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Abstract. The formation of frazil ice in supercooled waters
has been extensively studied, both experimentally and nu-
merically, in recent years. Numerical models, with varying
degrees of complexity, have been proposed; these are often
based on many parameters, the values of which are uncertain
and difficult to estimate. In this paper, an uncertainty anal-
ysis of two mathematical models that simulate supercooling
and frazil ice formation is carried out within a probabilistic
framework. The two main goals are (i) to provide quantitative
insight into the relative importance of contributing uncertain
parameters, to help identify parameters for optimal calibra-
tion, and (ii) to compare the output scatter of frazil ice models
with single and multiple crystal size classes. The derivation
of single- and multi-class models is presented in light of re-
cent work, their numerical resolution is discussed, and a list
of the main uncertain parameters is proposed. An uncertainty
analysis is then carried out in three steps. Parameter uncer-
tainty is first quantified, based on recent field, laboratory and
numerical studies. Uncertainties are then propagated through
the models using Monte Carlo simulations. Finally, the rel-
ative influence of uncertain parameters on the output time
series – i.e., the total frazil volume fraction and water tem-
perature – is assessed by means of Sobol indices. The influ-
ence of input parameters on the long-term asymptote as well
as short-term transient evolution of the systems is discussed,
depending on whether gravitational removal is included or
not in the models.

1 Introduction

Formation of frazil ice in water bodies has been widely inves-
tigated because of its impact on submerged structures (Daly,
1991, 2006; Richard and Morse, 2008) and because it often
precedes formation of ice cover in rivers and oceans (Daly,
1994; Smedsrud and Jenkins, 2004). Frazil ice also plays an
important role in geophysical flows such as plumes of ice
shelf water under floating ice sheets (Bombosch and Jenkins,
1995; Rees Jones and Wells, 2018; Frazer et al., 2020). For
these reasons, the study of frazil formation processes is an
active area of research, with a large variety of applications in
river and coastal engineering.

The main drivers for the formation of frazil are the wa-
ter cooling rate resulting from heat exchanges with the at-
mosphere, the initial seeding of frazil nuclei and the turbu-
lent mixing. Then, the thermal growth process deriving from
the heat exchange between water and primitive crystals al-
lows a fine description of the balance between growth frazil
ice and water supercooling. Previous mathematical models
describing the evolution of frazil ice and water temperature
were based on ideas pioneered by Daly (1984, 1994). Omst-
edt (1985) developed a model based on a turbulent channel-
flow boundary layer theory, in which a mean particle of con-
stant geometric properties and constant Nusselt number is
considered. Mean particle-size models have been incorpo-
rated in numerical hydraulic tools such as CRISSP2D (Shen
and Wasantha Lal, 1993; Shen et al., 1995; Shen, 2010).
More complex models are based on the ice-number conti-
nuity equation introduced by Daly (1984), taking into ac-
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count the complexity of crystal distribution. In contrast with
single-size-class models, the crystal number continuity equa-
tions allow introduction of secondary nucleation and floccu-
lation processes. When combined with thermal growth, these
complement the modeling of frazil crystal size evolution.
Svensson and Omstedt (1994) proposed a numerical model
for solving the equations introduced by Daly (1984) by con-
sidering discrete radius intervals. Conceptual models for sec-
ondary nucleation and flocculation were introduced and cal-
ibrated to fit the experimental data of Michel (1963) and
Carstens (1966). Hammar and Shen (1991) derived a variable
particle-size model in two dimensions and later improved
it with secondary nucleation and flocculation (Hammar and
Shen, 1995). Variable particle-size models have also been in-
tegrated in TELEMAC-MASCARET (Souillé et al., 2020).
Numerous simplified implementations have been made that
consider a well-mixed water body. For example, Wang and
Doering (2005) worked with the same model as Svensson
and Omstedt (1994) and further discussed calibration of in-
fluential parameters in initial seeding, secondary nucleation,
and flocculation by comparing them with the experimen-
tal data of Clark and Doering (2004). Implementation of
multiple-size-class frazil dynamics in the context of sea ice
and ice shelf water plumes has also been proposed by Smed-
srud (2002), Smedsrud and Jenkins (2004) and Holland and
Feltham (2005). In the same context, Rees Jones and Wells
(2018) have recently shed new light on multiple-size-class
models and discussed crystal growth rate and the occurrence
of frazil explosion. They also identified and characterized the
steady-state crystal size distribution. Henceforth, single- and
multiple-size-class models will be referred to as SSC (sin-
gle size class) and MSC (multiple size class) models respec-
tively.

Common to all numerical model of frazil dynamics is their
use of a large number of parameters, making calibration diffi-
cult. The modeling studies mentioned above show that frazil
ice models can be fitted to reproduce the evolution of temper-
ature and frazil volume fraction. However, given the uncer-
tainty of fitting parameters, it is questionable whether these
models are predictive. As Rees Jones and Wells (2018) point
out, the consistency between experiments and models does
not necessarily mean parameterization is correct. This is par-
ticularly true when different processes compete and have
similar impact on the crystal size distribution. Besides, in-
troducing new processes in the models increases the number
of parameters that need calibration. This comes at the cost of
introducing new uncertain parameters and raises the question
of models trustworthiness.

This trade-off between uncertainties and model complex-
ity is often discussed in geophysical and environmental mod-
eling (MacGillivray, 2021; Van Zelm and Huijbregts, 2013).
On this matter Saltelli (2019) advises use of statistics to aid
mathematical modeling via “a systemic appraisal of model
uncertainties and parametric sensitivities”. There is, more-
over, a growing appreciation of how sensitivity analysis en-

hances the understanding of the intricate physical processes
involved in ice formation (Sheikholeslami et al., 2017). The
sensitivity of multiple-size-class frazil models to initial seed-
ing, secondary nucleation and flocculation parameters has
been investigated by Wang and Doering (2005) and Smed-
srud and Jenkins (2004), by simple modifications of specific
parameters. Although probabilistic methods are sometimes
used in processing observational data (Frazer et al., 2020),
to the author’s knowledge, probabilistic sensitivity analysis
of frazil ice models has never been performed. In addition,
comparison of SSC and MSC models in terms of uncertainty
of output has never been tackled, despite the prohibitive com-
putational cost of the MSC model, making the SSC approach
still relevant to many applications.

In this paper, we intend to bridge that gap by proposing an
uncertainty and sensitivity analysis of single and multiple-
class frazil ice models, using a of full description of param-
eters uncertainty (by probability density functions) and vari-
ance decomposition of model outputs. First, we introduce the
models and main hypotheses and discuss their implementa-
tion in Sect. 2. The uncertainty assessment methodology is
presented in Sect. 3. We then rely on numerous field and ex-
perimental measurements to quantify the uncertainties of in-
put parameters of the two frazil numerical models in Sect. 4.
Using Monte Carlo experiments, we next study the propa-
gation of these uncertainties on model outputs in Sect. 5:
in other words, the evolution of the frazil ice volume frac-
tion and the water temperature. The evolution of output scat-
ter is discussed and compared to the asymptotes of the dy-
namic systems. Finally, sensitivity analysis based on Sobol
indices (Sobol, 2001) and aggregated Sobol indices enables
us to propose a selection of the most influential parameters
in both models. We conclude with this study’s perspectives
in Sect. 6.

2 Frazil ice dynamics

This section introduces the continuum equations used to de-
scribe evolution of water temperature and frazil volume frac-
tion, as well as their discrete counterparts and their numerical
resolution under the assumption of well-mixed water bodies.
The parameters of the models that can be considered uncer-
tain are also introduced.

2.1 Mathematical description

Frazil crystals are assumed to be discs of radius r and thick-
ness λ. The ratio between diameter and thickness, denoted
R = 2r/λ, is supposed to be constant as crystals grow. Let
us define n as the crystal number density, which corresponds
to the number of crystals per unit volume per unit length in
radial space. The total number of particles per unit volume

is then defined as N =
∞∫
0
n(r)dr . We also introduce the frazil
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volume fraction density as c = nV , in which V = πr2λ is
the crystal volume. The volume proportion of the water–ice
mixture occupied by frazil ice, i.e., the total volume fraction

of frazil, is then defined as C =
∞∫
0
c(r)dr . An incompressible

water–ice mixture of velocity u and depth h is considered.
Following Daly (1984) the number density balance equation
can be defined as
∂n

∂t
+u · ∇n−∇ · (νc∇n)=−

∂

∂r
(Gn)︸ ︷︷ ︸
(1)

+
(
ṄT+ ṄI

)
δ (r − rc)︸ ︷︷ ︸

(2)

−
1
V

∂

∂r
(FV n)︸ ︷︷ ︸
(3)

−wr
∂n

∂z︸ ︷︷ ︸
(4)

, (1)

where νc is the frazil particle diffusivity, wr is the buoyancy
velocity and the remaining right-hand-side terms are source
terms described hereafter.

– The source term (1) represents the crystal size evolution
due to thermal growth, resulting from the heat exchange
between the supercooled water and ice particles. The
crystals can be considered to grow mainly on their pe-
ripheral area, defined by a = 2πrλ (Daly, 1994). Frazil
evolution is then driven by the radial growth rate G,
equal to

ρiLiG=
Nukw

δT
1T, (2)

in which ρi is the frazil ice density, Li is the latent heat
of ice fusion, and the right-hand side is the heat ex-
change between the crystal of temperature Ti and the
surrounding water of temperature T . The latter is mod-
eled as a function of the temperature delta1T = Ti−T ;
the thermal conductivity of water kw; the Nusselt num-
ber Nu, which represents the ratio between turbulent
heat transfer and conduction heat transfer; and a ther-
mal boundary layer length scale, denoted δT (which is
either chosen as the radius or thickness in the literature).
The crystal temperature Ti is assumed to be equal to
the freezing temperature denoted Tf. The Nusselt num-
ber can be described as a function of ratio m∗ = r/η,
where η is the Kolmogorov length scale, which can be
defined as a function of the turbulent dissipation rate ε
as η = (ν3/ε)1/4, in which ν is the molecular viscosity
of water (Daly, 1984). The Nusselt number formulation
described by Holland et al. (2007) is used. For small
particles, i.e.,m∗ ≤ 1, heat transfer is governed by diffu-
sion and convection, and the Nusselt number can there-
fore be written as

Nu=

{
1+ 0.17m∗Pr1/2 if m∗ ≤ Pr−1/2

1+ 0.55m∗2/3Pr1/3 if Pr−1/2 <m∗ ≤ 1
, (3)

where Pr is the Prandtl number, defined as the ratio be-
tween molecular and thermal diffusivity. For larger par-
ticles (m∗ > 1), heat transfer is governed by turbulent

mixing of the boundary layer around the crystal, and
the Nusselt number is defined by

Nu={
1.1+ 0.77α0.035

T m∗2/3Pr1/3 if αTm
∗4/3
≤ 1000

1.1+ 0.77α0.25
T m∗Pr1/3 otherwise

, (4)

where αT is the turbulent intensity.

– Heterogeneous nucleation (growth from foreign nuclei)
and secondary nucleation (birth of new nuclei due to
breakage of parent crystals) are invoked to explain the
continuous feed of frazil nuclei during the rapid initial
frazil growth (Daly, 1984, 1994). Heterogeneous nucle-
ation is mainly caused by impurities that come either
from the water body itself (biological elements, sus-
pended sediments, etc.) or by penetration of new nuclei
from the atmosphere (meteorological conditions or arti-
ficial seeding during experiments). The source term (2)
of Eq. (1) models the introduction of new nuclei, as well
as the secondary nucleation, where ṄI is a seeding rate,
and ṄT the secondary nucleation rate function of col-
lisions between crystals. The function δ(r − rc) is the
Dirac delta function, and rc is the critical radius (radius
of new nuclei). Note that seeding and secondary nu-
cleation are assumed to introduce particles of the same
size. Collisions are supposed to cause small nuclei to
break off from parent crystals with a frequency of col-
lision proportional to the crystal velocity relative to the
fluidUr and the total number of particlesN that are con-
tained in the volume swept by the crystal (Svensson and
Omstedt, 1994). The secondary nucleation rate ṄT is
then defined as

ṄT = ñ

∞∫
0

πr2Ur(r)n(r)dr, (5)

where Ur =

√
4εr2

15ν +w
2
r is the geometric mean between

turbulent velocity and buoyant rise velocity. The num-
ber ñ=max(N,nmax) is the average number of parti-
cles per unit volume that take part in the collisions, and
nmax is a fitting parameter controlling the efficiency of
the collision breeding. This parametrization was also
followed by Smedsrud (2002), Smedsrud and Jenkins
(2004), Wang and Doering (2005) and Holland and
Feltham (2005).

– The source term (3) of Eq. (1) is a flocculation source
term supposed to represent the net effect of both floccu-
lation and breakup, as introduced by Svensson and Om-
stedt (1994), who chose F = F0r

2, where F0 is a con-
stant. Their choice was motivated by the intuition that
larger crystals are more prone to flocculate. However, as
explained by Rees Jones and Wells (2018), this yields a
linear flocculation in the number of crystals. However
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one could argue that flocculation should be quadratic in
the number of crystals like secondary nucleation since it
is physically based on the same collision mechanisms.
Moreover, it also depends on hydrodynamic conditions,
of which the effects on flocculation are still poorly char-
acterized in the literature. To be consistent with models
in the literature, the formulation proposed by Svensson
and Omstedt (1994) is chosen for this paper.

– The source term (4) of Eq. (1) represents the buoyancy
of frazil ice crystals, where wr is the rise velocity. In
the present paper, it is set to wr = 32.8(2r)1.2, follow-
ing Svensson and Omstedt (1994), who simplified the
model proposed by Daly (1984). For consistency with
previous modeling studies, we retain this simple formu-
lation, even if many other formulations have been pro-
posed as summarized by Morse and Richard (2009) and
McFarlane et al. (2014).

Finally, the thermal balance of the water–ice mixture com-
plements Eq. (1). Assuming C� 0, the water fraction tem-
perature equation is obtained:

∂T

∂t
+u · ∇T −∇ · (νt∇T )=

φ

ρcp
+
ρiLi

ρcp

∞∫
0

G(r)a(r)n(r)dr, (6)

where T is the temperature of the water fraction of the water–
ice mixture, νt is the thermal diffusivity, ρ is the density of
water, cp is the specific heat of water and φ is the net heat
source resulting from heat exchanges with the atmosphere in
watts per cubic meter (W m−3).

In the following sections, a well-mixed water body is con-
sidered. Equations (1) and (6) are written in terms of space-
averaged quantities. This assumption allows us to neglect the
convection and diffusion operators and to focus on solving
the average temperature and average frazil volume fraction.
Therefore, the partial differential equations of frazil and tem-
perature are simplified to a coupled set of ordinary differen-
tial equations (ODEs) including only the source terms.

2.2 Radial space discretization

In this section we introduce a multiple-size-class MSC frazil
ice model, which is a discrete version of Eqs. (1) and (6)
in radial space. It consists of considering m classes of con-
stant radius chosen between a minimum and a maximum ra-
dius (Svensson and Omstedt, 1994). For each class i, the ra-
dius and the thickness are supposed to be equal to ri and
λi = 2ri/R (1≤ i ≤m). The peripheral area as well as the
surface and volume of frazil crystals are defined as ai =
a(ri)= 2πriλi , si = s(ri)= 2π(riλi+r2

i ) and Vi = V (ri)=
πr2

i λi , respectively. A log-uniform discretization of the ra-
dial space is chosen as in previous studies (Svensson and
Omstedt, 1994; Wang and Doering, 2005; Rees Jones and
Wells, 2018). The number of crystals of class i is denoted ni ,
and, similarly, the volume fraction of crystals of class i is

denoted ci . The total volume fraction of frazil and total num-

ber of particles are then defined as C =
m∑
i=1
ci and N =

m∑
i=1
ni

with ci = niVi , respectively. The discrete version of Eq. (1)
written in terms of volume fraction balance reads
dci
dt
= Vi (0i−1ci−1+ (3i −0i)ci −3i+1ci+1)︸ ︷︷ ︸

(1)

+ τi︸︷︷︸
(2)

+βi−1ci−1−βici︸ ︷︷ ︸
(3)

− γici︸︷︷︸
m

(4) (1≤ i ≤m), (7)

with the boundary conditions V0 = Vm+1 = 00 = 0m =

3m+1 = β0 = βm = 0. The discrete versions of the source
terms introduced in Eq. (1) are defined following previous
work (Svensson and Omstedt, 1994; Wang and Doering,
2005; Holland and Feltham, 2005).

– The thermal growth source term (1) is composed of ther-
mal growth and melt functions 0i and 3i , which are
defined as

0i =H
Giai

Vi1Vi
, (8)

3i = (1−H)
Gisi

Vi1Vi−1
, (9)

where Gi =G(ri), 1Vi = Vi+1−Vi and H =He(Tf−

T ), with He the Heaviside function allowing a switch
between melting or freezing. We assume that frazil crys-
tals grow from their peripheral area ai but melt from
their surface si (Holland and Feltham, 2005).

– The crystal birth source term (2), composed of the sec-
ondary nucleation and seeding, reads

τi 6=1 =−ζαici, (10)

τi=1 = τsV1/h+

m∑
j=2

αj cj , (11)

where ζ = V1/Vi is a coefficient to conserve crystal vol-
ume; αi = πñUr(ri)r

2
i ; ñ=max(N,nmax), with nmax a

fitting parameter for collision breeding; and τs is a con-
stant seeding rate in m−2 s−1.

– The flocculation source term (3) is defined as βi =
afri/r1, where af is a flocculation coefficient in s−1.

– The buoyancy of crystals is simplified into a grav-
itational removal sink term (4) defined as γi =

−wr(ri)ad/h, in which h is the water depth. We intro-
duce a coefficient ad to account for the uncertainty of
the rise velocity and gravitational removal process.

Finally, writing the thermal growth source term as Si =
Vi(0i−1ci−1+(3i−0i)ci−3i+1ci+1), one can write the dis-
crete version of Eq. (6) as

dT
dt
=

φ

ρcp
+
ρiLi

ρcp

m∑
i=1

Si . (12)
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A general discrete frazil ice model is implemented in the
present work (Eqs. 7 and 12) so that one can easily retrieve
the formulations developed in previous papers. For example,
supposing H = 1, ad = 1, and τs = 0 and writing ci = niVi ,
Eq. (7) is equivalent to Eq. (4) in Wang and Doering (2005)
and Eq. (1) in Svensson and Omstedt (1994) with ζ = 1.
By also neglecting flocculation (af = 0), it is equivalent to
Eq. (10) in Rees Jones and Wells (2018).

2.3 Single-size-class simplification

A simplified approach is to take a single-size-class SSC com-
posed only of particles of radius r representative of the whole
crystal distribution. A simplified set of equations for the
frazil volume fraction and water temperature can then be
written as

dC
dt
=GaN +

1
h
(V τs−wradC), (13)

dT
dt
=

φ

ρcp
+
ρiLi

ρcp
GaN, (14)

where a = a(r), V = V (r), wr = wr(r) and G=G(r), with
G(r) being defined by Eq. (2) and the Nusselt number by
Eqs. (3) and (4). In the previous equations, τs is the seeding
rate, ad is the buoyancy coefficient, h is the water depth and
wr is the buoyancy velocity. The SSC system can either be
expressed in terms of total number of frazil crystalsN or total
frazil volume fraction C using the expression N = C/V .

2.4 Numerical methods to solve governing equations

A semi-implicit theta scheme is implemented for the MSC
model, with a constant time step 1t , and a fully implicit
method is used for the SSC model. Details on the numerical
resolution are provided in Appendix A. Note that the semi-
implicit time scheme is subject to a stability condition func-
tion of the smallest radius. In the present study, we found
that, for the range of radius tested in the sensitivity analysis,
decreasing the time step below 1t = 0.25 s did not impact
the results, so a value of 0.25 s was retained for all simula-
tions.

An important aspect of the numerical frazil ice models pre-
sented in this paper is the need to provide a non-zero ini-
tial condition for the frazil volume fraction (in absence of
seeding: i.e., τs = 0). In the case of MSC models, Svens-
son and Omstedt (1994) assumed a uniform initial number
of particles n0 in each radius class, i.e., ni(t0)= n0 (1≤ i ≤
m). We followed the same principle to initialize the system
but fixed the number of initial particles at zero for classes
with a radius exceeding a threshold r0: i.e., nri≤r0(t0)= n0
like proposed in other works (Holland and Feltham, 2005;
Rees Jones and Wells, 2018). To be able to compare SSC
and MSC models, we worked in terms of initial volume frac-
tion of frazil C(t0)= C0. The system was then initialized
with n0 = C0/

∑
ri≤r0

Vi and ci(t0)= ni(t0)Vi (1≤ i ≤m). As

the initial setup has a significant influence on the results (Hol-
land and Feltham, 2005), C0 and r0 are considered in the fol-
lowing sections as uncertain parameters.

To test convergence in terms of the number of radius
classes, we make it vary from m= 10 to m= 200. The re-
sults, presented in Fig. 1, are consistent with observations by
Rees Jones and Wells (2018) that the system requires m&
100 to converge. Note that Svensson and Omstedt (1994) and
Wang and Doering (2005) took m= 20 and m= 40, respec-
tively. It should also be noted that convergence in the number
of classes depends on the initialization method of the system,
as highlighted by Holland and Feltham (2005). To perform
all the numerical simulations required for a complete sensi-
tivity analysis, m= 100 was chosen as a trade-off between
numerical convergence and computational cost.

2.5 Study cases and model parameters

In the present study, we focus on the evolution of wa-
ter temperature and total frazil volume fraction in a super-
cooled, well-mixed water body of depth h= 1 m. To fo-
cus on the frazil modeling rather than heat budget, uncer-
tainties deriving from exchanges with the atmosphere are
neglected and the cooling rate φ is considered determin-
istic and constant over time in all experiments. Nonethe-
less, different values of φ were tested, ranging from −50 to
−1000 W m−3, to test the variability of the results in dif-
ferent cooling rate situations. As described in previous sec-
tions, frazil ice models are driven by many parameters, some
of which are subject to a significant degree of uncertainty.
The list of parameters considered in the present study for
conducting the uncertainty analysis is shown in Table 1.
Some physical properties are considered constant and are
taken at T = 0 ◦C such that ν = 1.792× 10−6 m2 s−1, ρ =
999.82 kg m−3, ρi = 916.8 kg m−3, Li = 3.35× 105 J kg−1,
cp = 4.1855× 103 J kg−1 K−1 and kw = 0.561 W m−1 K−1.

Taking the SSC model as a reference, one can simply vi-
sualize the main feature of frazil dynamic systems. When
time is close to zero, the initial temperature decrease rate
is defined by lim

t→0
Ṫ = φ/ρcp. In the absence of seeding and

gravitational removal (i.e., τs = 0 and ad = 0), the tempera-
ture decreases to the maximum supercooling point, charac-
terized by a maximal temperature depression, denoted θ =
max(Tf− T ), and a critical time, denoted tc. After the max-
imum supercooling, the frazil production rate releases more
heat compared to that released in the atmosphere, leading to
an increase in water temperature which tends toward freezing
point. Finally, when time tends to infinity, there is a balance
between the frazil growth source term and the cooling rate.
This leads to a linear increase in frazil volume fraction at a
constant rate, i.e., lim

t→+∞
Ċ =−φ/ρiLi . This typical evolu-

tion of water temperature and frazil volume fraction is de-
scribed in Fig. 2, in which the frazil volume fraction asymp-
tote, denoted C∞, is defined as

https://doi.org/10.5194/tc-17-1645-2023 The Cryosphere, 17, 1645–1674, 2023
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Figure 1. MSC model convergence in the number of classes with C0 = 4.5×10−8, r0 = 0.2 mm, rmin = 10−5 m, rmax = 10−2 m, dt = 0.1 s,
φ =−1400 W m−3, ε = 1.2× 10−3 m2 s−3, αT = 0.0876, nmax = 8× 106 m−1, af = 10−4 s−1, τs = 0 m−2 s−1 and ad = 0. Number of
crystals per class (a) at initial time (black) and at time t = 300 s (color). Water temperature and frazil volume fraction vs. time (b).

Table 1. Description of uncertain parameters of the frazil ice models.

Parameter Unit Description Category Model

C0 – Initial frazil volume fraction Initial condition Both
r0 m Initial maximum radius Initial condition MSC
rmin m Minimum radius Discretization MSC
rmax m Maximum radius Discretization MSC
r m Mean radius Discretization SSC
R – Diameter-to-thickness ratio Source term 1 Both
δT m Thermal growth length scale Source term 1 Both
ε m2 s−3 Turbulent dissipation rate Source terms 1, 2 Both
αT – Turbulent intensity Source term 1 Both
nmax m−3 Secondary nucleation efficiency cap Source term 2 MSC
τs m−2 s−1 Seeding rate Source term 2 Both
af s−1 Flocculation coefficient Source term 3 MSC
ad – Buoyancy coefficient Source term 4 Both

C∞ = C0−φt/ρiLi . (15)

By introducing seeding and gravitational removal, i.e., τs 6= 0
and ad 6= 0, the frazil ice long-term asymptote is modified,
and we have lim

t→+∞
Ċ =−φ/ρiLi+ (V τs−wradC)/h. Con-

sidering φ and τs as constant over time, this yields a con-
vergence of the frazil volume fraction towards a finite limit,
defined by the ratio between the buoyancy removal and the
production rate due to thermal growth and seeding, which
reads

C∞ =
h

adwr

(
−

φ

ρiLi
+
V τs

h

)
. (16)

It should be observed that the steady states are not affected by
the crystal growth rate. Similar observations were discussed
by Rees Jones and Wells (2018) for the MSC model.

In the following the recovery time is defined as the time
when temperature has recovered 90 % of its supercooling
depression. We refer to the recovery phase to describe the

long-term evolution of the system, i.e., all times past recov-
ery time. Similarly, we will refer to the transient phase as
times between initial time and recovery time.

In the present study, we analyzed the uncertainty of in-
put parameters in the main transient and steady-state features
of the frazil ice models with and without gravitational re-
moval. We started the simulation with a water temperature
equal to the freezing temperature (which is supposed to be
equal to zero in the absence of salinity: i.e., Tf = 0 ◦C). We
checked that all the simulations ran beyond the critical time.
For the range of parameters considered there, it was found
that choosing a final time of tf ' 1 h was enough to capture
the transient features of the ODE systems.

Note that both the SSC and MSC models are able to re-
produce the experiments of Michel (1963), Carstens (1966)
and Clark and Doering (2004) as shown by Svensson and
Omstedt (1994) and Wang and Doering (2005). In Fig. 2 we
give an example of the results of both SSC and MSC models
compared to Carstens (1966) experimental results (case 1).
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Figure 2. Typical evolution of water temperature and frazil volume fraction vs. time (a) and reproduction of Carstens (1966) case 1 experi-
ments (b) with dt = 0.1 s, φ =−1400 W m−3, ε = 1.2×10−3 m2 s−3, αT = 0.0876, nmax = 8×106 m−1, af = 10−4 s−1, τs = 0 m−2 s−1,
ad = 0, r = 3.8× 10−4 m, R = 10, C0 = 5.1× 10−6 (SSC) and C0 = 4.5× 10−8 (MSC), r0 = 0.2 m, rmin = 10−5 m, rmax = 10−3 m,
m= 100, and δT = λ.

3 Probabilistic framework for uncertainty analysis

The objective of this section is to describe the mathemat-
ical tools necessary to study the uncertainties of SSC and
MSC frazil ice models. An uncertainty study of a numeri-
cal model can be performed in three steps (Sudret, 2007).
The first step consists in identifying the uncertain param-
eters and characterizing the probabilities of occurrence for
their values through probability density functions (PDFs),
which is referred to as quantification of uncertainty sources.
The second step concerns the propagation of uncertainties
through the interest models, generally using sampling tech-
niques (e.g., Monte Carlo) to obtain possible values of the
target outputs (here frazil ice concentration, water tempera-
ture) and compute their statistical estimates (mean, standard
deviation, percentiles, etc.). The third step, called sensitiv-
ity analysis, focuses on ranking the uncertain parameters in
terms of influence on the target output. In the following, for-
mulations for the statistical estimates and sensitivity anal-
ysis indices are given, with a summary of elements essen-
tial to understand this paper. Theoretical details can be found
in Soize (2017) and Sudret (2007). All uncertainty analysis
computations were performed with the OpenTURNS library
(version 1.18) developed by a partnership between Airbus
Group, EDF R & D, IMACS, ONERA and Phimeca (Baudin
et al., 2016b).

3.1 Uncertainty quantification

Let X = (X1, . . ., XnX ) be the vector of uncertain parame-
ters of the frazil ice model, where nX is the number of un-
certain parameters. Let g be the interest frazil model, either
SSC or MSC models presented in Eqs. (14) and (12) for tem-
perature and Eqs. (13) and (7) for frazil volume fraction.
The output of the interest models is the frazil volume frac-
tion and water temperature discrete time series, i.e., T (tk)
and C(tk) (1≤ k ≤ nt ), which we will generally denote Y =

(Y 1, . . ., Y nt ) below for the sake of simplicity. The random
vectors X and Y are linked through frazil models g such that
Y = g(X,d), where d is a deterministic vector, i.e., fixed pa-
rameters in contrast with the uncertain set of inputs X.

To undertake the uncertainty studies, both the inputs X

and the interest outputs Y are considered to be random vec-
tors. We assume that X has a density pX, so that P(X ∈ E ⊆
DX)=

∫
E

pX(x)dx, where E is a subset from the space of all

possible valuesDX. Each elementXi and Y k of the input and
output vectors is hence characterized by a PDF.

The results of the uncertainty analysis are directly linked
to the UQ (uncertainty quantification) study specification and
consequently to the description of the uncertain input param-
eters X. Thus, special attention is paid to propose a relevant
quantification of uncertainty sources. This particular point is
addressed in Sect. 4, in which frazil literature is explored to
provide adequate bounds and PDFs for each parameter iden-
tified in Table 1.

3.2 Uncertainty propagation of random variables

In the following, we suppose that PDFs of inputs X are
known, in contrast to those of Y . The objective is therefore
to characterize the latter by estimating statistical indicators
as the PDF’s mean and standard deviation. To achieve this, a
Monte Carlo sampling method can be used.

In the Monte Carlo method, we generate a sample of in-
dependent observations of the random vector X using the
joint PDF of the input random vector. For each observa-
tion of the input X, we evaluate the corresponding output Y .
The resulting experimental design of the input random vec-
tor X is an array of size N × nX, where each row, denoted
xi =

{
x1, . . .,xnX

}
, represents a possible configuration of the

frazil model. The output realizations, i.e., yi = {y
1
i , . . ., y

nt
i },

are generated by N deterministic simulations with corre-
sponding inputs. For a sample of size N , the output of
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the model is a N × nt array: Y = [yki ]i,k = [g
k(xi,d)]i,k ∈

RN×nt . Each row of the matrix represents one output time
series for a given set of input parameters, while each column
represents the output realizations at a given time tk .

Statistical estimators of the response can then be com-
puted. The Monte Carlo estimation of the mean, de-
noted µ̂Y k , and standard deviation, denoted σ̂Y k , at time tk
reads

µ̂Y k =
1
N

N∑
j=1

ykj and σ̂Y k =

√√√√ 1
N

N∑
j=1

(
ykj − m̂Y k

)2
. (17)

These estimations converge to the true values following the
law of large numbers (conditioned by the existence of corre-
sponding PDF’s first and second moment, i.e., expectation
and variance; Soize, 2017). The convergence order of the
Monte Carlo method is given by the central limit theorem,
leading to a decrease in the confidence intervals’ sizes pro-
portional to 1/

√
N . In the results of this paper, confidence

intervals of the estimated mean and standard deviation are
computed using a bootstrap method.

3.3 Sensitivity analysis using Sobol indices

Sensitivity analysis is essential in understanding numerical
models (Razavi et al., 2021). It aims at quantifying the impact
of input variable imprecision on the accuracy of the model
output variables. Conventional approaches to global sensitiv-
ity analysis (GSA) imply the stochastic estimation of statisti-
cal moments and indices classically achieved with the Monte
Carlo technique. In the present work, the relative influence of
uncertain parameters on the output time series is assessed by
means of Sobol indices resulting from the ANOVA (analysis
of variance) variance decomposition (Sobol, 2001). Sobol in-
dices are computed via a modified version of the method pro-
posed by Saltelli (2002), which is described in Appendix B.
For each time step tk (1≤ k ≤ nt ) and i ∈ {1, . . ., nX}, first-
order and total Sobol indices, denoted Ski and ST ki respec-
tively, are computed. By definition, at any time tk , the to-
tal Sobol sensitivity index (ST ki ) measures the contribution
to the output variance of the uncertain variable Xi , includ-
ing all variance caused by its interaction, of any order, with
any other input variables. Thus, the variance part explained
by variable interactions of the input factor Xi with the other
uncertain parameters is determined by subtracting the total
Sobol sensitivity index (ST ki ) and the first-order Sobol in-
dex (Ski ) characterizing the influence of the variableXi alone.
Finally, the discrete time first-order and total Sobol indices
are aggregated, denoted ASi and ASTi respectively, as pro-
posed by Gamboa et al. (2014).

4 Uncertainty source quantification

Many laboratory experiments have been carried out to bet-
ter understand frazil ice dynamics as summed up by Barrette

(2020, 2021). These experiments, as well as field measure-
ments, help us define parameter variability. In this section,
we consider the uncertain parameters listed in Table 1 and
deduce adequate variability and PDFs for uncertainty propa-
gation and sensitivity analysis using the aforementioned data.
The main geometrical properties of crystals and radial space
discretization are first discussed, as well as initial concen-
tration. We then review all the parameters involved in frazil
source terms in the same chronology as presented in Sect. 2.

4.1 Crystals’ geometrical properties

Description of the frazil crystals’ shape has been the sub-
ject of several field and laboratory measurements (Arakawa,
1954; Daly, 1984, 1994). The crystals have been described as
thin discs that grow mainly from their peripheral area. More
recently, photos have brought valuable confirmation of the
disc shape of frazil crystals but also highlighted the com-
plexity in larger flocs’ geometry (Clark and Doering, 2006;
Ghobrial et al., 2012; McFarlane et al., 2014, 2015; Schneck
et al., 2019). Let us recall that, in both SSC and MSC models,
discretization is done in radial space. Therefore, either the ra-
tio R or the thickness λ must be considered constant to fully
describe disc-shaped particles. In the present study, frazil
crystals are assumed to have the same aspect ratios, which is
consistent with previous studies’ hypotheses (Svensson and
Omstedt, 1994; Holland et al., 2007). Note that Rees Jones
and Wells (2018) considered constant thickness instead but
highlighted a weak dependency of the thermal growth on the
aspect ratio. Let us discuss the uncertainties associated with
the choice of the radius discretization as well as the diameter-
to-thickness ratio.

Either a mean radius or a radius space discretization must
be specified for SSC and MSC models, respectively. In both
cases, observed radius distribution and particle size, reported
in a many studies, are taken into consideration. For the sake
of synthesis, we analyzed the corresponding publications
from 1950 to 2019 and report the available observations in
Fig. 3. This figure is complementary to Table 7 of McFarlane
et al. (2017), who summarize particle sizes from both lab-
oratory and field measurements. Daly and Colbeck (1986)
and Clark and Doering (2006) reported log-normal distribu-
tions of particles in laboratory experiments, with a mean ra-
dius ranging from 0.12 to 0.25 mm and 0.49 to 1.4 mm, re-
spectively. This was later confirmed by Ghobrial et al. (2012)
and McFarlane et al. (2015) in the University of Alberta cold
room facility, with mean size ranging from 0.66 to 0.94 mm.
Schneck et al. (2019) recently published similar results under
different salinities, with mean radius ranging from 0.45 to
0.52 mm. Log-normal distributions were also observed in
field studies, with the mean ranging from 0.59 to 0.94 mm
in a report by McFarlane et al. (2017). Gathering together
all reported mean radius ranges, an uncertainty interval of
1.2×10−4 to 2.1×10−3 m was chosen for the mean radius in
the SSC model. When their full variation range is considered,
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Figure 3. Particle-size ranges (thick grey line), mean range (thin
dark line) and log-normal distributions’ mean radius (red vertical
ticks) reported in field or laboratory experiments (Schaefer, 1950;
Arakawa, 1954; Carstens, 1966; Gosink and Osterkamp, 1983; Os-
terkamp and Gosink, 1983b; Ettema et al., 1984; Wuebben, 1984;
Kempema et al., 1986; Daly and Colbeck, 1986; Doering and Mor-
ris, 2003; Ye et al., 2004; Ye and Doering, 2004; Clark and Doering,
2004, 2006, 2009; Marko and Jasek, 2010; Ghobrial et al., 2012;
McFarlane et al., 2012; Ghobrial et al., 2013; McFarlane et al.,
2015; Kempema and Ettema, 2016; McFarlane et al., 2016, 2017;
Schneck et al., 2019).

frazil crystal sizes are known to follow a log-normal distribu-
tion as previously argued, but there is no evidence or reason
for the mean radius being log-normal as well. The number of
field and laboratory observations is still too small to fit an em-
pirical PDF on the mean radius with reasonable confidence.
Hence, a log-uniform PDF is chosen with the previously de-
scribed bounds. Using log-uniform approximate distributions
allows us to explore by means of evenly distributed values the
parameters that vary over several orders of magnitude.

For the MSC model, both a minimum and a maximum ra-
dius are to be determined for the bounds of the radial dis-
cretization. The minimum radius can be determined from
Lal et al. (1969) survival theory and is about 4 µm (Mercier,
1984). The maximum size of frazil particles is about 1 to
5 mm according to Clark and Doering (2004), but frazil
flocs can be significantly larger as shown by Schneck et al.
(2019) and can range up to several centimeters (McFarlane
et al., 2017). Svensson and Omstedt (1994) worked with
[4× 10−6, 3× 10−3] m while Wang and Doering (2005) and
Rees Jones and Wells (2018) chose [7× 10−5, 5× 10−3

]m
and [5× 10−5, 5× 10−2] m, respectively. In the literature,
rmin is taken to be between 10−6 and 10−4, so we chose an
intermediate order of magnitude of rmin = 10−5 m. The same
choice was made for the maximum radius, leading to a value
of rmax = 10−3 m. Both parameters were then considered
as uncertain parameters with log-uniform PDFs and were

taken to be within [10−6, 10−4] for rmin and within [10−3,
10−1] for rmax.

The aspect ratio ranged from 6 to 13 in the study by
Daly and Colbeck (1986), while there were greater values,
from 12.2 to 16.33, in Clark and Doering (2004, 2006).
Arakawa (1954) reported an even wider aspect ratio range,
from 5 to 100. More recently, McFarlane et al. (2014) re-
ported aspect ratios ranging from 11 to 71 with a mean of 37
and a standard deviation of 11. Considering all these obser-
vations, an uncertainty range of 5 to 100 was chosen for the
diameter-to-thickness ratio. As not enough data to properly
fit a PDF on aspect ratios were provided, a uniform PDF is
chosen for the sensibility analysis (maximum entropy princi-
ple; Soize, 2017).

Weak dependency of the thickness on the radius was re-
ported by McFarlane et al. (2014), who suggest assuming a
increasing aspect ratio as discs grow instead of a constant as-
pect ratio. Note also that, as frazil ice forms larger flocs, the
disc shape hypothesis commonly accepted in models does
not hold anymore. This could lead to erroneous estimations
of the thermal growth rate of larger flocs. However, neither
the variability of the aspect ratio in the crystals’ distribution
nor that of the shape is considered in the present study, and
we make the assumption that r and R are independent.

4.2 Initial concentration

As previously mentioned, either a non-zero initial volume
fraction or a non-zero seeding rate is required to trigger ther-
mal growth in the model. In experimental facilities, frazil ice
nuclei are sometimes artificially introduced in water to initi-
ate frazil ice growth (Muller, 1978; Tsang and Hanley, 1985),
but the initial concentration is rarely addressed and depends
on the method of initial seeding. As such, a large uncertainty
domain is considered in this study for the initial volume frac-
tion of frazil, ranging from 10−8 to 10−4, to account for the
lack of data on this parameter. Additionally, a log-uniform
PDF is retained since the parameter range variation varies
over several orders of magnitude.

For the MSC model, it is necessary to choose how the
initial volume fraction is distributed over size classes. One
possibility is to initialize the system with log-uniform dis-
tributions, similar to the one observed in laboratory exper-
iments. However, observations of nuclei close to rc in size
are limited. Consequently, authors have preferred simpler ini-
tialization methods, whereby a constant number of crystals
is distributed equally over all classes (Svensson and Omst-
edt, 1994; Wang and Doering, 2005; Rees Jones and Wells,
2018). Holland et al. (2007) argued that distributing the ini-
tial volume fraction over a range of radii, thus changing the
initial number of particles per class, significantly impacts re-
sults. They found that filling only the first size class, as in
Hammar and Shen (1995), has less impact on results and
should therefore be the preferred initialization method. Given
poor evidence of initial predominance of each class in nature,
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we decided to test both initialization methods, i.e., distribut-
ing the initial volume fraction over a range of small radii as
presented in Sect. 2.4 and then feeding only the first class as
suggested by Holland et al. (2007). For the first method, ice
nuclei are supposed to be initially spread between the min-
imum radius rmin and a threshold radius r0, which we sup-
pose can only be smaller than the mean radius (see Fig. 3).
Therefore, the threshold r0 is considered uncertain within the
bounds [1.2×10−4, 2.1×10−3]. For the second method, we
set r0 = rmin, so that only the first receives the initial concen-
tration.

4.3 Thermal growth and turbulent parameters

As shown in Eq. (2), thermal growth (1) is mainly affected
by two uncertain parameters, which are the Nusselt number
and the thermal boundary layer thickness. In this section, we
discuss the uncertainty of both parameters. Since the Nusselt
number is being modeled via turbulent parameters, namely
the turbulent dissipation rate and the turbulent intensity, their
uncertainty is also addressed.

As discussed by Rees Jones and Wells (2018), the thermal
boundary layer thickness δT is not constant around a crys-
tal, and in recent studies there has been an inconsistent scal-
ing of thermal growth. Svensson and Omstedt (1994) chose
the length scale as δT = λ, while others have chosen δT = r

(Smedsrud and Jenkins, 2004; Holland et al., 2007), lead-
ing to a serious underestimation of the growth rate, since
λ < r for frazil discs. Rees Jones and Wells (2015) have
shown that there is a logarithmic dependency of the ther-
mal growth on the aspect ratio that favors the δT = λ scal-
ing. To account for the variability of the thermal boundary
layer thickness, δT should be taken as an uncertain parame-
ter. However, it should be mentioned that, with the variation
range being δT ∈ [λ,r], the ANOVA methodology (Sect. 3.3)
cannot be applied, since the set of uncertain inputs, which
contains δT and λ/r , cannot be considered independent any-
more. To overcome this difficulty, the sensitivity analysis is
conducted with the most appropriate scaling: i.e., δT = λ,
for both the SSC and MSC models. Nevertheless, we pro-
pose to investigate the impact of scaling by considering
δT ∈ [min(λ),max(r)] to avoid modeling dependency. A log-
uniform PDF is used, and min(λ) and max(r) are estimated
from their full variation ranges. A third experiment was also
carried out with the δT = r scaling. The three results are then
compared for the SSC model.

Two main turbulence parameters are considered: turbu-
lent dissipation rate ε and turbulent intensity αT, both im-
pacting the Nusselt number (see Eqs. 3 and 4). For rivers,
the dissipation rate can be estimated using friction velocity
u∗ =

√
gRhS such that

ε =
u3
∗

κRh

[
ln
(
u∗Rh

ν

)
− 1

]
, (18)

where g is gravity, Rh the hydraulic radius, S the slope of the
river, κ the von Karman constant (generally taken as equal
to 0.4) and ν the viscosity of water. Daly (1994) summarized
the dissipation rate for several experiments (Michel, 1963;
Carstens, 1966; Tsang and Hanley, 1985; Muller, 1978) us-
ing Eq. (18) and found values ranging from 7× 10−5 to
0.4667 m2 s−3. A similar method was described by McFar-
lane et al. (2015) to estimate the dissipation rate in rivers,
leading to values ranging from 4.2× 10−4 to 1.4968 m2 s−3.
Schneck et al. (2019) summarized dissipation rates observed
in oceans, ranging from 10−9 to 10−2 m2 s−3 and from
10−10 to 10−3 m2 s−3 in polar regions. In the present study,
we consider dissipation rates varying between 10−9 and
1.5 m2 s−3, which cover most flows encountered in rivers and
oceans. Similarly, we consider a wide range of flows from
low turbulence to high turbulence intensity which include
most of the work presented in Fig. 3, leading to a turbulence
intensity ranging from 1 % to 20 %. Log-uniform PDFs are
considered for both the dissipation rate and the turbulent in-
tensity. Note that turbulence influences not only the rate of
growth of frazil crystals but also the rate of secondary nucle-
ation, thus impacting the frazil size distribution.

4.4 Other source terms

Following the same order as in Eq. (1), let us discuss un-
certain parameters involved in frazil source terms other than
thermal growth: secondary nucleation (2), flocculation (3)
and gravitational removal (4). It should be mentioned that
almost no direct observations of these processes have been
reported in the literature. Therefore, the definition of the un-
certainty intervals is mainly based on expert knowledge and
past numerical experiments in which parameters were deter-
mined by comparison to observed radius distributions.

– The uncertainty interval of the seeding rate is set af-
ter Daly (1994) to [3× 10−1, 10−4] m−2 s−1, and to
simplify the uncertainty analysis, it is considered con-
stant over time. For the secondary nucleation, Svens-
son and Omstedt (1994) proposed setting a common
value for nmax that would allow a focus on calibra-
tion of the initial seeding. They found that a value of
nmax = 4×106, along with initial seeding of the order of
magnitude of n0 = 104, gave satisfactory results com-
pared to the experimental results of Michel (1963) and
Carstens (1966). Wang and Doering (2005) found that
fitting a single nmax value for all experiments was unsat-
isfactory. Instead, they proposed fitting both the initial
seeding and nmax, leading to values ranging from 2×104

to 2× 105 for Clark and Doering (2004) experiments
and from 2× 104 to 2× 105 for Carstens (1966) ex-
periments. Smedsrud (2002) proposed a different value
of nmax = 103, which was also used by Smedsrud and
Jenkins (2004) and Holland and Feltham (2005).
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– Similarly, the flocculation parameter af was calibrated
to a value of 10−4 s−1 by Svensson and Omstedt (1994),
who compared the results of their simulation to the
expected size distribution spectra (other parameters in
their model, like the number of class, the heat sink,
the turbulent dissipation rate and initial condition were
set tom= 20, φ =−1000 W m−3, ε = 10−3 m2 s−3 and
ni(t0)= 104 (1≤ i ≤m)). From all previous calibration
studies, one could choose nmax from 103 to 107 and
af = 10−4. But given the fact that secondary nucleation
and flocculation are still very poorly understood and
modeled, we choose large uncertainty intervals for these
parameters. We added an order of magnitude for the
bounds leading to nmax ranging from 102 to 108, and we
suppose that flocculation can, depending on the condi-
tions, be negligible, so that af varied from 10−8 to 0−3.
The parameters nmax and af are considered independent
from hydrodynamic parameters, and log-uniform PDFs
were chosen for both.

– The gravitational removal is affected by both the buoy-
ant rise velocity of frazil particles and deposition pro-
cess once particles reach the surface of the water col-
umn. Several attempts to measure the frazil rise velocity
were made (Osterkamp and Gosink, 1983a; Wuebben,
1984; McFarlane et al., 2014), and many formulations
were proposed as summarized by McFarlane et al.
(2014). Significant scatter can be observed in the data as
shown on Fig. 10 of McFarlane et al. (2014), with ve-
locities ranging from approximately 0.7 to 16 mm s−1

for a radius of 1 mm. Models exhibit significant dif-
ferences as well (see Fig. 4). To take into account un-
certainties inherent to the choice of the rise velocity
model, a buoyancy parameter ad is introduced. A rise
velocity envelope, combining the results of all mod-
els, can be defined by upper and lower bounds de-
noted wmax(r,R) and wmin(r,R) (see Fig. 4). The in-
terval of ad is defined from the mean of the gap be-
tween the simplified formulation used in the present
study for wr (Svensson and Omstedt, 1994) and upper
and lower bounds of the rise velocity envelope. To avoid
the modeling of dependencies, a constant value is taken
for ad , even if the envelope depends on the radius and
on the diameter-to-thickness ratio. Finally, we propose
ad ∈ [a

−,a+], in which a+ =mean(wmax(r,R)/wr(r))

and a− =mean(wmin(r,R)/wr(r)). By considering r ∈
[10−5,10−2

]m and R ∈ [5,100], the following inter-
val is obtained: ad ∈ [0.086,1.51]. Finally, it should be
noted that this uncertainty quantification is rather im-
precise since the rise velocity dispersion depends on the
shape of the particles and flow conditions. Therefore,
our analysis could be refined by taking into account de-
pendencies. Also note that low values of ad could also
be justified from the uncertainty of the deposition pro-
cess, which is not modeled in the present study.

4.5 Summary of uncertain parameters

To conclude the uncertainty quantification, all the uncertain
parameters, their bounds and PDFs are summarized in Ta-
ble 2.

5 Uncertainty propagation and sensitivity analysis

In this section, we present the different Monte Carlo simu-
lation cases considered for the uncertainty analysis, as syn-
thesized in Table 3. Then we discuss the results of the uncer-
tainty propagation and the sensitivity analysis obtained for
both SSC and MSC models.

5.1 Propagation cases

Monte Carlo simulations are first carried out without seed-
ing and gravitational removal (τs = 0 and ad = 0) for both
SSC and MSC models, which correspond to cases 1 and 2,
respectively. Seeding and gravitational removal processes are
subsequently considered in cases 3 and 4. For each case, the
set of uncertain parameters is described in Table 2. When not
in X, parameters are considered deterministic with the fol-
lowing default values: ad = 0, τs = 0 m2 s−1, δT = e, rmin =

10−5 m and rmax = 10−3 m.
Additional Monte Carlo simulations were carried out to

examine the influence of specific parameters. For example,
although δT = e is the preferred scaling and is chosen by de-
fault in all experiments, we also tested δT = r and δT ∈ [e,r]

in experiments 1b and 1c to investigate the impact on results.
In experiments 2b and 2c, modifications of the MSC model
uncertain parameters are also taken into account, in order to
investigate the impact of the radius bounds rmin and rmax, as
well as the alternate methods of initialization discussed in
Sect. 4.2.

Statistical estimators are evaluated every 10 s of physical
time, leading to nt = 400. To cope with the computational
cost of multi-class experiments, we used clusters to run all
simulations in parallel. The computation time of 4.5× 105

multi-class simulations withm= 100 is∼ 24 h with 960 pro-
cesses. A total of 4 million simulations were carried out for
uncertainty propagation.

5.2 Results without gravitational removal

By neglecting the seeding rate and gravitational removal
source terms, the steady state corresponds to the constant
frazil production rate that only depends on the heat sink φ,
as shown in Sect. 2.5. As expected, the statistical estimator
time series for temperature and frazil volume fraction, pre-
sented in Fig. 5 for cases 1 and 2, show a very narrow scatter
of the output PDF at the start of simulation and at steady
state. The results converge towards the two asymptotes (T 0

and C∞ respectively) of the mono-class ODE system: i.e.,
the constant cooling rate when t→ 0 (initial supercooling
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Figure 4. Comparison of frazil rise velocity models with R = 10 (a) and the rise velocity envelope chosen for the uncertainty analysis (b)
(Zacharov et al., 1972; Gosink and Osterkamp, 1983; Ashton, 1983; Wuebben, 1984; Daly, 1984; Svensson and Omstedt, 1994; Matoušek,
1992; Shen and Wang, 1995; Morse and Richard, 2009).

Table 2. Uncertain parameters of the frazil ice models and their PDFs.

Parameter Unit Description Uncertainty interval PDF

C0 – Initial frazil volume fraction [10−8, 10−4
] Log-uniform

r0 m Initial maximum radius [1.2× 10−4, 2.1× 10−3
] Log-uniform

rmin m Minimum radius [10−6, 10−4
] Log-uniform

rmax m Maximum radius [10−3, 10−1
] Log-uniform

r m Mean radius [1.2× 10−4, 2.1× 10−3
] Log-uniform

R – Diameter-to-thickness ratio [5, 100] Uniform
δT m Thermal growth length scale [7.34× 10−6, 2.1× 10−3

] Log-uniform
ε m2 s−3 Turbulent dissipation rate [10−9, 1.5] Log-uniform
αT – Turbulent intensity [0.01, 0.2] Log-uniform
nmax m−3 Secondary nucleation efficiency cap [102, 108

] Log-uniform
τs m−2 s−1 Seeding rate [3× 10−1, 104

] Log-uniform
af s−1 Flocculation coefficient [10−8, 10−3

] Log-uniform
ad – Buoyancy coefficient [0.086, 1.51] Uniform

phase) and the constant frazil production rate when t→∞
(recovery phase). However, for both SSC and MSC mod-
els, the transition between the two asymptotes of the ODE
system is spread out, and there is a significant difference
in maximum supercooling between the 5th, 25th, 75th and
95th percentiles. For the median, a maximum supercooling
of T (tc)'−0.018 ◦C is reached at tc = 180 s for the SSC
model. The gap between the 5th and 95th percentile maxi-
mum supercooling is 1tc = 890 s and 1θ = 0.097 ◦C. Note
that the envelope obtained with the standard deviation gives
a poor description of the output since its PDF is not normal,
as it can be seen from the µ̂± σ̂ lines in the Fig. 5.

Similar results were obtained with the MSC model, which
recovers the same asymptote at steady state; however, there
is a slight residual scatter at recovery. For case 2, we ob-
served slightly less scatter at the maximum supercooling
than with the SSC model, and the gap between the 5th and

95th percentile maximum supercooling was 1tc = 820 s and
1θ = 0.08 ◦C.

Time series of the first-order Sobol indices are presented in
Fig. 6 (see Appendices E and F for details). In Appendix C,
we also present the first- and total-order Sobol indices at
times tc, 2× tc and tf with 95 % confidence intervals, as well
as the aggregated Sobol indices, computed via Eq. (B7). The
time evolution of Sobol indices of temperature and frazil was
similar for both the SSC and MSC with the exception of the
initial concentration, which, as expected, had more of an im-
pact on frazil volume fraction at the start of simulation.

For the SSC model, the initial concentration plays an im-
portant role at the start of the simulation. However, its influ-
ence quickly decreases, and the most influential parameter
becomes the radius, with a peak influence reached at the me-
dian value of the time of maximum supercooling. Thus, us-
ing the average radius as the calibration parameter of the SSC
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Table 3. List of Monte Carlo simulations and their associated input random vectors X, sampling size and number of function calls. Seeding
rate and buoyancy velocity are set to τs = 0 and ad = 0 in cases 1 and 2.

Case Model Uncertain parameters Case specificity Sample size No. of calls

1 SSC X = (C0, r,R,ε,αT) – 5× 104 3.5× 105

1b SSC X = (C0, r,R,ε,αT) δT = r 5× 104 3.5× 105

1c SSC X = (C0, r,R,δT,ε,αT) δT ∈X 5× 104 4.8× 105

2 MSC X = (C0, r0,R,ε,αT,nmax,af) – 5× 104 4.5× 105

2b MSC X = (C0, r0, rmin, rmax,R,ε,αT,nmax,af) rmin, rmax ∈X 6× 104 6.6× 105

2c MSC X = (C0,R,ε,αT,nmax,af) r0 = rmin 5× 104 4× 105

3 SSC X = (C0, r,R,ε,αT,τs,ad ) τs, ad ∈X 7× 104 6.3× 105

4 MSC X = (C0, r0,R,ε,αT,nmax,τs,af,ad ) τs, ad ∈X 6× 104 6.6× 105

Figure 5. Uncertainty propagation results for SSC (case 1) for temperature (a) and frazil (c) and MSC (case 2) for temperature (b) and
frazil (d): mean, standard deviation, median, and the 5th, 25th, 75th and 95th percentiles are computed for tk (0≤ k ≤ nt ).

model seems to be the most relevant choice. The most influ-
ential parameters after radius are the diameter-to-thickness
ratio and dissipation rate of turbulent kinetic energy. In ex-
periments, the turbulent dissipation rate is often better known
than the initial concentration or crystal shape. In natural wa-
ter bodies, turbulent dissipation rate measurements are rare
but turbulence models can be use to estimate these parame-
ters. Therefore, one could then choose the initial frazil vol-
ume fraction or diameter-to-thickness ratio as a secondary
calibration parameters.

For the MSC model, the most influential parameters prior
to maximum supercooling are initial concentration (C0) and
maximum initial radius (r0), with both control the initial dis-
tribution (and consequently the initial condition of the sys-
tem). Using these initial distribution parameters to calibrate
the transient phase until maximum supercooling seems to
be the right approach. However, specifying a more accurate

initial distribution (not necessarily uniform) by comparison
with what can be observed in nature would be a welcome
improvement, although this requires further research.

At the recovery, the parameters of secondary nucleation
and flocculation processes (nmax and af), both impacting
steady-state crystal distribution, become more influential.
However, the hierarchy of parameters is less obvious than
for the SSC model. In addition, we observed strong inter-
actions between parameters when the model reaches steady
state (see blank space on Fig. 6 and total Sobol indices in Ap-
pendix F), which might lead to difficulties in the calibration
process. Aggregated Sobol indices summarized in Fig. 7 con-
firm the relative influence of each parameter over the whole
duration of the simulation, taking into account both the tran-
sient phase and steady state.

While the approach adopted by Svensson and Omstedt
(1994) – i.e., tweaking the values of nmax and af – was ade-
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Figure 6. Time series of first-order Sobol indices (Si ) for SSC (case 1) for temperature (a) and frazil (b) and MSC (case 2) for temperature (b)
and frazil (d).

Figure 7. Aggregated first-order Sobol indices (dots) and aggregated total Sobol indices (bars) for temperature (a) and total frazil volume
fraction (b) for cases 1, 2, 3 and 4.

quate to calibrate the frazil distribution in MSC models, the
present sensitivity analysis shows that it might not be the best
option to calibrate water temperature and frazil total volume
fraction. Results suggests that more focus should be on the
initial condition to calibrate supercooling, by modifying ini-
tial seeding like it was done by Wang and Doering (2005) or
by modifying the initial distribution itself. We therefore sug-
gest calibrating the supercooling curve with the help of the
initial distribution, along with secondary nucleation and floc-
culation parameters to calibrate the evolution of size distribu-
tion over time. Hopefully, recent observations of the transient
evolution of frazil size distribution (McFarlane et al., 2015;
Schneck et al., 2019) will provide the necessary data to carry
out an optimal calibration of the identified parameters.

5.3 Influence of gravitational removal and seeding

Long-term evolution that does not take account of gravita-
tional removal leads to infinite increase in frazil concentra-
tion as long as the cooling rate remains constant (see Eq. 15).
This asymptotic behavior of the models has never been ob-
served in experiment or in nature. Clark and Doering (2006)
observed a peak in the number of particles per image they
recorded, located shortly after maximum supercooling, af-
ter which there was a small decrease in the number of parti-
cles and a stagnation at residual supercooling. Similar ob-
servations were also reported by McFarlane et al. (2015)
and Schneck et al. (2019). The models in which only ther-
mal growth is considered do not incorporate the required
physics to properly reproduce what is observed. However by
introducing gravitational removal, as shown in Sect. 2.5, the
models converge towards a constant frazil volume fraction
(see Eq. 16). In this section we analyze the results of the
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uncertainty propagation and sensitivity analysis for cases 3
and 4, which include the seeding rate and gravitational re-
moval source terms.

At steady state, the introduction of gravitational removal
leads to wide scatter of both temperature and frazil as shown
by the comparison of Figs. 8 and 5 (see Appendices G and
H for details). This is caused by the variation of the steady-
state frazil volume fraction, which depends on the heat flux
φ and model parameters inherent in secondary nucleation,
flocculation and rise velocity (nmax, af and ad ). Significant
supercooling values are observed as the water temperature
(5th percentile) drops below −0.2 ◦C, which is really low
compared to what can be observed in rivers. This is due to
the highest values of the buoyancy velocity combined with
low thermal growth rate. High gravitational removal with-
draws a large amount of the frazil volume fraction from the
water and thus limits the amount of latent heat release to wa-
ter that would increase its temperature. No significant differ-
ence is observed in the output scatter between SSC and MSC
models similarly to cases 1 and 2. However, minimum su-
percooling is not reached on the 5th percentile with the MSC
as opposed to the SSC model. This is due to the dependency
of the buoyancy velocity on the radius, which is not constant
in the MSC model as opposed to the SSC model. This also
causes the median frazil volume fraction at steady state to be
slightly different in the two models.

With the SSC model at recovery, the first-order Sobol
indices on frazil volume fraction (Si −C) in Fig. 9 show
a major influence of the radius and the buoyancy coeffi-
cient (Sr = 0.381 and Sad = 0.382, respectively at t = tf), the
main parameters influencing the gravitational removal (see
Eq. 15). For the MSC model, the most influential parameters
at recovery are nmax and ad (Snmax = 0.37 and Sad = 0.26,
respectively at t = tf ), which is consistent with Eqs. (27)
and (29) of Rees Jones and Wells (2018). The hierarchy of
the most influential parameters is similar to cases 1 and 2
prior to maximum supercooling. However accurate model-
ing of the buoyancy velocity of frazil crystals is essential, as
it has a very important influence on the long-term evolution
of the system, and therefore merits particular attention.

5.4 Maximum supercooling scatter

The results discussed above were obtained with a cooling rate
of −500 W m−3. Several cooling rates, ranging from −50 to
−1000 W m−3, were tested with case (1) to assess variations
in maximum supercooling predictions. We found that the
higher the cooling rate, the greater the scatter of the predicted
maximum supercooling temperature, as presented in Figs. 10
and 11. This is the opposite for the time until maximum su-
percooling peak, where the higher the cooling rate, the lower
the scatter in supercooling time. These results conform to ob-
servations of Carstens (1966) and Ye et al. (2004) that the de-
gree of supercooling increases with the heat sink rate while
the time to supercooling decreases. Note that the gap between

the 5th and 95th percentile maximum supercooling predic-
tions is as much as 1tc = 2540 s with φ =−50 W m−3 and
1θ = 0.142 ◦C with φ =−1000 W m−3 as shown in Fig. 11.
The dispersion both in time to supercooling and degree of su-
percooling is significant. This shows the importance of hav-
ing a good quantification of input parameters to be able to
predict the maximum supercooling point.

Results obtained from different scalings of the thermal
boundary layer are also shown in Fig. 11. A significant in-
crease in scatter is observed for the δT = r compared to
δT = λ scaling, consistent with the fact that thermal growth
is clearly underestimated (Rees Jones and Wells, 2018). With
δT taken as an uncertain parameter with a log-uniform PDF
within the bounds [min(λ), min(r)], the result is also more
widely scattered by the same order of magnitude as with
δT = r . The results highlight the significant influence of the
choice of scaling for the boundary layer. Choice of scaling
also explains inconsistencies in calibrated parameters in the
literature.

Finally, let us discuss the results obtained with the MSC
model, which need to be viewed from the standpoint of the
way it is initialized. By taking the minimum and maximum
radius as uncertain parameters (case 2b), we observe an in-
creased gap between the 5th and 95th percentiles, and we
have 1tc = 930 s and 1θ = 0.09 ◦C (see Fig. 11). The con-
stant feed of first-class nuclei due to secondary nucleation
accentuates the influence of the minimum radius parameter.
This explains why the minimum radius has more influence
on the results than the maximum radius as shown in Ap-
pendix D. Additionally, the volume growth rate being higher
for small classes makes the initial distribution of concen-
tration a determining choice. The more initial concentration
is attributed to the smallest classes – the quicker the model
reaches steady state, the less scatter is observed in maximum
supercooling time. The extreme case is when the initial con-
centration is only applied to the first class (case 2c), when an
astonishingly narrow scatter of results is observed. In fact,
the transient evolution is so quick that the model almost in-
stantaneously converges towards its steady state. The median
maximum supercooling is only −0.001 ◦C and is reached in
only 20 s. This confirms the sensitivity test carried out by
Holland and Feltham (2005), who suggested distributing ini-
tial concentration on one class. However, the results show
that this type of initialization might not be the best option,
as it almost totally does away with transient evolution of the
model.

5.5 Limits and perspectives

The importance of the availability of quantitative field and
laboratory data to support the uncertainty quantification of
model parameters cannot be stressed enough. As we have
shown, many model parameter uncertainties could not be
characterized by means of direct data. We had to use expert
knowledge as well as past numerical implementation (Daly,
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Figure 8. Uncertainty propagation results for SSC (case 3) for temperature (a) and frazil (c) and MSC (case 4) for temperature (b) and
frazil (d): mean, standard deviation, median, and the 5th, 25th, 75th and 95th percentiles computed for tk (0≤ k ≤ nt ).

Figure 9. Time series of first-order Sobol indices (Si ) for SSC (case 3) for temperature (a) and frazil (c) and MSC (case 4) for temperature (b)
and frazil (d).

1984, 1994; Svensson and Omstedt, 1994; Smedsrud, 2002;
Smedsrud and Jenkins, 2004; Wang and Doering, 2005; Hol-
land and Feltham, 2005; Rees Jones and Wells, 2018). In
part, this is because most physical processes, such as sec-
ondary nucleation or flocculation, are not directly measured
but instead are inferred from frazil distribution observations.
Moreover, some parameters, such as the initial condition,
are dependent on the discretization method. Consequently,
several parameter uncertainty bounds and PDFs should be

refined. The modeling of dependency should also be taken
into account in future work as many parameters, such as δT
and ad , depend on other parameters (e.g., r and R). This
would add a degree of complexity to the sensitivity analy-
sis, but innovative methods to tackle parameter dependency
could bring valuable new insight into the models.

In this paper, we considered a well-mixed water body and
a simplified gravitational removal sink term. Spatial varia-
tions for temperature and frazil may result in different con-

The Cryosphere, 17, 1645–1674, 2023 https://doi.org/10.5194/tc-17-1645-2023



F. Souillé et al.: Uncertainty analysis of single- and multiple-size-class frazil ice models 1661

Figure 10. Maximum supercooling point scatter computed from median and 5th, 25th, 75th and 95th percentile time series at different
cooling rates (φ =−50,−100,−250,−500 and−1000 W m−3) for case 1 and with φ =−500 W m−3 for case 2. Global view (a) and focus
on initial time (b).

Figure 11. Maximum supercooling point scatter computed from median and 5th, 25th, 75th and 95th percentile time series at different
cooling rates (−50, −100, −250, −500 and −1000 W m−3) for case 1; comparison between the choice of the length scale δT (cases 1b
and 1c); and comparison between different initial conditions (cases 2b and 2c) with φ =−500 W m−3. Maximum degree of supercooling (a)
and maximum supercooling time (b). The white line is the median, the wide box is delimited by the 25th and 75th percentiles, the thin line
is delimited by the 5th and 95th percentiles, and the round dots corresponds to minimum and maximum values.

clusions. A poorly mixed water body, where the cooling rate
at higher layers is more severe than at the bottom, would
cause a heterogeneity in the initial formation of frazil. Ad-
ditionally, the meteorological seeding of frazil nuclei occurs
mainly at the free surface, increasing the heterogeneity. Fur-
thermore, as the rise velocity is higher for larger particles, the
rise of frazil crystals and flocs yet again increases the hetero-
geneity of frazil on the vertical axis, altering the steady-state
distributions, as it was shown in the study by Hammar and
Shen (1991). All these complex processes make the conclu-
sions for a well-mixed body difficult to extrapolate to mul-
tidimensional cases. Further research therefore may be war-
ranted into uncertainty quantification and sensitivity analy-
ses of frazil ice models in non-well-mixed conditions with
multidimensional models. The emergence of efficient APIs
(application programming interface) in numerical tools such
as TELEMAC-MASCARET (Goeury et al., 2022), together
with meta-modeling techniques that synthesize the essence
of the multi-dimensional fields (Mouradi et al., 2021), could
greatly assist such an undertaking.

Viewed from a different perspective, one may use the same
probabilistic framework to compare modeling approaches for
each process. This could be done by focusing on the volume
fraction of each class to obtain a good picture of how frazil is
distributed over radius. In the same way that we considered
time series of total frazil volume fraction as output, one could
easily transpose the analysis to multi-dimensional class vol-
ume fraction as output. Uncertainty propagation could then
allow for the characterization of PDFs associated with each
class, and sensitivity analysis would shed light on the prop-
erties of each model and how they affect frazil distributions.
This could be a valuable tool for inferring new laws of sec-
ondary nucleation or flocculation by comparison to the ob-
served evolution of frazil distributions.
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6 Summary and conclusions

In this paper, two mathematical models for predicting of
the evolution of frazil ice volume fraction and temperature
have been studied. We developed a multiple-size-class MSC
model, relying on the radial space discretization (Svensson
and Omstedt, 1994) of frazil ice dynamic equations intro-
duced by Daly (1984), which includes processes such as
thermal growth, secondary nucleation, flocculation, seeding
and gravitational removal. A simplified single-size-class SSC
model, including only thermal growth, seeding and gravita-
tional removal, was also developed for comparison. Proper-
ties of the two models, such as their steady states, were high-
lighted, and details were provided for their numerical reso-
lution. We found that, for proper resolution of the transient
phase with the MSC model, a class number of about 100 is
necessary for convergence of the results, which corroborates
the observations by Rees Jones and Wells (2018). Uncertain-
ties in both models were then studied within a probabilistic
framework. Aided by recent experimental and field studies
of frazil ice, and also by numerical studies carried out in the
recent years, the uncertainty of the main parameters of the
frazil ice models was quantified. Various Monte Carlo exper-
iments were considered to propagate the uncertainties. Time-
dependent statistical estimates of the models’ outputs (tem-
perature and frazil volume fraction) were then analyzed, and
a sensitivity analysis was carried out by means of a variance
decomposition method.

Given the uncertainty bounds defined in the present study,
SSC and MSC models yield very similar results for the pre-
diction of water temperature and total frazil volume fraction.
In the absence of gravitational removal, we have shown that
the uncertainties have a great impact on the maximum super-
cooling and recovery time but scarcely any impact on the
steady state, which is governed only by cooling rate. The
more detailed physics of the multi-class model, although pro-
viding valuable new information on size distribution of the
crystals, does not make it possible to obtain a more reliable
estimate of water temperature and total frazil volume frac-
tion in the transient phase. The development of MSC models
raises the possibility that uncertainty may be removed from
choosing a mean radius. We have shown, however, that scat-
ter is similar somehow in both models and derives from new
uncertain parameters inherent in radial space discretization.
Note that, in many numerical tools, modeling frazil distribu-
tion requires the resolution of multiple advection–diffusion
equations. Given the number of classes required for a model
convergence, one can easily grasp the high numerical cost of
using the MSC model for large-scale, multi-dimensional ap-
plications. This makes the SSC model a suitable candidate
for multi-dimensional frazil ice modeling, and the present
study shows that it is still a very good compromise between
uncertainty and model complexity. However, it should be
noted that such uncertainty in the MSC model could be over-

come in future laboratory experiments by a better estimation
of the initial crystal size distribution.

The sensitivity analysis allowed us to address with confi-
dence the choice of calibration parameters. Relying on first-
and total-order Sobol indices, we quantified the relative influ-
ence of each uncertain parameter on the output distribution,
for both SSC and MSC models, and proposed a selection of
parameters to be used for calibration. For the SSC model, the
most influential factor for both temperature and frazil is the
mean radius. Initial concentration played a secondary role al-
though it was initially identified as a predominant factor. We
therefore suggest using the average radius as the main cal-
ibration parameter. The turbulent dissipation rate also plays
a major role and as such should be specified with care. As
it can be estimated via turbulence models, we suggest us-
ing initial concentration and diameter-to-thickness ratio as
secondary calibration parameters. With the MSC model, we
showed that the dispersion is somehow similar to what we
observed for the SSC model but originates from new un-
certain parameters. Thus, the most influential parameters on
the transient phase are the parameters specific to the ini-
tial condition. However, once the steady state was reached,
we observed an increasing influence of the secondary nu-
cleation and flocculation parameters. The long-term evolu-
tion of the system also showed increasing interactions be-
tween parameters. This could be explained by the balance
in the physical processes involved in class interactions, and
further investigation using class volume fraction as model
outputs would help. When gravitational removal was intro-
duced in the models, the stationary state was modified and
the concentration converged towards a finite limit instead
of diverging. In the case of the SSC model, the asymptotic
limit is a function of the ratio between the gravitational re-
moval term and the heat flux, while in the case of the MSC
model, the stationary state is also a function of the steady-
state radius distribution (which depends on the balance be-
tween secondary nucleation, flocculation and gravitational
removal). Our study, confirming previous asymptotic analy-
ses, showed that both secondary nucleation and gravitational
removal parameters are the most influential on total frazil
volume fraction. The buoyant rise velocity, the uncertainty
of which was rarely taken into account in previous modeling
studies, should therefore be one of the main foci of future ef-
forts to calibrate frazil ice models. Contrary to frazil, water
temperature was mostly influenced by the initial condition,
even at steady state. This should impel us to use both wa-
ter temperature and frazil volume fraction measurements to
calibrate the models. Fortunately, recent laboratory and field
studies (Schneck et al., 2019; McFarlane et al., 2015, 2017),
particularly on the evolution of frazil distributions over time,
offer precious data that can assist in developing appropriate
calibration of the models. In this regard, using optimal cali-
bration techniques that allow consideration of both modeling
and data uncertainties would be a natural and complementary
extension of the present study.
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Appendix A: Semi-implicit theta scheme matrices

In this section, the semi-implicit time discretization of
Eqs. (7) and (12) is described. Let us denote tk = t0+ k1t
the time at iteration k, t0 the initial time and ck = c(tk). The
semi-implicit time scheme consists in posing ci = θck+1

i +

(1− θ)cki in the right-hand side of Eq. (7). Choosing θ = 0
leads to a fully explicit time scheme, while choosing θ = 1 is
equivalent to an implicit scheme on c. The non-linear terms
are treated semi-implicitly, i.e., Gi =Gi(tk) in order to re-
trieve a linear system of the form A[ck+1

1 , . . . , ck+1
m ]

T
= B in

which A and B are two matrices defined below. The temper-
ature balance equation is then solved with a forward Euler
time scheme.

The matrix system reads A[ck+1
1 , . . . , ck+1

m ]
T
= B⇔

a11 a12 a13 . . . a1m
a21 a22 a23 0 . . . 0

0
. . .

. . .
. . .

aii−1 aii aii+1
...

...
. . .

. . .
. . . 0

am−1m
0 . . . 0 amm−1 amm




ck+1
1
...

ck+1
i
...

ck+1
m


=



b1
...

bi
...

bN


,

(A1)

in which the diagonal terms are defined as

a11 = 1− θ1t (V1 (31−01)−β1− γ1) ,

aii = 1− θ1t (Vi (3i −0i)−βi − γi − ζαi)
for 2≤ i ≤m− 1,

amm = 1− θ1t (Vm3m− γm− ζαm) ,

the lower off-diagonal terms are defined as

aii−1 =−θ1t (Vi0i−1+βi−1) for 2≤ i ≤m,

the upper off-diagonal terms are defined as

a1i =−θ1tαi for 2≤ i ≤m,
aii+1 = θ1tVi3i+1 for 2≤ i ≤m− 1,

and the matrix B is defined as

b1 = c
k
1 +1tτsV1/h+ (1− θ)1t

[
V1

(
(31−01)c

k
1 −32c

k
2

)
−β1c

k
1 − γ1c

k
1

]
+ (1− θ)1t

m∑
j=2

αj c
k
j ,

bi = c
k
i + (1− θ)1t

[
Vi

(
0i−1c

k
i−1+ (3i −0i)c

k
i −3i+1c

k
i+1

)
+βi−1c

k
i−1−βic

k
i − γic

k
i − ζαic

k
i

]
for 2≤ i ≤m− 1,

bm = c
k
m+ (1− θ)1t

[
Vm

(
0m−1c

k
m−1+3mc

k
m

)
+βm−1c

k
m−1− γmc

k
m− ζαmc

k
m

]
.

Appendix B: Sensitivity analysis using Sobol indices

For a given set of independent input parameters, the ANOVA
(analyses of variance) decomposition allows us to compute
the variance of output Y = g(X,d) for each time step tk (1≤
k ≤ nt ) as

Var
[
Y k
]
=

nX∑
i=1

Vi

(
Y k
)
+

∑
i<j

Vij

(
Y k
)
+ . . .

+V1 ... nX

(
Y k
)
, (B1)

where

Vi

(
Y k
)
= Var

[
E
[
Y k|Xi

]]
Vij

(
Y k
)
= Var

[
E
[
Y k|Xi,Xj

]
−E

[
Y k|Xi

]
−E

[
Y k|Xj

]]
= Var

[
E
[
Y k|Xi,Xj

]]
−Vi

(
Y k
)
−Vj

(
Y k
)
,

in which E[Y k|Xi] represents the conditional expectation
of Y k with the condition that Xi remains constant.

To evaluate the influence of each input parameter, the so-
called Sobol indices are used (Sobol, 2001). The first- and
second-order Sobol indices are defined as follows, for k ∈
{1, . . ., nt } and i ∈ {1, . . ., nX}:

Ski =
Vi
(
Y k
)

Var
[
Y k
] ,

Skij =
Vij

(
Y k
)

Var
[
Y k
] . (B2)

The first-order Sobol index Ski indicates the part of output
variance explained by a single parameter Xi without interac-
tions, whereas second-order indices Skij quantify the part of
variance of the output explained by the interaction between
two inputsXi andXj . The number of second-order indices is

given by
(

2
nX

)
= nX(nX − 1)/2. When the number of input

parameters is too large, it may be difficult to estimate second-
order indices. In that case, we only estimate first-order and
total indices. Total indices quantify the part of variance of
the output explained by an input and its interactions with all
the other inputs parameters. Total Sobol indices are defined
as follows, for k ∈ {1, . . ., nt } and i ∈ {1, . . ., nX}e:
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ST ki = S
k
i +

∑
i 6=j

Skij +
∑

i 6=j,l 6=i,j≤l

Skij l

+ . . . =
V Ti

(
Y k
)

Var
[
Y k
] = 1−

V−i
(
Y k
)

Var
[
Y k
] , (B3)

where V−i(Y k)= Var[E[Y k|X1, . . ., Xi−1,Xi+1, . . ., Xnx ]].
To compute Sobol indices, a modified version of the

method proposed by Saltelli (2002) is used (Baudin et al.,
2016a), in which two independent samples of size N , de-
noted A and B, are generated. Both can be written as matrices
(see Eq. B4) in which each line is a realization of the random
vector X. A third matrix, denoted Ci , is then created by re-
placing only the column i of the matrix A by the column i of
the matrix B (see Eq. B4):

A=


x
A,1
1 x

A,1
2 . . . x

A,1
nX

x
A,2
1 x

A,2
2 . . . x

A,2
nX

...
...

. . .
...

x
A,N
1 x

A,N
2 . . . x

A,N
nX

 ,Ci

=


x
A,1
1 . . . x

B,1
i . . . x

A,1
nX

x
A,2
1 . . . x

B,2
i . . . x

A,2
nX

...
...

. . .
...

x
A,N
1 . . . x

B,N
i . . . x

A,N
nX

 . (B4)

First-order and total Sobol indices are computed using esti-
mations of Vi(Y k) and V−i(Y k) computed using samples A,
B, and Ci and denoted V̂i(Y k) and V̂−i(Y k) respectively.
These estimations are defined as follows:

V̂i

(
Y k
)
=

1
N − 1

N∑
j=1

g̃
(
Bj
)
g̃
(

Cij
)

−

(
1
N

N∑
j=1

g̃
(
Aj
))( 1

N

N∑
j=1

g̃
(
Bj
))
,

V̂−i

(
Y k
)
=

1
N − 1

N∑
j=1

g̃
(
Aj
)
g̃
(

Cij
)

−

(
1
N

N∑
j=1

g̃
(
Aj
))( 1

N

N∑
j=1

g̃
(
Bj
))
, (B5)

where g̃ is the centered model defined by g̃ = g−g in which
g is the sample mean of the combined output samples g(A)
and g(B). To compute the second-order Sobol indices, an ad-
ditional matrix is used, denoted C′j , which is created by re-
placing only the column i of the matrix B by the column i of
the matrix A. Then the estimation V̂ij (Y k) is computed as

V̂ij

(
Y k
)
=

1
N − 1

N∑
m=1

g̃
(

Cim
)
g̃
(

C′jm
)

−
1
N

N∑
m=1

g̃ (Am) g̃ (Bm)− V̂i
(
Y k
)
− V̂j

(
Y k
)
. (B6)

For a sample size N , estimation of the first-order and total
Sobol indices requires (nX + 2)×N simulations.

For multivariate outputs, the indices can be aggregated as
proposed by Gamboa et al. (2014). The aggregated first-order
and total Sobol indices are defined as

ASi =

nt∑
k=1

Vi
(
Y k
)

nt∑
k=1

Var
[
Y k
] ,

ASTi =

nt∑
k=1

V Ti
(
Y k
)

nt∑
k=1

Var
[
Y k
] . (B7)

This means that Sobol indices Ski and ST ki quantify the
influence of Xi on the variance of Y at time tk , while the ag-
gregated indices ASi and ASTi quantify the influence of Xi
over the whole time series of Y .

Appendix C: Sturdiness of statistical estimators

Convergence of statistical estimators is addressed by running
several Monte Carlo simulations with increasing sampling
size. An example of the convergence of mean and standard
deviation at different times is given in Fig. C1 for case 1.
Similarly, testing of Sobol index convergence is shown in
Fig. C2 for case 1. Note that the 5th and 95th confidence
intervals are systematically computed by a bootstrap method
and plotted in all Sobol index figures.
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Figure C1. Mean and standard deviation convergence for case 1 for temperature (a) and frazil (b).

Figure C2. First-order Sobol index convergence for case 1 for temperature (a) and frazil (b).
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Appendix D: Sobol indices and aggregated Sobol indices

Figure D1. First-order and total-order Sobol indices at times tmin, 2tmin and tf and aggregated Sobol indices for temperature (left panels)
and frazil (right panels) for case 1 (a), 2 (b), 3 (c) and 4 (d) from top to bottom.
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Appendix E: Aggregated Sobol indices

Figure E1. Aggregated first-order Sobol indices (dots) and aggregated total Sobol indices (bars) for temperature (a) and total frazil volume
fraction (b) for case 1, 1b, 1c, 2, 2b, 2c, 3 and 4.
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Appendix F: Results of case 1

Figure F1. Results of case 1. From top to bottom: uncertainty propagation result (a), first-order Sobol indices (b), first-order Sobol indices
with 95 % confidence intervals (c), and total-order Sobol indices with 95 % confidence intervals (d) for temperature (left panels) and frazil
(right panels).
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Appendix G: Results of case 2

Figure G1. Results of case 2. From top to bottom: uncertainty propagation result (a), first-order Sobol indices (b), first-order Sobol indices
with 95 % confidence intervals (c), and total-order Sobol indices with 95 % confidence intervals (d) for temperature (left panels) and frazil
(right panels).
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Appendix H: Results of case 3

Figure H1. Results of case 3. From top to bottom: uncertainty propagation result (a), first-order Sobol indices (b), first-order Sobol indices
with 95 % confidence intervals (c), and total-order Sobol indices with 95 % confidence intervals (d) for temperature (left panels) and frazil
(right panels).
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Appendix I: Results of case 4

Figure I1. Results of case 4. From top to bottom: uncertainty propagation result (a), first-order Sobol indices (b), first-order Sobol indices
with 95 % confidence intervals (c), and total-order Sobol indices with 95 % confidence intervals (d) for temperature (left panels) and frazil
(right panels).
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