencing variables to

improve the estimation accuracy. Accordingly, we make two
efforts in the GTWNN model. First, 20 influencing variables
are integrated for the estimation with the support of multi-
source data. Second, the adopted GRNN model could over-
come the nonlinear relationship between snow density and
its influencing variables.

It is noted that the GTWNN model is a spatiotemporal in-
terpolation model based on the observed snow density, and
the confidence of the snow density map produced by the
GTWNN model is still constrained by the distribution of the
observation stations, even though the model is able to achieve
relatively high accuracy in regions with sparse stations, e.g.,
the R2 of 0.517 on the Tibetan Plateau. Since there are few
observations, especially in the northwest Tibetan Plateau, the
confidence of the estimated snow density in this region is still
not clear. On the one hand, we expect new observations in the
near future for both estimation and validation. On the other
hand, it is of great potential to further develop a snow density
prediction model without the dependence of observed snow
density for model inference.

6 Conclusions

A GTWNN model was constructed for snow density estima-
tion and achieved daily snow density mapping from 2013 to
2020 in China with the support of remote sensing, ground ob-
servation, and reanalysis data. The GTWNN model has two
advantages: (1) considering the spatiotemporal heterogene-
ity of snow density and (2) addressing the weak and non-
linear relationship as well as the involvement of a variety
of snow, meteorological, topographic, and vegetation vari-
ables. The individual correlations between snow density and
20 influencing variables are very week, with the maximum
average correlation coefficient of only 0.123, and it is found
that the vegetation variable LAI_HV, meteorological vari-
able TP, snow variable SD, and topographic variables have
a relatively close relationship to snow density. The GTWNN
model achieves an R2 of 0.531, RMSE of 0.043 g cm−3,
and MAE of 0.028 g cm−3 in China validated by 10-fold
cross validation, which are apparently better than those of
the other five regression models and the ERA-5 snow density
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product. The comparison results further demonstrate the im-
portance of addressing the spatiotemporal heterogeneity for
snow density estimation. The performance of the GTWNN
model is also demonstrated to be closely related to the state
and amount of snow, in which more stable and plentiful
snow would result in higher snow density estimation accu-
racy. With the benefit of the produced daily snow density
map, we obtain knowledge of the spatiotemporal pattern of
snow density in different snow periods and snow cover re-
gions in China, and the CV results show that spatial hetero-
geneity of snow density in Northeast China–Inner Mongolia
is the most obvious in three major snow cover regions and
the least obvious in Xinjiang. The proposed GTWNN model
has the potential to be used for large-scale snow density map-
ping because of the two advantages described above but with
limitations to the distribution of the observation stations. Fu-
ture work should focus on extending the model to other areas
and longer time series as well as developing snow density
prediction models.
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2021); we are not authorized to redistribute part of these data
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source data. The products of snow variables are available at the
National Cryosphere Desert Data Center (http://www.ncdc.ac.cn,
last access: 21 June 2022), including the daily snow albedo
(https://doi.org/10.12072/ncdc.I-SNOW.db0004.2020, Xiao
et al., 2020), snow depth (https://doi.org/10.12072/ncdc.I-
SNOW.db0002.2020, Jiang et al., 2020), and snow cover area
(https://doi.org/10.12072/ncdc.I-SNOW.db0005.2020, Hao et
al., 2020) from 2013 to 2020, and the shuttle radar topogra-
phy mission (SRTM) digital elevation model (DEM) can be
downloaded at https://earthexplorer.usgs.gov/ (USGS, 2022).
The reanalysis data are collected from the ECMWF ERA-5
land hourly dataset (https://doi.org/10.24381/cds.e2161bac,
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cover classification product (MCD12Q1) can be download
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