Articles | Volume 17, issue 6
Research article
27 Jun 2023
Research article |  | 27 Jun 2023

The effects of assimilating a sub-grid-scale sea ice thickness distribution in a new Arctic sea ice data assimilation system

Nicholas Williams, Nicholas Byrne, Daniel Feltham, Peter Jan Van Leeuwen, Ross Bannister, David Schroeder, Andrew Ridout, and Lars Nerger

Related authors

Ocean carbon sink assessment via temperature and salinity data assimilation into a global ocean biogeochemistry model
Frauke Bunsen, Judith Hauck, Lars Nerger, and Sinhué Torres-Valdés
EGUsphere,,, 2024
Short summary
A Python interface to the Fortran-based Parallel Data Assimilation Framework: pyPDAF v1.0.0
Yumeng Chen, Lars Nerger, and Amos S. Lawless
EGUsphere,,, 2024
Short summary
WRF-PDAF v1.0: implementation and application of an online localized ensemble data assimilation framework
Changliang Shao and Lars Nerger
Geosci. Model Dev., 17, 4433–4445,,, 2024
Short summary
NAQPMS-PDAF v2.0: A Novel Hybrid Nonlinear Data Assimilation System for Improved Simulation of PM2.5 Chemical Components
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev. Discuss.,,, 2024
Preprint under review for GMD
Short summary
HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological model
Qi Tang, Hugo Delottier, Wolfgang Kurtz, Lars Nerger, Oliver S. Schilling, and Philip Brunner
Geosci. Model Dev., 17, 3559–3578,,, 2024
Short summary

Related subject area

Discipline: Sea ice | Subject: Data Assimilation
Assimilation of satellite swaths versus daily means of sea ice concentration in a regional coupled ocean–sea ice model
Marina Durán Moro, Ann Kristin Sperrevik, Thomas Lavergne, Laurent Bertino, Yvonne Gusdal, Silje Christine Iversen, and Jozef Rusin
The Cryosphere, 18, 1597–1619,,, 2024
Short summary
Local analytical optimal nudging for assimilating AMSR2 sea ice concentration in a high-resolution pan-Arctic coupled ocean (HYCOM 2.2.98) and sea ice (CICE 5.1.2) model
Keguang Wang, Alfatih Ali, and Caixin Wang
The Cryosphere, 17, 4487–4510,,, 2023
Short summary
Towards improving short-term sea ice predictability using deformation observations
Anton Korosov, Pierre Rampal, Yue Ying, Einar Ólason, and Timothy Williams
The Cryosphere, 17, 4223–4240,,, 2023
Short summary
Assimilating CryoSat-2 freeboard to improve Arctic sea ice thickness estimates
Imke Sievers, Till A. S. Rasmussen, and Lars Stenseng
The Cryosphere, 17, 3721–3738,,, 2023
Short summary
Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020
Sukun Cheng, Yumeng Chen, Ali Aydoğdu, Laurent Bertino, Alberto Carrassi, Pierre Rampal, and Christopher K. R. T. Jones
The Cryosphere, 17, 1735–1754,,, 2023
Short summary

Cited articles

Barber, D. G., Hop, H., Mundy, C. J., Else, B., Dmitrenko, I. A., Tremblay, J.-E., Ehn, J. K., Assmy, P., Daase, M., Candlish, L. M., and Rysgaard, S.: Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone, Prog. Oceanogr., 139, 122–150, 2015. a
Beaven, S. G.: Sea ice radar backscatter modeling, measurements, and the fusion of active and passive microwave data, University of Kansas, 1995. a
Bishop, C. H.: Data assimilation strategies for state-dependent observation error variances, Q. J. Roy. Meteor. Soc., 145, 217–227, 2019. a
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of sea ice, J. Geophys. Res.-Oceans, 104, 15669–15677, 1999. a
Blockley, E. W. and Peterson, K. A.: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness, The Cryosphere, 12, 3419–3438,, 2018. a
Short summary
Observations show that the Arctic sea ice cover has reduced over the last 40 years. This study uses ensemble-based data assimilation in a stand-alone sea ice model to investigate the impacts of assimilating three different kinds of sea ice observation, including the novel assimilation of sea ice thickness distribution. We show that assimilating ice thickness distribution has a positive impact on thickness and volume estimates within the ice pack, especially for very thick ice.