Articles | Volume 16, issue 8
https://doi.org/10.5194/tc-16-3393-2022
https://doi.org/10.5194/tc-16-3393-2022
Research article
 | 
29 Aug 2022
Research article |  | 29 Aug 2022

Using snow depth observations to provide insight into the quality of snowpack simulations for regional-scale avalanche forecasting

Simon Horton and Pascal Haegeli

Related authors

A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024,https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
Clustering simulated snow profiles to form avalanche forecast regions
Simon Horton, Florian Herla, and Pascal Haegeli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1609,https://doi.org/10.5194/egusphere-2024-1609, 2024
Short summary
A quantitative module of avalanche hazard—comparing forecaster assessments of storm and persistent slab avalanche problems with information derived from distributed snowpack simulations
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
EGUsphere, https://doi.org/10.5194/egusphere-2024-871,https://doi.org/10.5194/egusphere-2024-871, 2024
Short summary
Snow profile alignment and similarity assessment for aggregating, clustering, and evaluating snowpack model output for avalanche forecasting
Florian Herla, Simon Horton, Patrick Mair, and Pascal Haegeli
Geosci. Model Dev., 14, 239–258, https://doi.org/10.5194/gmd-14-239-2021,https://doi.org/10.5194/gmd-14-239-2021, 2021
Short summary
Examining the operational use of avalanche problems with decision trees and model-generated weather and snowpack variables
Simon Horton, Moses Towell, and Pascal Haegeli
Nat. Hazards Earth Syst. Sci., 20, 3551–3576, https://doi.org/10.5194/nhess-20-3551-2020,https://doi.org/10.5194/nhess-20-3551-2020, 2020
Short summary

Related subject area

Discipline: Snow | Subject: Natural Hazards
Interactive snow avalanche segmentation from webcam imagery: results, potential, and limitations
Elisabeth D. Hafner, Theodora Kontogianni, Rodrigo Caye Daudt, Lucien Oberson, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 18, 3807–3823, https://doi.org/10.5194/tc-18-3807-2024,https://doi.org/10.5194/tc-18-3807-2024, 2024
Short summary
Changes in snow avalanche activity in response to climate warming in the Swiss Alps
Stephanie Mayer, Martin Hendrick, Adrien Michel, Bettina Richter, Jürg Schweizer, Heini Wernli, and Alec van Herwijnen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1026,https://doi.org/10.5194/egusphere-2024-1026, 2024
Short summary
Snow mechanical property variability at the slope scale – implication for snow mechanical modelling
Francis Meloche, Francis Gauthier, and Alexandre Langlois
The Cryosphere, 18, 1359–1380, https://doi.org/10.5194/tc-18-1359-2024,https://doi.org/10.5194/tc-18-1359-2024, 2024
Short summary
Combining modelled snowpack stability with machine learning to predict avalanche activity
Léo Viallon-Galinier, Pascal Hagenmuller, and Nicolas Eckert
The Cryosphere, 17, 2245–2260, https://doi.org/10.5194/tc-17-2245-2023,https://doi.org/10.5194/tc-17-2245-2023, 2023
Short summary
Can Saharan dust deposition impact snowpack stability in the French Alps?
Oscar Dick, Léo Viallon-Galinier, François Tuzet, Pascal Hagenmuller, Mathieu Fructus, Benjamin Reuter, Matthieu Lafaysse, and Marie Dumont
The Cryosphere, 17, 1755–1773, https://doi.org/10.5194/tc-17-1755-2023,https://doi.org/10.5194/tc-17-1755-2023, 2023
Short summary

Cited articles

Bellaire, S. and Jamieson, B.: Forecasting the formation of critical snow layers using a coupled snow cover and weather model, Cold Reg. Sci. Technol., 94, 37–44, https://doi.org/10.1016/j.coldregions.2013.06.007, 2013. a
Bellaire, S., Jamieson, J. B., and Fierz, C.: Forcing the snow-cover model SNOWPACK with forecasted weather data, The Cryosphere, 5, 1115–1125, https://doi.org/10.5194/tc-5-1115-2011, 2011. a
Bellaire, S., van Herwijnen, A., Mitterer, C., and Schweizer, J.: On forecasting wet-snow avalanche activity using simulated snow cover data, Cold Reg. Sci. Technol., 144, 28–38, https://doi.org/10.1016/j.coldregions.2017.09.013, 2017. a
Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol., 38, 13–22, https://doi.org/10.3189/S0022143000009552, 1992. a
Calonne, N., Richter, B., Löwe, H., Cetti, C., ter Schure, J., Van Herwijnen, A., Fierz, C., Jaggi, M., and Schneebeli, M.: The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack, The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020, 2020. a
Download
Short summary
Snowpack models can help avalanche forecasters but are difficult to verify. We present a method for evaluating the accuracy of simulated snow profiles using readily available observations of snow depth. This method could be easily applied to understand the representativeness of available observations, the agreement between modelled and observed snow depths, and the implications for interpreting avalanche conditions.