Articles | Volume 16, issue 10
https://doi.org/10.5194/tc-16-4141-2022
https://doi.org/10.5194/tc-16-4141-2022
Research article
 | 
10 Oct 2022
Research article |  | 10 Oct 2022

Evaluating simplifications of subsurface process representations for field-scale permafrost hydrology models

Bo Gao and Ethan T. Coon

Related authors

Runoff Evaluation in an Earth System Land Model for Permafrost Regions
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753,https://doi.org/10.5194/egusphere-2025-1753, 2025
Short summary

Cited articles

Abolt, C. J., Young, M. H., Atchley, A. L., Harp, D. R., and Coon, E. T.: Feedbacks Between Surface Deformation and Permafrost Degradation in Ice Wedge Polygons, Arctic Coastal Plain, Alaska, J. Geophys. Res.-Earth, 125, e2019JF005349, https://doi.org/10.1029/2019JF005349, 2020. 
Atchley, A. L., Painter, S. L., Harp, D. R., Coon, E. T., Wilson, C. J., Liljedahl, A. K., and Romanovsky, V. E.: Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83), Geosci. Model Dev., 8, 2701–2722, https://doi.org/10.5194/gmd-8-2701-2015, 2015. 
Berteaux, D., Gauthier, G., Domine, F., Ims, R. A., Lamoureux, S. F., Lévesque, E., and Yoccoz, N.: Effects of changing permafrost and snow conditions on tundra wildlife: critical places and times, Arct. Sci., 3, 65–90, https://doi.org/10.1139/as-2016-0023, 2017. 
Bui, M. T., Lu, J., and Nie, L.: A Review of Hydrological Models Applied in the Permafrost-Dominated Arctic Region, Geosciences, 10, 401, https://doi.org/10.3390/geosciences10100401, 2020. 
Busey, B., Bolton, B., Wilson, C., and Cohen, L.: Surface Meteorology at Teller Site Stations, Seward Peninsula, Alaska, Ongoing from 2016, Next Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA [data set], https://doi.org/10.5440/1437633, 2017. 
Download
Short summary
Representing water at constant density, neglecting cryosuction, and neglecting heat advection are three commonly applied but not validated simplifications in permafrost models to reduce computation complexity at field scale. We investigated this problem numerically by Advanced Terrestrial Simulator and found that neglecting cryosuction can cause significant bias (10%–60%), constant density primarily affects predicting water saturation, and ignoring heat advection has the least impact.
Share