Articles | Volume 16, issue 10
https://doi.org/10.5194/tc-16-4141-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-4141-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating simplifications of subsurface process representations for field-scale permafrost hydrology models
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
Related authors
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753, https://doi.org/10.5194/egusphere-2025-1753, 2025
Short summary
Short summary
Predicting hydrological runoff in Arctic permafrost regions is difficult due to limited observations and complex terrain. We used a detailed physics-based model to improve runoff estimates in a Earth system land model. Our method improved runoff accuracy and worked well across two different Arctic regions. This helps make climate models more reliable for understanding water flow in permafrost areas under a changing climate.
Alexandra Hamm, Erik Schytt Mannerfelt, Aaron A. Mohammed, Scott L. Painter, Ethan T. Coon, and Andrew Frampton
The Cryosphere, 19, 3693–3724, https://doi.org/10.5194/tc-19-3693-2025, https://doi.org/10.5194/tc-19-3693-2025, 2025
Short summary
Short summary
The fate of thawing permafrost carbon is essential for understanding the permafrost–climate feedback and projections of future climate. Here we study transport of organic carbon by groundwater in the active layer of a hillslope model. We find that carbon transport velocities and microbial mineralization rates are strongly dependent on liquid saturation in the seasonally thawed active layer. In a warming climate, the rate at which permafrost thaws determines how fast carbon can be transported.
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753, https://doi.org/10.5194/egusphere-2025-1753, 2025
Short summary
Short summary
Predicting hydrological runoff in Arctic permafrost regions is difficult due to limited observations and complex terrain. We used a detailed physics-based model to improve runoff estimates in a Earth system land model. Our method improved runoff accuracy and worked well across two different Arctic regions. This helps make climate models more reliable for understanding water flow in permafrost areas under a changing climate.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Radhakrishna Bangalore Lakshmiprasad, Fan Zhang, Ethan T. Coon, and Thomas Graf
EGUsphere, https://doi.org/10.5194/egusphere-2023-3122, https://doi.org/10.5194/egusphere-2023-3122, 2024
Preprint archived
Short summary
Short summary
An effective method of understanding permafrost dynamics due to climate change is numerical modeling. The research work established a novel numerical approach to assess the required level of surface process complexity and set up a numerical model at the Yakou catchment in the Qinghai-Tibet Plateau. The main research findings were that permafrost thawing was not well represented by considering only subsurface processes, and liquid precipitation increased the rate of permafrost degradation.
Pin Shuai, Xingyuan Chen, Utkarsh Mital, Ethan T. Coon, and Dipankar Dwivedi
Hydrol. Earth Syst. Sci., 26, 2245–2276, https://doi.org/10.5194/hess-26-2245-2022, https://doi.org/10.5194/hess-26-2245-2022, 2022
Short summary
Short summary
Using an integrated watershed model, we compared simulated watershed hydrologic variables driven by three publicly available gridded meteorological forcings (GMFs) at various spatial and temporal resolutions. Our results demonstrated that spatially distributed variables are sensitive to the spatial resolution of the GMF. The temporal resolution of the GMF impacts the dynamics of watershed responses. The choice of GMF depends on the quantity of interest and its spatial and temporal scales.
Cited articles
Abolt, C. J., Young, M. H., Atchley, A. L., Harp, D. R., and Coon, E. T.:
Feedbacks Between Surface Deformation and Permafrost Degradation in Ice
Wedge Polygons, Arctic Coastal Plain, Alaska, J. Geophys. Res.-Earth,
125, e2019JF005349, https://doi.org/10.1029/2019JF005349, 2020.
Atchley, A. L., Painter, S. L., Harp, D. R., Coon, E. T., Wilson, C. J., Liljedahl, A. K., and Romanovsky, V. E.: Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83), Geosci. Model Dev., 8, 2701–2722, https://doi.org/10.5194/gmd-8-2701-2015, 2015.
Berteaux, D., Gauthier, G., Domine, F., Ims, R. A., Lamoureux, S. F.,
Lévesque, E., and Yoccoz, N.: Effects of changing permafrost and snow
conditions on tundra wildlife: critical places and times, Arct. Sci., 3,
65–90, https://doi.org/10.1139/as-2016-0023, 2017.
Bui, M. T., Lu, J., and Nie, L.: A Review of Hydrological Models Applied in
the Permafrost-Dominated Arctic Region, Geosciences, 10, 401,
https://doi.org/10.3390/geosciences10100401, 2020.
Busey, B., Bolton, B., Wilson, C., and Cohen, L.: Surface Meteorology at Teller Site Stations, Seward Peninsula, Alaska, Ongoing from 2016, Next Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA [data set], https://doi.org/10.5440/1437633, 2017.
Chen, L., Fortier, D., McKenzie, J. M., and Sliger, M.: Impact of heat
advection on the thermal regime of roads built on permafrost, Hydrol.
Process., 34, 1647–1664, https://doi.org/10.1002/hyp.13688, 2020.
Cheng, G. and Wu, T.: Responses of permafrost to climate change and their
environmental significance, Qinghai-Tibet Plateau, J. Geophys. Res.-Earth, 112, F02S03, https://doi.org/10.1029/2006JF000631, 2007.
Coon, E. T., David Moulton, J., and Painter, S. L.: Managing complexity in
simulations of land surface and near-surface processes, Environ. Model.
Softw., 78, 134–149, https://doi.org/10.1016/j.envsoft.2015.12.017, 2016.
Coon, E. T., Moulton, J. D., Kikinzon, E., Berndt, M., Manzini, G.,
Garimella, R., Lipnikov, K., and Painter, S. L.: Coupling surface flow and
subsurface flow in complex soil structures using mimetic finite differences,
Adv. Water Resour., 144, 103701,
https://doi.org/10.1016/j.advwatres.2020.103701, 2020.
Coon, E., Berndt, M., Jan, A., Svyatsky, D., Atchley, A., Kikinzon, E., Harp, D., Manzini, G., Shelef, E., Lipnikov, K., Garimella, R., Xu, C., Moulton, D., Karra, S., Painter, S., Jafarov, E., and Molins, S.: Advanced Terrestrial Simulator (ATS) v1.2.0 (1.2.0), Zenodo [code], https://doi.org/10.5281/zenodo.6679807, 2022.
Dagenais, S., Molson, J., Lemieux, J.-M., Fortier, R., and Therrien, R.:
Coupled cryo-hydrogeological modelling of permafrost dynamics near Umiujaq
(Nunavik, Canada), Hydrogeol. J., 28, 887–904,
https://doi.org/10.1007/s10040-020-02111-3, 2020.
Dall'Amico, M., Endrizzi, S., Gruber, S., and Rigon, R.: A robust and energy-conserving model of freezing variably-saturated soil, The Cryosphere, 5, 469–484, https://doi.org/10.5194/tc-5-469-2011, 2011.
Dearborn, K. D., Wallace, C. A., Patankar, R., and Baltzer, J. L.:
Permafrost thaw in boreal peatlands is rapidly altering forest community
composition, J. Ecol., 109, 1452–1467,
https://doi.org/10.1111/1365-2745.13569, 2021.
Devoie, É. G. and Craig, J. R.: A Semianalytical Interface Model of Soil
Freeze/Thaw and Permafrost Evolution, Water Resour. Res., 56, e2020WR027638,
https://doi.org/10.1029/2020WR027638, 2020.
Endrizzi, S., Gruber, S., Dall'Amico, M., and Rigon, R.: GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects, Geosci. Model Dev., 7, 2831–2857, https://doi.org/10.5194/gmd-7-2831-2014, 2014.
Fortier, D., Allard, M., and Shur, Y.: Observation of rapid drainage system
development by thermal erosion of ice wedges on Bylot Island, Canadian
Arctic Archipelago, Permafrost Periglac., 18, 229–243,
https://doi.org/10.1002/ppp.595, 2007.
Gao, B.: Dataset used for paper “Evaluating simplifications of subsurface process representations for field-scale permafrost hydrology models”, Zenodo [data set], https://doi.org/10.5281/zenodo.7125408, 2022.
Godin, E., Fortier, D., and Coulombe, S.: Effects of thermo-erosion gullying
on hydrologic flow networks, discharge and soil loss, Environ. Res. Lett.,
9, 105010, https://doi.org/10.1088/1748-9326/9/10/105010, 2014.
Gottardi, G. and Venutelli, M.: A control-volume finite-element model for
two-dimensional overland flow, Adv. Water Resour., 16, 277–284,
https://doi.org/10.1016/0309-1708(93)90019-C, 1993.
Grenier, C., Anbergen, H., Bense, V., Chanzy, Q., Coon, E., Collier, N.,
Costard, F., Ferry, M., Frampton, A., Frederick, J., Gonçalvès, J.,
Holmén, J., Jost, A., Kokh, S., Kurylyk, B., McKenzie, J., Molson, J.,
Mouche, E., Orgogozo, L., Pannetier, R., Rivière, A., Roux, N.,
Rühaak, W., Scheidegger, J., Selroos, J.-O., Therrien, R., Vidstrand,
P., and Voss, C.: Groundwater flow and heat transport for systems undergoing
freeze-thaw: Intercomparison of numerical simulators for 2D test cases, Adv.
Water Resour., 114, 196–218,
https://doi.org/10.1016/j.advwatres.2018.02.001, 2018.
Harp, D. R., Zlotnik, V., Abolt, C. J., Busey, B., Avendaño, S. T., Newman, B. D., Atchley, A. L., Jafarov, E., Wilson, C. J., and Bennett, K. E.: New insights into the drainage of inundated ice-wedge polygons using fundamental hydrologic principles, The Cryosphere, 15, 4005–4029, https://doi.org/10.5194/tc-15-4005-2021, 2021.
Hinzman, L., Busey, B., Cable, W., and Romanovsky, V.: Surface Meteorology, Utqiagvik (Barrow), Alaska, Area A, B, C and D, Ongoing from 2012, Next Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA [data set], https://doi.org/10.5440/1164893, 2014.
Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E.,
Nelson, F. E., Etzelmüller, B., and Luoto, M.: Degrading permafrost puts
Arctic infrastructure at risk by mid-century, Nat. Commun., 9, 5147,
https://doi.org/10.1038/s41467-018-07557-4, 2018.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Jafarov, E. E., Coon, E. T., Harp, D. R., Wilson, C. J., Painter, S. L.,
Atchley, A. L., and Romanovsky, V. E.: Modeling the role of preferential
snow accumulation in through talik development and hillslope groundwater
flow in a transitional permafrost landscape, Environ. Res. Lett., 13,
105006, https://doi.org/10.1088/1748-9326/aadd30, 2018.
Jan, A., Coon, E. T., Painter, S. L., Garimella, R., and Moulton, J. D.: An
intermediate-scale model for thermal hydrology in low-relief
permafrost-affected landscapes, Comput. Geosci., 22, 163–177,
https://doi.org/10.1007/s10596-017-9679-3, 2018.
Jan, A., Coon, E. T., and Painter, S. L.: Evaluating integrated surface/subsurface permafrost thermal hydrology models in ATS (v0.88) against observations from a polygonal tundra site, Geosci. Model Dev., 13, 2259–2276, https://doi.org/10.5194/gmd-13-2259-2020, 2020.
Jorgenson, M. T., Racine, C. H., Walters, J. C., and Osterkamp, T. E.:
Permafrost Degradation and Ecological Changes Associated with a
WarmingClimate in Central Alaska, Clim. Change, 48, 551–579,
https://doi.org/10.1023/A:1005667424292, 2001.
Karra, S., Painter, S. L., and Lichtner, P. C.: Three-phase numerical model for subsurface hydrology in permafrost-affected regions (PFLOTRAN-ICE v1.0), The Cryosphere, 8, 1935–1950, https://doi.org/10.5194/tc-8-1935-2014, 2014.
Kurylyk, B. L. and Watanabe, K.: The mathematical representation of freezing
and thawing processes in variably-saturated, non-deformable soils, Adv.
Water Resour., 60, 160–177,
https://doi.org/10.1016/j.advwatres.2013.07.016, 2013.
Kurylyk, B. L., MacQuarrie, K. T. B., and McKenzie, J. M.: Climate change
impacts on groundwater and soil temperatures in cold and temperate regions:
Implications, mathematical theory, and emerging simulation tools, Earth-Sci.
Rev., 138, 313–334, https://doi.org/10.1016/j.earscirev.2014.06.006, 2014.
Liu, W., Fortier, R., Molson, J., and Lemieux, J.-M.: Three-Dimensional
Numerical Modeling of Cryo-Hydrogeological Processes in a River-Talik System
in a Continuous Permafrost Environment, Water Resour. Res., 58,
e2021WR031630, https://doi.org/10.1029/2021WR031630, 2022.
Luethi, R., Phillips, M., and Lehning, M.: Estimating Non-Conductive Heat
Flow Leading to Intra-Permafrost Talik Formation at the Ritigraben Rock
Glacier (Western Swiss Alps), Permafrost Periglac., 28, 183–194,
https://doi.org/10.1002/ppp.1911, 2017.
McKenzie, J. M. and Voss, C. I.: Permafrost thaw in a nested
groundwater-flow system, Hydrogeol. J., 21, 299–316,
https://doi.org/10.1007/s10040-012-0942-3, 2013.
McKenzie, J. M., Voss, C. I., and Siegel, D. I.: Groundwater flow with
energy transport and water–ice phase change: numerical simulations,
benchmarks, and application to freezing in peat bogs, Adv. Water Resour.,
30, 966–983, https://doi.org/10.1016/j.advwatres.2006.08.008, 2007.
NEON (National Ecological Observatory Network): 2D wind speed and direction (DP1.00001.001): RELEASE-2021, NEON [data set], https://doi.org/10.48443/s9ya-zc81, 2021.
Noh, J.-H., Lee, S.-R., and Park, H.: Prediction of cryo-SWCC during
freezing based on pore-size distribution, Int. J. Geomech., 12, 428–438,
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000134, 2012.
O'Connor, M. T., Cardenas, M. B., Ferencz, S. B., Wu, Y., Neilson, B. T.,
Chen, J., and Kling, G. W.: Empirical Models for Predicting Water and Heat
Flow Properties of Permafrost Soils, Geophys. Res. Lett., 47, e2020GL087646,
https://doi.org/10.1029/2020GL087646, 2020.
Painter, S. L.: Three-phase numerical model of water migration in partially
frozen geological media: model formulation, validation, and applications,
Comput. Geosci., 15, 69–85, https://doi.org/10.1007/s10596-010-9197-z,
2011.
Painter, S. L. and Karra, S.: Constitutive Model for Unfrozen Water Content
in Subfreezing Unsaturated Soils, Vadose Zone J., 13, vzj2013.04.0071,
https://doi.org/10.2136/vzj2013.04.0071, 2014.
Painter, S. L., Coon, E. T., Atchley, A. L., Berndt, M., Garimella, R.,
Moulton, J. D., Svyatskiy, D., and Wilson, C. J.: Integrated
surface/subsurface permafrost thermal hydrology: Model formulation and
proof-of-concept simulations: integrated pemafrost thermal hydrology, Water
Resour. Res., 52, 6062–6077, https://doi.org/10.1002/2015WR018427, 2016.
Ren, J., Vanapalli, S., and Han, Z.: Soil freezing process and different
expressions for the soil-freezing characteristic curve, Sci. Cold Arid Reg.,
9, 221–228, 2017.
Riseborough, D., Shiklomanov, N., Etzelmüller, B., Gruber, S., and
Marchenko, S.: Recent advances in permafrost modelling, Permafrost Periglac., 19, 137–156, https://doi.org/10.1002/ppp.615, 2008.
Rowland, J. C., Travis, B. J., and Wilson, C. J.: The role of advective heat
transport in talik development beneath lakes and ponds in discontinuous
permafrost, Geophys. Res. Lett., 38, L17504, , https://doi.org/10.1029/2011GL048497,
2011.
Sjöberg, Y., Coon, E., K. Sannel, A. B., Pannetier, R., Harp, D.,
Frampton, A., Painter, S. L., and Lyon, S. W.: Thermal effects of
groundwater flow through subarctic fens: A case study based on field
observations and numerical modeling, Water Resour. Res., 52, 1591–1606,
https://doi.org/10.1002/2015WR017571, 2016.
Stuurop, J. C., van der Zee, S. E. A. T. M., Voss, C. I., and French, H. K.:
Simulating water and heat transport with freezing and cryosuction in
unsaturated soil: Comparing an empirical, semi-empirical and
physically-based approach, Adv. Water Resour., 149, 103846,
https://doi.org/10.1016/j.advwatres.2021.103846, 2021.
Sugimoto, A., Yanagisawa, N., Naito, D., Fujita, N., and Maximov, T. C.:
Importance of permafrost as a source of water for plants in east Siberian
taiga, Ecol. Res., 17, 493–503,
https://doi.org/10.1046/j.1440-1703.2002.00506.x, 2002.
Tesi, T., Muschitiello, F., Smittenberg, R. H., Jakobsson, M., Vonk, J. E.,
Hill, P., Andersson, A., Kirchner, N., Noormets, R., Dudarev, O., Semiletov,
I., and Gustafsson, Ö.: Massive remobilization of permafrost carbon
during post-glacial warming, Nat. Commun., 7, 13653,
https://doi.org/10.1038/ncomms13653, 2016.
Thornton, M. M., Wei, Y., Thornton, P. E., Shrestha, R., Kao, S., and Wilson, B. E.: Daymet: Station-Level Inputs and Cross Validation Result for North America, Version 4, ORNL DAAC, Oak Ridge, Tennessee, USA [data set], https://doi.org/10.3334/ORNLDAAC/1850, 2020.
Thornton, P. E., Shrestha, R., Thornton, M., Kao, S.-C., Wei, Y., and
Wilson, B. E.: Gridded daily weather data for North America with
comprehensive uncertainty quantification, Sci. Data, 8, 190,
https://doi.org/10.1038/s41597-021-00973-0, 2021.
Van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Viterbo, P., Beljaars, A., Mahfouf, J.-F., and Teixeira, J.: The
representation of soil moisture freezing and its impact on the stable
boundary layer, Q. J. Roy. Meteor. Soc., 125, 2401–2426,
https://doi.org/10.1002/qj.49712555904, 1999.
Walvoord, M. A. and Kurylyk, B. L.: Hydrologic Impacts of Thawing
Permafrost–A Review, Vadose Zone J., 15, vzj2016.01.0010,
https://doi.org/10.2136/vzj2016.01.0010, 2016.
Wasantha Lal, A. M.: Weighted Implicit Finite-Volume Model for Overland
Flow, J. Hydraul. Eng., 124, 941–950,
https://doi.org/10.1061/(ASCE)0733-9429(1998)124:9(941), 1998.
Weismüller, J., Wollschläger, U., Boike, J., Pan, X., Yu, Q., and Roth, K.: Modeling the thermal dynamics of the active layer at two contrasting permafrost sites on Svalbard and on the Tibetan Plateau, The Cryosphere, 5, 741–757, https://doi.org/10.5194/tc-5-741-2011, 2011.
Westermann, S., Langer, M., Boike, J., Heikenfeld, M., Peter, M., Etzelmüller, B., and Krinner, G.: Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3, Geosci. Model Dev., 9, 523–546, https://doi.org/10.5194/gmd-9-523-2016, 2016.
Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A., and Brown, J.:
Statistics and characteristics of permafrost and ground-ice distribution in
the Northern Hemisphere, Polar Geogr., 31, 47–68,
https://doi.org/10.1080/10889370802175895, 2008.
Short summary
Representing water at constant density, neglecting cryosuction, and neglecting heat advection are three commonly applied but not validated simplifications in permafrost models to reduce computation complexity at field scale. We investigated this problem numerically by Advanced Terrestrial Simulator and found that neglecting cryosuction can cause significant bias (10%–60%), constant density primarily affects predicting water saturation, and ignoring heat advection has the least impact.
Representing water at constant density, neglecting cryosuction, and neglecting heat advection...