Articles | Volume 17, issue 4
https://doi.org/10.5194/tc-17-1645-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1645-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Uncertainty analysis of single- and multiple-size-class frazil ice models
Fabien Souillé
CORRESPONDING AUTHOR
National Laboratory for Hydraulics and Environment (LNHE), EDF R & D, 6 Quai Watier, 78400 Chatou, France
Cédric Goeury
National Laboratory for Hydraulics and Environment (LNHE), EDF R & D, 6 Quai Watier, 78400 Chatou, France
Rem-Sophia Mouradi
Fluid Dynamics, Energy and Environment Department (MFEE), EDF R & D, 6 Quai Watier, 78400 Chatou, France
CEREA (Centre d'Enseignement et de Recherche en Environnement Atmosphérique), Joint Laboratory between École des Ponts ParisTech and EDF R & D, Université Paris-Est, 77455 Marne-la-Vallée, France
Related authors
No articles found.
Stefan Ivanell, Warit Chanprasert, Luca Lanzilao, James Bleeg, Johan Meyers, Antoine Mathieu, Søren Juhl Andersen, Rem-Sophia Mouradi, Eric Dupont, Hugo Olivares-Espinosa, and Niels Troldborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-88, https://doi.org/10.5194/wes-2025-88, 2025
Revised manuscript under review for WES
Short summary
Short summary
This study explores how the height of the atmosphere's boundary layer impacts wind farm performance, focusing on how this factor influences energy output. By simulating different boundary layer heights and conditions, the research reveals that deeper layers promote better energy recovery. The findings highlight the importance of considering atmospheric conditions when simulating wind farms to maximize energy efficiency, offering valuable insights for the wind energy industry.
Cited articles
Ashton, G.: Frazil ice, in: Theory of dispersed multiphase flow, Elsevier, 271–289, https://doi.org/10.1016/B978-0-12-493120-6.50017-9, 1983. a
Barrette, P. D.: A tabulated review of 83 laboratory studies on frazil ice, in: IAHR International Symposium on Ice, 14–18 June 2020, Trondheim, Norway,
https://www.iahr.org/library/infor?pid=8546 (last access: 11 April 2023), 2020. a
Barrette, P. D.: Understanding frazil ice: The contribution of laboratory
studies, Cold Reg. Sci. Technol., 189, 103334, https://doi.org/10.1016/j.coldregions.2021.103334, 2021. a
Baudin, M., Boumhaout, K., Delage, T., Iooss, B., and Martinez, J.-M.:
Numerical stability of Sobol' indices estimation formula, in: Proceedings of
the 8th International Conference on Sensitivity Analysis of Model Output (SAMO 2016), 30 November–3 December 2016, Le Tampon, Réunion Island, France,
https://www.gdr-mascotnum.fr/media/samo2016-sobol_vf.pdf (last access: 11 April 2023), 2016a. a
Baudin, M., Dutfoy, A., Iooss, B., and Popelin, A.-L.: OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation, Springer International Publishing, 1–38, https://doi.org/10.1007/978-3-319-11259-6_64-1, 2016b. a, b
Bombosch, A. and Jenkins, A.: Modeling the formation and deposition of frazil
ice beneath Filchner-Ronne Ice Shelf, J. Geophys. Res.-Oceans, 100, 6983–6992, 1995. a
Clark, S. and Doering, J.: Frazil flocculation and secondary nucleation in a
counter-rotating flume, Cold Reg. Sci. Technol., 55, 221–229,
https://doi.org/10.1016/j.coldregions.2008.04.002, 2009. a
Daly, S. F.: Frazil Ice Blockage of Intake Trash Racks, Cold Regions Technical Digest No. 91-1, Tech. rep., US Army Corps of Engineers, https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/2677/1/CRREL-TD-91-1.pdf (last access: 11 April 2023), 1991. a
Daly, S. F.: Frazil Ice Blockage of Water Intakes in the Great Lakes, J. Hydraul. Eng., 2006. a
Doering, J. C. and Morris, M. P.: River Ice Engineering/Ingénierie des
glaces fluviales A digital image processing system to characterize frazil ice, Can. J. Civ. Eng., 30, 1–10, https://doi.org/10.1139/l02-028, 2003. a
Ettema, R., Karim, M., and Kennedy, J.: Laboratory experiments on frazil ice
growth in supercooled water, Cold Reg. Sci. Technol., 10, 43–58,
https://doi.org/10.1016/0165-232X(84)90032-6, 1984. a
Frazer, E. K., Langhorne, P. J., Leonard, G. H., Robinson, N. J., and
Schumayer, D.: Observations of the size distribution of frazil ice in an Ice
Shelf Water plume, Geophys. Res. Lett., 47, e2020GL090498, https://doi.org/10.1029/2020GL090498, 2020. a, b
Ghobrial, T. R., Loewen, M. R., and Hicks, F.: Laboratory calibration of upward looking sonars for suspended frazil ice concentration, Cold Reg. Sci. Technol., 70, 19–31, https://doi.org/10.1016/j.coldregions.2011.08.010, 2012. a, b, c
Ghobrial, T. R., Loewen, M. R., and Hicks, F. E.: Characterizing suspended frazil ice in rivers using upward looking sonars, Cold Reg. Sci. Technol., 86, 113–126, https://doi.org/10.1016/j.coldregions.2012.10.002, 2013. a
Goeury, C., Audouin, Y., and Zaoui, F.: Interoperability and computational
framework for simulating open channel hydraulics: Application to sensitivity
analysis and calibration of Gironde Estuary model, Environ. Model. Softw., 148, 105243, https://doi.org/10.1016/j.envsoft.2021.105243, 2022. a
Gosink, J. P. and Osterkamp, T. E.: Measurements and Analyses of Velocity
Profiles and Frazil Ice-Crystal Rise Velocities During Periods of Frazil-Ice
Formation in Rivers, Ann. Glaciol., 4, 79–84, https://doi.org/10.3189/S0260305500005279, 1983. a, b
Hammar, L. and Shen, H. T.: Frazil evolution in channels, J. Hydraul. Res., 33, 291–306, https://doi.org/10.1080/00221689509498572, 1995. a, b
Kempema, E., Reimnitz, E., and Hunter, R. E.: Flume studies and field
observations of the interaction of frazil ice and anchor ice with sediments,
US Department of the Interior, Geological Survey, https://doi.org/10.3133/ofr86515, 1986. a
Kempema, E. W. and Ettema, R.: Fish, Ice, and Wedge-Wire Screen Water Intakes, J. Cold Reg. Eng., 30, 04015004, https://doi.org/10.1061/(ASCE)CR.1943-5495.0000097, 2016. a
Lal, D., Mason, R., and Strickland-Constable, R.: Collision breeding of crystal nuclei, J. Cryst. Growth, 5, 1–8, 1969. a
MacGillivray, B. H.: Handling uncertainty in models of seismic and postseismic hazards: toward robust methods and resilient societies, Risk Anal., 41, 1499–1512, 2021. a
Marko, J. and Jasek, M.: Sonar detection and measurement of ice in a freezing
river II: Observations and results on frazil ice, Cold Reg. Sci. Technol., 63, 135–153, https://doi.org/10.1016/j.coldregions.2010.05.003, 2010. a
Matoušek, V.: Frazil and skim ice formation in rivers, in: Proceedings of the IAHR Ice Symposium, 15–19 June 1992, Banff, Alberta, Canada,
https://www.iahr.org/index/committe/14 (last acces: 11 April 2023), 1992. a
McFarlane, V., Loewen, M., and Hicks, F.: Laboratory experiments to determine
frazil properties, in: Proceedings of the Annual General Conference of the
Canadian Society for Civil Engineering, 6–9 June 2012, Edmonton, Alberta, Canada, p. 10, 2012. a
McFarlane, V., Loewen, M., and Hicks, F.: Field observations of the growth rate of anchor ice crystals, in: Proceedings of the 23rd IAHR International
Symposium on Ice, 31 May–3 June 2016, Ann Arbor, MI, USA,
https://www.iahr.org/library/infor?pid=18500 (last access: 11 April 2023), 2016. a
Mercier, R. S.: The reactive transport of suspended particles: Mechanics and
modeling, in: PhD dissertation, Joint Committee on Oceanographic Engineering,
https://dspace.mit.edu/bitstream/handle/1721.1/15232/13174636-MIT.pdf?sequence=2 (last access: 11 April 2023), 1984. a
Morse, B. and Richard, M.: A field study of suspended frazil ice particles,
Cold Reg. Sci. Technol., 55, 86–102, https://doi.org/10.1016/j.coldregions.2008.03.004, 2009. a, b
Mouradi, R.-S., Goeury, C., Thual, O., Zaoui, F., and Tassi, P.: Physically
interpretable machine learning algorithm on multidimensional non-linear
fields, J. Comput. Phys., 428, 110074, https://doi.org/10.1016/j.jcp.2020.110074, 2021. a
Omstedt, A.: On Supercooling and Ice Formation in Turbulent Sea-water, J. Glaciol., 31, 263–271, https://doi.org/10.3189/S0022143000006596, 1985. a
open TELEMAC-MASCARET: http://www.opentelemac.org, last access: 11 April 2023. a
OpenTURNS: http://openturns.github.io/openturns/latest/index.html, last access: 11 April 2023. a
Osterkamp, T. and Gosink, J.: Frazil ice formation and ice cover development in interior Alaska streams, Cold Reg. Sci. Technol., 8, 43–56, 1983a. a
Osterkamp, T. and Gosink, J.: Frazil ice formation and ice cover development in interior Alaska streams, Cold Reg. Sci. Technol., 8, 43–56,
https://doi.org/10.1016/0165-232X(83)90016-2, 1983b. a
Razavi, S., Jakeman, A., Saltelli, A., Prieur, C., Iooss, B., Borgonovo, E.,
Plischke, E., Lo Piano, S., Iwanaga, T., Becker, W., Tarantola, S., Guillaume, J. H., Jakeman, J., Gupta, H., Melillo, N., Rabitti, G., Chabridon, V., Duan, Q., Sun, X., Smith, S., Sheikholeslami, R., Hosseini, N., Asadzadeh, M., Puy, A., Kucherenko, S., and Maier, H. R.: The Future of
Sensitivity Analysis: An essential discipline for systems modeling and policy
support, Environ. Model. Softw., 137, 104954, https://doi.org/10.1016/j.envsoft.2020.104954, 2021. a
Rees Jones, D. W. and Wells, A. J.: Solidification of a disk-shaped crystal
from a weakly supercooled binary melt, Phys. Rev. E, 92, 022406, https://doi.org/10.1103/PhysRevE.92.022406, 2015. a
Richard, M. and Morse, B.: Multiple frazil ice blockages at a water intake in
the St. Lawrence River, Cold Reg. Sci. Technol., 53, 131–149, 2008. a
Saltelli, A.: A short comment on statistical versus mathematical modelling,
Nat. Commun., 10, 1–3, 2019. a
Schaefer, V. J.: The formation of frazil and anchor ice in cold water, Eos
Trans. Am. Geophys. Union, 31, 885–893, https://doi.org/10.1029/TR031i006p00885, 1950. a
Sheikholeslami, R., Yassin, F., Lindenschmidt, K.-E., and Razavi, S.: Improved understanding of river ice processes using global sensitivity analysis approaches, J. Hydrol. Eng., 22, 04017048, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001574, 2017. a
Shen, H. T.: Mathematical modeling of river ice processes, Cold Reg. Sci. Technol., 62, 3–13, 2010. a
Shen, H. T. and Wang, D. S.: Under cover transport and accumulation of frazil
granules, J. Hydraul. Eng., 121, 184–195, 1995. a
Shen, H. T. and Wasantha Lal, A. M.: A Mathematical Model for River Ice
Processes, Tech. rep., US Army Corps of Engineers Cold Regions Research and
Engineering Laboratory, https://usace.contentdm.oclc.org/digital/api/collection/p266001coll1/id/6078/download (last access: 11 April 2023), 1993. a
Shen, H. T., Wang, D. S., and Lal, A. W.: Numerical simulation of river ice
processes, J. Cold Reg. Eng., 9, 107–118, 1995. a
Soize, C.: Uncertainty quantification, Springer, https://doi.org/10.1007/978-3-319-54339-0, 2017. a, b, c
Souillé, F., Taccone, F., and El Mertahi, C.: A Multi-class Frazil Ice
Model for Shallow Water Flows, in: TELEMAC-MASCARET User Conference, October 2020, Antwerp, 122–129,
https://hdl.handle.net/20.500.11970/107443 (last access: 11 April 2023), 2020. a
Sudret, B.: Uncertainty propagation and sensitivity analysis in mechanical
models – Contributions to structural reliability and stochastic spectral
methods, Habilitationa diriger des recherches, Université Blaise Pascal,
Clermont-Ferrand, France, 147, 53, https://ethz.ch/content/dam/ethz/special-interest/baug/ibk/risk-safety-and-uncertainty-dam/publications/reports/HDRSudret.pdf (last access: 11 April 2023), 2007. a, b
Tsang, G. and Hanley, T. O.: Frazil Formation in Water of Different Salinities and Supercoolings, J. Glaciol., 31, 74–85, https://doi.org/10.3189/S0022143000006298, 1985. a, b
Van Zelm, R. and Huijbregts, M. A.: Quantifying the trade-off between parameter and model structure uncertainty in life cycle impact assessment,
Environ. Sci. Technol., 47, 9274–9280, 2013. a
Ye, S. Q. and Doering, J.: Simulation of the supercooling process and frazil
evolution in turbulent flows, Can. J. Civ. Eng., 31, 915–926, https://doi.org/10.1139/l04-055, 2004. a
Ye, S. Q., Doering, J., and Shen, H. T.: A laboratory study of frazil evolution in a counter-rotating flume, Can. J. Civ. Eng., 31, 899–914, https://doi.org/10.1139/l04-056, 2004. a, b
Zacharov, V., Bejlinson, M., and Šatalina, I.: Features of ice conditions
in rivers and reservoirs of central Asia, in: Proceedings of IAHR Symposium
on Ice and its action on Hydraulic Structures, 26–29 September 1972, Leningrad, Russia, 224–228, https://iahr.oss-accelerate.aliyuncs.com/Communities/TC_WG/tcICE/2nd_IAHR_Ice_Symp_Lenningrad_1972.pdf (last access: 11 April 2023), 1972. a
Short summary
Models that can predict temperature and ice crystal formation (frazil) in water are important for river and coastal engineering. Indeed, frazil has direct impact on submerged structures and often precedes the formation of ice cover. In this paper, an uncertainty analysis of two mathematical models that simulate supercooling and frazil is carried out within a probabilistic framework. The presented methodology offers new insight into the models and their parameterization.
Models that can predict temperature and ice crystal formation (frazil) in water are important...