Articles | Volume 16, issue 2
https://doi.org/10.5194/tc-16-737-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-737-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Overestimation and adjustment of Antarctic ice flow velocity fields reconstructed from historical satellite imagery
Center for Spatial Information Science and Sustainable Development
Applications, Tongji University, Shanghai, China
College of Surveying and Geo-Informatics, Tongji University, Shanghai,
China
Yuan Cheng
CORRESPONDING AUTHOR
Center for Spatial Information Science and Sustainable Development
Applications, Tongji University, Shanghai, China
College of Surveying and Geo-Informatics, Tongji University, Shanghai,
China
Haotian Cui
Center for Spatial Information Science and Sustainable Development
Applications, Tongji University, Shanghai, China
College of Surveying and Geo-Informatics, Tongji University, Shanghai,
China
Menglian Xia
Center for Spatial Information Science and Sustainable Development
Applications, Tongji University, Shanghai, China
College of Surveying and Geo-Informatics, Tongji University, Shanghai,
China
Xiaohan Yuan
Center for Spatial Information Science and Sustainable Development
Applications, Tongji University, Shanghai, China
College of Surveying and Geo-Informatics, Tongji University, Shanghai,
China
Zhen Li
Center for Spatial Information Science and Sustainable Development
Applications, Tongji University, Shanghai, China
College of Surveying and Geo-Informatics, Tongji University, Shanghai,
China
Shulei Luo
Center for Spatial Information Science and Sustainable Development
Applications, Tongji University, Shanghai, China
College of Surveying and Geo-Informatics, Tongji University, Shanghai,
China
Gang Qiao
Center for Spatial Information Science and Sustainable Development
Applications, Tongji University, Shanghai, China
College of Surveying and Geo-Informatics, Tongji University, Shanghai,
China
Related authors
Menglian Xia, Rongxing Li, Marco Scaioni, Lu An, Zhenshi Li, and Gang Qiao
EGUsphere, https://doi.org/10.5194/egusphere-2025-175, https://doi.org/10.5194/egusphere-2025-175, 2025
Short summary
Short summary
We propose an innovative multi-satellite DEM adjustment model (MDAM) that removes biases in elevation between sub-DEMs across ice shelves. Our results reveal quantitative 3D structural and mélange features of a ~50 km long rift. For first time, we found that while the mélange elevation decreased from 2014–2021, the mélange inside the rift experienced a rapid expansion, attributing to newly calved shelf ice from rift walls, associated rift widening, and other rift-mélange interaction factors.
Litao Dai, Xingchen Liu, Lu An, and Rongxing Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 101–106, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-101-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-101-2024, 2024
Xiaofeng Wang, Lu An, Peter L. Langen, and Rongxing Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 691–696, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-691-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-691-2024, 2024
S. Ge, Y. Cheng, R. Li, H. Cui, Z. Yu, T. Chang, S. Luo, Z. Li, G. Li, A. Zhao, X. Yuan, Y. Li, M. Xia, X. Wang, and G. Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 757–763, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-757-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-757-2022, 2022
Z. Yu, Z. Cao, C. Yu, G. Qiao, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 799–804, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-799-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-799-2022, 2022
A. Zhao, Y. Cheng, D. Lv, M. Xia, R. Li, L. An, S. Liu, and Y. Tian
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 805–811, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-805-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-805-2022, 2022
Lin Li, Aiguo Zhao, Tiantian Feng, Xiangbin Cui, Lu An, Ben Xu, Shinan Lang, Liwen Jing, Tong Hao, Jingxue Guo, Bo Sun, and Rongxing Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-332, https://doi.org/10.5194/tc-2021-332, 2021
Preprint withdrawn
Short summary
Short summary
No subglacial lakes have been reported in Princess Elizabeth Land (PEL), East Antarctica. In this study, thanks to a new suite of airborne geophysical observations in PEL, including RES and gravity data collected during the Chinese National Antarctic Research Expedition, we detected a large subglacial lake of ~45 km in length, ~11 km in width, and ~250 m in depth. These findings will help us understand ice sheet stability in the PEL region.
Rongxing Li, Hongwei Li, Tong Hao, Gang Qiao, Haotian Cui, Youquan He, Gang Hai, Huan Xie, Yuan Cheng, and Bofeng Li
The Cryosphere, 15, 3083–3099, https://doi.org/10.5194/tc-15-3083-2021, https://doi.org/10.5194/tc-15-3083-2021, 2021
Short summary
Short summary
We present the results of an assessment of ICESat-2 surface elevations along the 520 km CHINARE route in East Antarctica. The assessment was performed based on coordinated multi-sensor observations from a global navigation satellite system, corner cube retroreflectors, retroreflective target sheets, and UAVs. The validation results demonstrate that ICESat-2 elevations are accurate to 1.5–2.5 cm and can potentially overcome the uncertainties in the estimation of mass balance in East Antarctica.
T. Chang, J. Han, Z. Li, Y. Wen, T. Hao, P. Lu, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 437–442, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-437-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-437-2021, 2021
H. Cui, R. Li, H. Li, T. Hao, G. Qiao, Y. He, G. Hai, H. Xie, Y. Cheng, and B. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 443–448, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-443-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-443-2021, 2021
S. Luo, Y. Cheng, Z. Li, Y. Wang, K. Wang, X. Wang, G. Qiao, W. Ye, Y. Li, M. Xia, X. Yuan, Y. Tian, X. Tong, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 491–496, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-491-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-491-2021, 2021
D. Wang, T. Feng, T. Hao, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 521–526, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-521-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-521-2021, 2021
Yanjun Li, Violaine Coulon, Javier Blasco, Gang Qiao, Qinghua Yang, and Frank Pattyn
The Cryosphere, 19, 4373–4390, https://doi.org/10.5194/tc-19-4373-2025, https://doi.org/10.5194/tc-19-4373-2025, 2025
Short summary
Short summary
We incorporate ice damage processes into an ice-sheet model and apply the new model to Thwaites Glacier. The upgraded model more accurately captures the observed ice mass loss of Thwaites Glacier over 1990–2020. Our simulations show that ice damage has a notable impact on the ice mass loss, grounding-line retreat, ice velocity, and ice thickness of the Thwaites Glacier basin. This study highlights the necessity for incorporating ice damage into ice-sheet models.
Yuan Cheng, Jiamei Xue, Xiuwei Guo, Yue Zhang, Jizhong Huang, and Haomin Yu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-9-2025, 255–261, https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-255-2025, https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-255-2025, 2025
Yuan Cheng, Hanling Li, Jizhong Huang, and Hongbin Yan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-9-2025, 263–268, https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-263-2025, https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-263-2025, 2025
Jizhong Huang, Jinshuai Hu, Zheng Li, Yue Zhang, and Yuan Cheng
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-9-2025, 595–600, https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-595-2025, https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-595-2025, 2025
Menglian Xia, Rongxing Li, Marco Scaioni, Lu An, Zhenshi Li, and Gang Qiao
EGUsphere, https://doi.org/10.5194/egusphere-2025-175, https://doi.org/10.5194/egusphere-2025-175, 2025
Short summary
Short summary
We propose an innovative multi-satellite DEM adjustment model (MDAM) that removes biases in elevation between sub-DEMs across ice shelves. Our results reveal quantitative 3D structural and mélange features of a ~50 km long rift. For first time, we found that while the mélange elevation decreased from 2014–2021, the mélange inside the rift experienced a rapid expansion, attributing to newly calved shelf ice from rift walls, associated rift widening, and other rift-mélange interaction factors.
Litao Dai, Xingchen Liu, Lu An, and Rongxing Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 101–106, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-101-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-101-2024, 2024
Penglan Luo, Gang Qiao, Zhi Qu, and Sergey Popov
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 311–318, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-311-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-311-2024, 2024
Chengjin Yan, Yuan Cheng, Yue Zhang, Haomin Yu, Jizhong Huang, and Hongbin Yan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-2024, 541–547, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-541-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-541-2024, 2024
Xiaofeng Wang, Lu An, Peter L. Langen, and Rongxing Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 691–696, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-691-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-691-2024, 2024
Xin Wang, Yuan Cheng, Ruoyu Zhang, Yue Zhang, Jizhong Huang, and Hongbin Yan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 713–719, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-713-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-713-2024, 2024
Zheyi Cao, Leyue Tang, Xiaohan Yuan, and Gang Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 59–64, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-59-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-59-2024, 2024
Hongwei Li, Youquan He, Yuanyuan Gu, and Gang Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 323–328, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-323-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-323-2024, 2024
Y. Cheng, J. Xue, H. Yu, and G. Hai
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W9-2024, 99–105, https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-99-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-99-2024, 2024
S. Ge, Y. Cheng, R. Li, H. Cui, Z. Yu, T. Chang, S. Luo, Z. Li, G. Li, A. Zhao, X. Yuan, Y. Li, M. Xia, X. Wang, and G. Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 757–763, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-757-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-757-2022, 2022
K. Lin, G. Qiao, L. Zhang, and S. Popov
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 765–770, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-765-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-765-2022, 2022
L. Wang, G. Qiao, I. V. Florinsky, and S. Popov
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 785–791, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-785-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-785-2022, 2022
Z. Yu, Z. Cao, C. Yu, G. Qiao, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 799–804, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-799-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-799-2022, 2022
A. Zhao, Y. Cheng, D. Lv, M. Xia, R. Li, L. An, S. Liu, and Y. Tian
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 805–811, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-805-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-805-2022, 2022
Lin Li, Aiguo Zhao, Tiantian Feng, Xiangbin Cui, Lu An, Ben Xu, Shinan Lang, Liwen Jing, Tong Hao, Jingxue Guo, Bo Sun, and Rongxing Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-332, https://doi.org/10.5194/tc-2021-332, 2021
Preprint withdrawn
Short summary
Short summary
No subglacial lakes have been reported in Princess Elizabeth Land (PEL), East Antarctica. In this study, thanks to a new suite of airborne geophysical observations in PEL, including RES and gravity data collected during the Chinese National Antarctic Research Expedition, we detected a large subglacial lake of ~45 km in length, ~11 km in width, and ~250 m in depth. These findings will help us understand ice sheet stability in the PEL region.
Rongxing Li, Hongwei Li, Tong Hao, Gang Qiao, Haotian Cui, Youquan He, Gang Hai, Huan Xie, Yuan Cheng, and Bofeng Li
The Cryosphere, 15, 3083–3099, https://doi.org/10.5194/tc-15-3083-2021, https://doi.org/10.5194/tc-15-3083-2021, 2021
Short summary
Short summary
We present the results of an assessment of ICESat-2 surface elevations along the 520 km CHINARE route in East Antarctica. The assessment was performed based on coordinated multi-sensor observations from a global navigation satellite system, corner cube retroreflectors, retroreflective target sheets, and UAVs. The validation results demonstrate that ICESat-2 elevations are accurate to 1.5–2.5 cm and can potentially overcome the uncertainties in the estimation of mass balance in East Antarctica.
T. Chang, J. Han, Z. Li, Y. Wen, T. Hao, P. Lu, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 437–442, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-437-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-437-2021, 2021
H. Cui, R. Li, H. Li, T. Hao, G. Qiao, Y. He, G. Hai, H. Xie, Y. Cheng, and B. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 443–448, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-443-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-443-2021, 2021
Y. He, G. Qiao, H. Li, X. Yuan, and Y. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 463–468, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-463-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-463-2021, 2021
Y. Li, G. Qiao, and X. Yuan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 485–490, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-485-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-485-2021, 2021
S. Luo, Y. Cheng, Z. Li, Y. Wang, K. Wang, X. Wang, G. Qiao, W. Ye, Y. Li, M. Xia, X. Yuan, Y. Tian, X. Tong, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 491–496, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-491-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-491-2021, 2021
Z. Sun and G. Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 503–508, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-503-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-503-2021, 2021
D. Wang, T. Feng, T. Hao, and R. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 521–526, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-521-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-521-2021, 2021
H. Zhao, R. Xu, and G. Qiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 527–532, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-527-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-527-2021, 2021
Cited articles
Altena, B. and Kääb, A.: Weekly Glacier Flow Estimation from Dense
Satellite Time Series Using Adapted Optical Flow Technology, Front. Earth.
Sci., 5, 53, https://doi.org/10.3389/feart.2017.00053, 2017.
Bamber, J. L., Vaughan, D. G., and Joughin, I.: Widespread complex flow in
the interior of the Antarctic ice sheet, Science, 287, 1248–1250,
https://doi.org/10.1126/science.287.5456.1248, 2000.
Berthier, E., Raup, B., and Scambos, T.: New velocity map and mass-balance
estimate of Mertz Glacier, East Antarctica, derived from Landsat sequential
imagery, J. Glaciol., 49, 503–511,
https://doi.org/10.3189/172756503781830377, 2003.
Bindschadler, R., Vornberger, P., Blankenship, D., Scambos, T., and Jacobel,
R.: Surface velocity and mass balance of Ice Streams D and E, West
Antarctica, J. Glaciol., 42, 461–475,
https://doi.org/10.3189/S0022143000003452, 1996.
Bindschadler, R., Vornberger, P., Fleming, A., Fox, A., Mullins, J., Binnie,
D., Paulsen, S. J., Granneman, B., and Gorodetzky, D.: The Landsat Image
Mosaic of Antarctica, Remote Sens. Environ., 112, 4214–4226,
https://doi.org/10.1016/j.rse.2008.07.006, 2008.
Bindschadler, R. A. and Scambos, T. A.: Satellite-Image-Derived Velocity
Field of an Antarctic Ice Stream, Science, 252, 242–246,
https://doi.org/10.1126/science.252.5003.242, 1991.
Chander, G., Markham, B. L., and Helder, D. L.: Summary of current
radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1
ALI sensors, Remote Sens. Environ., 113, 893–903,
https://doi.org/10.1016/j.rse.2009.01.007, 2009.
Cheng, Y., Li, X., Qiao, G., Ye, W., Huang, Y., Li, Y., Wang, K., Tian, Y., Tong, X., and Li, R.: Ice flow velocity mapping of East Antarctica from 1963 to 1989, International Society for Photogrammetry and Remote Sensing (ISPRS) Geospatial Week 2019, Enschede, the Netherlands, 10–14 June 2019, XLII-2/W13, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1735-2019, 2019.
Chenillat, F., Blanke, B., Grima, N., Franks, P. J. S., Capet, X., and
Riviere, P.: Quantifying tracer dynamics in moving fluids: a combined
Eulerian-Lagrangian approach, Front. Earth Sci., 3, 43,
https://doi.org/10.3389/fenvs.2015.00043, 2015.
Chu, P. C. and Fan, C.: Accuracy Progressive Calculation of Lagrangian
Trajectories from a Gridded Velocity Field, J. Atmos. Ocean. Tech., 31,
1615–1627, https://doi.org/10.1175/JTECH-D-13-00204.1, 2014.
Church, J. A., Monselesan, D., Gregory, J. M., and Marzeion, B.: Evaluating
the ability of process based models to project sea-level change, Environ.
Res. Lett., 8, 014051, https://doi.org/10.1088/1748-9326/8/1/014051, 2013.
Cram, T. A., Persing, J., Montgomery, M. T., and Braun, S. A.: A lagrangian
trajectory view on transport and mixing processes between the eye, eyewall,
and environment using a high-resolution simulation of Hurricane Bonnie
(1998), J. Atmos. Sci., 64, 1835–1856, https://doi.org/10.1175/JAS3921.1,
2007.
Cuffey, K. M. and Paterson, W. S. B.: Physics of Glaciers, 4th edn., Academic Press, Burlington, USA, ISBN-13 978-0123694614, ISBN-10 0123694612, 2010.
Danesi, S., Dubbini, M., Morelli, A., Vittuari, L., and Bannister, S.: Joint geophysical observations of ice stream dynamics, in: Geodetic and Geophysical Observations in Antarctica, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-74882-3_16, 2008.
Debella-Gilo, M. and Kääb, A.: Sub-pixel precision image matching
for measuring surface displacements on mass movements using normalized
cross-correlation, Remote Sens. Environ., 115, 130–142,
https://doi.org/10.1016/j.rse.2010.08.012, 2011.
Debella-Gilo, M. and Kääb, A.: Monitoring slow-moving landslides
using spatially adaptive least squares image matching, in:
Landslide Science and Practice, Springer, Berlin, Heidelberg,
https://www.springerprofessional.de/monitoring-slow-moving-landslides-using-spatially-adaptive-least/3919286 (last access: 26 February 2022), 2013.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and
future sea-level rise, Nature, 531, 591–597,
https://doi.org/10.1038/nature17145, 2016.
Euler, C., Riemer, M., Kremer, T., and Schömer, E.: Lagrangian
Description of Air Masses Associated with Latent Heat Release in Tropical
Storm Karl (2016) during Extratropical Transition, Mon. Weather Rev.,
147, 2657–2676, https://doi.org/10.1175/MWR-D-18-0422.1, 2019.
Feng, T., Mi, H., Scaioni, M., Qiao, G., Lu, P., Wang, W., Tong, X., and Li,
R.: Measurement of Surface Changes in a Scaled-Down Landslide Model Using
High-Speed Stereo Image Sequences, Photogramm. Eng. Rem. S., 82, 547–557,
https://doi.org/10.14358/PERS.82.7.547, 2016.
Frezzotti, M., Capra, A., and Vittuari, L.: Comparison between glacier ice
velocities inferred from GPS and sequential satellite images, Ann. Glaciol.,
27, 54–60, https://doi.org/10.3189/1998AoG27-1-54-60, 1998.
Frezzotti, M., Tabacco, I. E., and Zirizzotti, A.: Ice discharge of eastern
Dome C drainage area, Antarctica, determined from airborne radar survey and
satellite image analysis, J. Glaciol., 46, 253–264,
https://doi.org/10.3189/172756500781832855, 2000.
Fürst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M.,
Braun, M., and Gagliardini, O.: The safety band of Antarctic ice shelves,
Nat. Clim. Change, 6, 479–482, https://doi.org/10.1038/nclimate2912, 2016.
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018.
Gardner, A. S., Fahnestock, M. A., and Scambos, T. A.: ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities, National Snow and Ice Data Center [data set], https://its-live.jpl.nasa.gov/ (last access: 26 February 2022), 2019.
Glenn, S. M., Miles, T. N., Serokal, G. N., Xu, Y., Forney, R. K., Yu, F.,
Roarty, H., Schofield, O., and Kohut, J.: Stratified coastal ocean
interactions with tropical cyclones, Nat. Commun., 7, 10887(2016),
https://doi.org/10.1038/ncomms10887, 2016.
Greene, C. A., Blankenship, D. D., Gwyther, D. E., Silvano, A., and van
Wijk, E.: Wind causes Totten Ice Shelf melt and acceleration, Science
Advances, 3, e1701681, https://doi.org/10.1126/sciadv.1701681, 2017.
Greene, C. A., Young, D. A., Gwyther, D. E., Galton-Fenzi, B. K., and Blankenship, D. D.: Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing, The Cryosphere, 12, 2869–2882, https://doi.org/10.5194/tc-12-2869-2018, 2018.
Greene, C. A., Gardner, A. S., and Andrews, L. C.: Detecting seasonal ice dynamics in satellite images, The Cryosphere, 14, 4365–4378, https://doi.org/10.5194/tc-14-4365-2020, 2020.
Halliday, D., Resnick, R., and Walker, J.: Fundamentals of physics, 10th edn., John Wiley & Sons, ISBN 111823071X, 9781118230718, 2013.
Heid, T. and Kääb, A.: Evaluation of existing image matching
methods for deriving glacier surface displacements globally from optical
satellite imagery, Remote Sens. Environ., 118, 339–355,
https://doi.org/10.1016/j.rse.2011.11.024, 2012.
IPCC: The Ocean and Cryosphere in a Changing Climate: A Special Report of the Intergovernmental Panel on Climate Change, Working Group II Technical Support Unit, 756 pp., https://www.ipcc.ch/srocc/ (last access: 26 February 2022), 2019.
Joughin, I., Shean, D. E., Smith, B. E., and Floricioiu, D.: A decade of variability on Jakobshavn Isbræ: ocean temperatures pace speed through influence on mélange rigidity, The Cryosphere, 14, 211–227, https://doi.org/10.5194/tc-14-211-2020, 2020.
Joughin, I., Shapero, D., Smith, B., Dutrieux, P., and Barham, M.: Ice-shelf retreat drives recent Pine Island Glacier speedup, Science Advances, 7, eabg3080, https://doi.org/10.1126/sciadv.abg3080, 2021.
Kim, K.: Satellite mapping and automated feature extraction: geographic information system-based change detection of the Antarctic coast, Doctoral dissertation, The Ohio State University, Columbus, Ohio, 171 pp., http://rave.ohiolink.edu/etdc/view?acc_num=osu1072898409 (last access: 26 February 2022), 2004.
Li, J. and Roy, D. P.: A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring, Remote Sens., 9, 902, https://doi.org/10.3390/rs9090902, 2017.
Li, R.: Potential of high-resolution satellite imagery for national mapping
products, Photogramm. Eng. Rem. S., 64, 1165–1169, 1998.
Li, R., Hwangbo, J., Chen, Y., and Di, K.: Rigorous Photogrammetric
Processing of HiRISE Stereo Imagery for Mars Topographic Mapping, IEEE T.
Geosci. Remote, 49, 2558–2572, https://doi.org/10.1109/TGRS.2011.2107522,
2011.
Li, R., Ye, W., Qiao, G., Tong, X., Liu, S., Kong, F., and Ma, X.: A New
Analytical Method for Estimating Antarctic Ice Flow in the 1960s From
Historical Optical Satellite Imagery, IEEE T. Geosci. Remote, 55,
2771–2785, https://doi.org/10.1109/TGRS.2017.2654484, 2017.
Li, X., Rignot, E., Morlighem, M., Mouginot, J., and Scheuchl, B.: Grounding
line retreat of Totten Glacier, East Antarctica, 1996 to 2013, Geophys. Res.
Lett., 42, 8049–8056, https://doi.org/10.1002/2015GL065701, 2015.
Li, X., Rignot, E., Mouginot, J., and Scheuchl, B.: Ice flow dynamics and
mass loss of Totten Glacier, East Antarctica, from 1989 to 2015, Geophys.
Res. Lett., 43, 6366–6373, https://doi.org/10.1002/2016GL069173, 2016.
Lillesand, T. R. W. K.: Remote sensing and image interpretation, 7th edn., John Wiley & Sons, ISBN-13 978-1118343289, ISBN-10 111834328X, 2015.
McGlone, J. C.: Manual of Photogrammetry, sixth edn., ASPRS Publications, Maryland, MD, USA, ISBN-10 1570830991, ISBN-13 978-1570830990, 2013.
Montgomery, D. C., Peck, E. A., and Vining, G. G.: Introduction to Linear Regression Analysis, 6th edn., John Wiley & Sons, ISBN-10 1119578728, ISBN-13 978-1119578727, 2021.
Moon, J., Cho, Y., and Lee, H.: Flow Velocity Change of David Glacier, East
Antarctica, from 2016 to 2020 Observed by Sentinel-1A SAR Offset Tracking
Method, Korean Journal of Remote Sensing, 37, 1–11,
https://doi.org/10.7780/kjrs.2021.37.1.1, 2021.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles,
G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V.,
Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat,
I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K.,
Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S.,
Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., Broeke, M.
R. V. D., Ommen, T. D. V., Wessem, M. V., and Young, D. A.: Deep glacial
troughs and stabilizing ridges unveiled beneath the margins of the Antarctic
ice sheet, Nat. Geosci., 13, 132–137,
https://doi.org/10.1038/s41561-019-0510-8, 2020.
Nakamura, K., Doi, K., and Shibuya, K.: Fluctuations in the flow velocity of
the Antarctic Shirase Glacier over an 11-year period, Polar Sci., 4,
443–455, https://doi.org/10.1016/j.polar.2010.04.010, 2010.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice Flow of the Antarctic Ice
Sheet, Science, 333, 1427–1430, 2011a.
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., and Lenaerts, J.: Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise, Geophys. Res. Lett., 38, L05503, https://doi.org/10.1029/2011GL046583, 2011b.
Rignot, E., Mouginot, J., and Scheuchl, B.: Antarctic grounding line mapping
from differential satellite radar interferometry, Geophys. Res. Lett.,
38, L10504, https://doi.org/10.1029/2011GL047109, 2011c.
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M.
J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from
1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103,
https://doi.org/10.1073/pnas.1812883116, 2019.
Ruffner, K. C.: CORONA: America’s First Satellite Program, https://apps.dtic.mil/sti/citations/ADA499635 (last access: 26 February 2022), 1995.
Sabins Jr., F. and James, F. A.: Remote Sensing: Principles, Interpretation, and Applications, 4th edn., Waveland Press, ISBN-10 1478637102, ISBN-13 978-1478637103, 2020.
Scambos, T. A., Dutkiewicz, M. J., Wilson, J. C., and Bindschadler, R. A.:
Application of image cross-correlation to the measurement of glacier
velocity using satellite image data, Remote Sens. Environ., 42, 177–186,
https://doi.org/10.1016/0034-4257(92)90101-O, 1992.
Schenk, T.: Digital Photogrammetry, TerraScience, Laurelville, Ohio, ISBN-10 0967765315, 1999.
Shen, Q., Wang, H., Shum, C. K., Jiang, L., Hsu, H. T., and Dong, J.: Recent
high-resolution Antarctic ice velocity maps reveal increased mass loss in
Wilkes Land, East Antarctica, Sci. Rep.-UK, 8, 4477,
https://doi.org/10.1038/s41598-018-22765-0, 2018.
Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sorensen, L. S., Scambos, T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg, W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally, H. J.: A Reconciled Estimate of Ice-Sheet Mass Balance, Science, 338, 1183–1189, https://doi.org/10.1126/science.1228102, 2012.
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., Geruo, A., Agosta, C., Ahlstrom, A., Babonis, G., Barletta, V., Blazquez, A., Bonin, J., Csatho, B., Cullather, R., Felikson, D., Fettweis, X., Forsberg, R., Gallee, H., Gardner, A., Gilbert, L., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild, S., Mohajerani, Y., Moore, P., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G., Nilsson, J., Noel, B., Otosaka, I., Pattle, M. E., Peltier, W. R., Pie, N., Rietbroek, R., Rott, H., Sandberg-Sorensen, L., Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schroeder, L., Seo, K., Simonsen, S., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., van de Berg, W. J., van der Wal, W., van Wessem, M., Vishwakarma, B. D., Wiese, D., and Wouters, B.: Mass balance of the Antarctic Ice Sheet from 1992 to 2017, Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018.
Shimizu, M. and Okutomi, M.: Sub-pixel estimation error cancellation on
area-based matching, Int. J. Comput. Vision, 63, 207–224,
https://doi.org/10.1007/s11263-005-6878-5, 2005.
Storey, J., Choate, M., and Lee, K.: Landsat 8 Operational Land Imager
On-Orbit Geometric Calibration and Performance, Remote Sens.-Basel, 6,
11127–11152, https://doi.org/10.3390/rs61111127, 2014.
van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P.,
Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J.,
Deleersnijder, E., Doos, K., Drake, H. F., Drijfhout, S., Gary, S. F.,
Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,
MacGilchrist, G. A., Marsh, R., Adame, C. G. M., McAdam, R., Nencioli, F.,
Paris, C. B., Piggott, M. D., Polton, J. A., Ruehs, S., Shah, S. H. A. M.,
Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.:
Lagrangian ocean analysis: Fundamentals and practices, Ocean Model.,
121, 49–75, https://doi.org/10.1016/j.ocemod.2017.11.008, 2018.
Wang, S., Liu, H., Yu, B., Zhou, G., and Cheng, X.: Revealing the early ice
flow patterns with historical Declassified Intelligence Satellite
Photographs back to 1960s, Geophys. Res. Lett., 43, 5758–5767,
https://doi.org/10.1002/2016GL068990, 2016.
Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G.,
Woodcock, C. E., Allen, R. G., Anderson, M. C., Belward, A. S., Cohen, W.
B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosillo, T.,
Hipple, J. D., Hostert, P., Hughes, M. J., Huntington, J., Johnson, D. M.,
Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, J., Pahlevan, N.,
Scambos, T. A., Schaaf, C., Schott, J. R., Sheng, Y., Storey, J., Vermote,
E., Vogelmann, J., White, J. C., Wynne, R. H., and Zhu, Z.: Current status
of Landsat program, science, and applications, Remote Sens. Environ.,
225, 127–147, https://doi.org/10.1016/j.rse.2019.02.015, 2019.
Ye, W., Qiao, G., Kong, F., Ma, X., Tong, X., and Li, R.: Improved geometric
modeling of 1960s KH-5 ARGON satellite images for regional antarctica
applications, Photogramm. Eng. Rem. S., 83, 477–491, 2017.
Zhou, C., Zhou, Y., Deng, F., Ai, S., Wang, Z., and E, D.: Seasonal and
interannual ice velocity changes of Polar Record Glacier, East Antarctica,
Ann. Glaciol., 55, 45–51, https://doi.org/10.3189/2014AoG66A185, 2014.
Short summary
Historical velocity maps of the Antarctic ice sheet are valuable for long-term ice flow dynamics analysis. We developed an innovative method for correcting overestimations existing in historical velocity maps. The method is validated rigorously using high-quality Landsat 8 images and then successfully applied to historical velocity maps. The historical change signatures are preserved and can be used for assessing the impact of long-term global climate changes on the ice sheet.
Historical velocity maps of the Antarctic ice sheet are valuable for long-term ice flow dynamics...