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Abstract. The combination of numerical weather prediction
and snowpack models has potential to provide valuable in-
formation about snow avalanche conditions in remote areas.
However, the output of snowpack models is sensitive to pre-
cipitation inputs, which can be difficult to verify in moun-
tainous regions. To examine how existing observation net-
works can help interpret the accuracy of snowpack models,
we compared snow depths predicted by a weather—snowpack
model chain with data from automated weather stations and
manual observations. Data from the 2020-2021 winter were
compiled for 21 avalanche forecast regions across west-
ern Canada covering a range of climates and observation
networks. To perform regional-scale comparisons, SNOW-
PACK model simulations were run at select grid points
from the High-Resolution Deterministic Prediction System
(HRDPS) numerical weather prediction model to represent
conditions at treeline elevations, and observed snow depths
were upscaled to the same locations. Snow depths in the
Coast Mountain range were systematically overpredicted by
the model, while snow depths in many parts of the interior
Rocky Mountain range were underpredicted. These discrep-
ancies had a greater impact on simulated snowpack condi-
tions in the interior ranges, where faceting was more sensi-
tive to snow depth. To put the comparisons in context, the
quality of the upscaled observations was assessed by check-
ing whether snow depth changes during stormy periods were
consistent with the forecast avalanche hazard. While some
regions had high-quality observations, other regions were
poorly represented by available observations, suggesting in
some situations modelled snow depths could be more reliable
than observations. The analysis provides insights into the
potential for validating weather and snowpack models with

readily available observations, as well as for how avalanche
forecasters can better interpret the accuracy of snowpack
simulations.

1 Introduction

Numerical weather prediction (NWP) models provide valu-
able information to avalanche forecasters, as avalanche con-
ditions are heavily influenced by the evolution of weather
patterns. With years of operational experience, forecasters
develop a grounded understanding of how well specific NWP
models predict weather in their local mountains. Predicting
snowpack conditions in a similar way may be possible by
forcing snowpack evolution models such as SNOWPACK or
Crocus with output from NWP models (Morin et al., 2020).
However, developing operational trust and understanding in
snowpack models is difficult due to the complexity and spa-
tial variability of mountain snowpacks.

Efforts to verify snowpack models have faced challenges
due to various sources of uncertainty in the models, the
verification data, and their spatial representativeness (Morin
et al., 2020). Snowpack models have been evaluated with
different types of verification data including avalanche haz-
ard assessments (Bellaire et al., 2017; Giraud et al., 1987),
snowpack stability (Reuter et al., 2015; Schweizer et al.,
2006), snow profile stratigraphy observations (Bellaire and
Jamieson, 2013; Brun et al., 1992; Calonne et al., 2020; Du-
rand et al., 1999; Lehning et al., 2002; Viallon-Galinier et al.,
2020), satellite-retrieved optical properties (Charrois et al.,
2016; Cluzet et al., 2020), and snow depth and snow water
equivalent observations (Bellaire et al., 2011; Durand et al.,
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2009; Lafaysse et al., 2013; Schmid et al., 2014). Many of
these datasets have limited application for real-time moni-
toring because they are point-scale observations and require
dedicated data collection campaigns. Quéno et al. (2016) and
Vionnet et al. (2019) performed regional-scale comparisons
of modelled snow depths with spatially distributed point ob-
servations, and Winstral et al. (2018) and Cluzet et al. (2022)
have recently developed systems to assimilate snow depth
observations into snowpack models. Real-time model verifi-
cation systems would be valuable for avalanche forecasters
learning how to interpret snowpack model output.

Several types of data streams are available to avalanche
forecasters, including manual observations of weather, snow-
pack, and avalanches from field observers and continuous
data from automated weather stations and avalanche detec-
tion networks. While each of these data streams could be
used to verify aspects of snowpack models, all observation
networks are limited in their spatial-temporal coverage and
their representativeness of regional-scale avalanche condi-
tions. Lundquist et al. (2020) identify similar challenges with
observation networks for applications such as mountain hy-
drology and ecology and therefore conclude that in many
contexts the skill in modelling mountain precipitation is now
comparable to observation networks. The quality and den-
sity of avalanche-related observations vary by region, but
it could be misleading to assume available field observa-
tions are more representative of regional-scale conditions
than models in contexts where observations are sparse or ir-
regular.

While snowpack models are sensitive to all weather input
variables, precipitation is consistently identified as the main
driver of uncertainty in the simulated stratigraphy (Raleigh
et al., 2015; Richter et al., 2020). Observations of winter
precipitation are available from different types of measure-
ments including cumulative precipitation from rain gauges,
snow water equivalent from snow pillows, and snow depth
from acoustic sensors or manual probing (Wang et al., 2017).
Of these, snow depth observations are typically the most
abundant and representative type of precipitation observation
available in most avalanche forecast regions and accordingly
could be a relatively simple data stream to perform opera-
tional verification.

In this study, snow depths from a NWP and snowpack
model chain are compared to snow depth observations com-
piled from existing networks across western Canada. The
objective was to investigate how these observations could
help avalanche forecasters interpret the accuracy of snow-
pack models at regional scales. This included assessing the
reliability of the observations, comparing modelled and ob-
served snow depths across space and time, and investigat-
ing the impacts of incorrect snow depths on the resulting
snowpack stratigraphy. The results provide insights into how
avalanche forecasters can better interpret the accuracy of
snowpack simulations in data-sparse regions and highlight
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the potential for snow depth observations to verify and im-
prove NWP and snowpack models in mountainous terrain.

2 Data

The three key datasets for this study were snowpack simu-
lations, snow depth observations, and avalanche hazard as-
sessments. This section outlines how each of these datasets
were compiled to evaluate regional-scale snowpack simula-
tions across western Canada for the 2020-2021 winter sea-
son. The analysis was restricted to a 4-month period when
regular manual observations and hazard assessments were
available (December 1 to March 31), which limits the scope
of the study to the snow accumulation period when avalanche
forecasters are primarily interested in dry snow avalanches.

2.1 Study area

Data were compiled for 21 public avalanche forecast regions
in British Columbia, Alberta, and Yukon (Fig. 1a). The re-
gions were grouped into three mountain ranges based on
their predominant snow climate characteristics — the mar-
itime Coast Mountains, the transitional Columbia Moun-
tains, and the continental Rocky Mountains (Shandro and
Haegeli, 2018). To collect data that were representative of
avalanche conditions in these regions, we focused the anal-
ysis on conditions near treeline elevations. Avalanche fore-
casters classify terrain into alpine, treeline, and below tree-
line bands based on terrain and vegetation characteristics.
The snowpack at treeline tends to be sheltered from the wind
and therefore more homogenous than in the alpine.

Since there are no strict definitions for the boundaries
of the vegetation bands, we derived an objective reference
for treeline elevations from a digital elevation model and
land cover classification data. First, pixels with any type of
forested land cover were identified from the 30 m resolution
2015 land cover of North America (North American Land
Change Monitoring System, 2015), and the elevation of these
pixels was extracted from a 30 arcsec resolution global digi-
tal elevation model (Danielson and Gesch, 2011). The eleva-
tions were aggregated on a 10 km x 10km grid to determine
the maximum elevation of forested terrain within each grid
cell, as well as the maximum elevation of all terrain within
the cell. Local estimates of treeline elevation were taken
from any cell where the maximum elevation was at least
250 m above the maximum forest elevation, as these cells
likely contained high alpine terrain where trees would not
grow. The local treeline estimates were interpolated across
the entire study area with a thin spline regression to estimate
the upper extent of forested terrain. The resulting elevations
ranged from 545 m in the northwestern regions to 2025 m in
the southeastern regions (Fig. 1b). Feedback from avalanche
forecasters suggested the elevations derived from this method

https://doi.org/10.5194/tc-16-3393-2022



S. Horton and P. Haegeli: Snow model evaluation

roughly aligned with their understanding of vegetation bands
in western Canada.

2.2 Snowpack simulations

Snowpack simulations were produced by forcing SNOW-
PACK (Lehning et al., 1999) with output from the High-
Resolution Deterministic Prediction System (HRDPS), an
operational NWP model run by the Canadian Meteorological
Centre on a 2.5 km horizontal grid (Milbrandt et al., 2016).
Simulations were configured to represent treeline snowpack
conditions across the 21 avalanche forecast regions.

A subset of grid points were sampled to represent regional-
scale conditions rather than running SNOWPACK at all
available grid points. First, only grid points within 100 ver-
tical metres of the local treeline elevation were considered.
Then the forecast regions were split into 10km x 10 km grid
cells and one grid point was selected for each cell by choos-
ing the point with the median accumulated precipitation over
the study period. Selecting one point for each 10km x 10 km
grid cell was found to effectively reduce redundant infor-
mation, while selecting the point with median accumulated
precipitation smoothed out small-scale orographic effects re-
solved by the model. Grid cells without treeline elevation
terrain were omitted, resulting in a total of 1260 NWP grid
points covering the study area (Fig. 1b).

Snowpack simulations were produced for these 1260 grid
points by concatenating forecasts from each operational run
of the HRDPS, starting on 1 September 2020. The HRDPS
is initialized every 6h, and SNOWPACK was forced with
data from the 6 to 12 predictive hours from each run. Inputs
to SNOWPACK included hourly accumulated precipitation,
air temperature and relative humidity at 2 m above ground,
wind speed at 10 m above ground, and incoming longwave
and shortwave radiation fluxes at the surface. SNOWPACK
version 3.6 was configured with default settings for flat-
field profiles and with snow transport by wind disabled. The
height of snowpack (HS), hereafter referred to as snow depth,
was output each day at 00:00 UTC (16:00/17:00 local time).

2.3 Snow depth observations

Snow depth observations were compiled from three sources:
automated weather stations, manual observations, and field
summaries. The following sections describe how daily values
of snow depth (HS) were obtained from each source.

2.3.1 Automated weather stations

Weather data were queried from an Avalanche Canada
database that aggregates automated weather stations (AWSs)
deemed relevant for operational avalanche forecasting
(Fig. 1c). Of the 238 stations in this database, 110 were
equipped with ultrasonic snow depth sensors and were within
500 vertical metres of treeline elevation. These stations were
operated by various agencies including Parks Canada (14
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stations), British Columbia Ministry of Transportation and
Infrastructure (25 stations), British Columbia Ministry of
Environment (59 stations), Alberta Environment and Parks
(6 stations), Avalanche Canada (4 stations), and the Yukon
Avalanche Association (2 stations). While some networks al-
ready applied quality control to the data, an additional spike
removal filter was applied to remove observations where HS
increased or decreased more than 10cm in 1h. HS values
were extracted at 00:00 UTC each day. The number of daily
observations fluctuated due to sensor and transmission errors,
resulting in a median of 100 observations per day.

2.3.2 Manual observations

Avalanche safety operations report manual weather observa-
tions on the Canadian Avalanche Association’s Information
Exchange (InfoEx). Weather observations consist of manual
measurements taken at fixed instrumented study plots follow-
ing standards published by the Canadian Avalanche Associ-
ation (2016) where snow depth is measured on a permanent
stake. While observations are typically made twice per day,
only afternoon observations were included in this study to be
consistent with the timing of the other data sources. Over the
entire study period, 94 operations reported observations from
194 different study plots with known geographic coordinates
and elevations (Fig. 1d). The number of reports submitted
fluctuated over the study period, with a median of 71 obser-
vations per day.

2.3.3 Field summaries

Avalanche operations also report field weather summaries
to the InfoEx, which are distinct from weather observations
made at fixed study plots. Field weather summaries sum-
marize the range of conditions encountered in a broad ge-
ographic area while travelling in the mountains (Canadian
Avalanche Association, 2016). Field summaries include sub-
jective and spatially broader estimates of HS that are rele-
vant for assessing avalanche hazard in that area, often based
on several measurements made throughout the day. The geo-
graphic extent of these observations is less precise than man-
ual observations, which are defined by polygons covering
their operating areas and with elevation ranges that typically
span treeline elevation. Figure 1d shows the polygon cen-
troids for 98 operations that reported field summaries over
the study period. Fewer operations submit field summaries
than manual observations, resulting in a median of 18 obser-
vations per day.

2.4 Avalanche hazard assessments

Avalanche hazard assessments were compiled to assess how
well-modelled and observed data captured impactful snow-
fall events. Daily forecasts were compiled for all 21 fore-
cast regions over the study period. Forecasts were published
following the workflow described by the conceptual model
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(a) avalanche forecast regions
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(b) snowpack model locations
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Figure 1. Location of (a) avalanche forecast regions, (b) snowpack model grid points for each 10km x 10 km grid cell colour-coded by local
treeline elevation, (c¢) automatic weather stations, and (d) manual observations and field summaries.

of avalanche hazard (Statham et al., 2018) and include a
nowcast assessment of current danger ratings and avalanche
problems. To quantify regional-scale snowfall events, days
with storm slab avalanche problems at treeline were identi-
fied. Storm slab problems have the most direct link with new
snow under the North American avalanche problem defini-
tions (Statham et al., 2018), and Horton et al. (2020b) showed
a strong statistical relationship between storm slab problems
and new snow depths. Two components from the hazard as-
sessments were extracted to characterize snowfall events: the
presence of a storm slab avalanche problem at treeline (a bi-
nary value of absent or present) and the danger rating at tree-
line on days with storm slab problems (ordinal values of 1
— low, 2 — moderate, 3 — considerable, 4 — high, and 5 — ex-
treme). The number of days with storm slab problems over
the study period ranged from six for the Kananaskis region
to 73 for the Northwest Coastal region.

3 Methods

This section describes how the datasets were prepared and
analysed to answer three questions.

The Cryosphere, 16, 3393-3411, 2022

1. How reliable were the observations for regional-scale
assessments?

2. How did modelled and observed snow depths compare
across space and time?

3. How do snow depth discrepancies impact the interpre-
tation of snowpack stratigraphy?

Figure 2 summarizes the methods used to answer these
questions. First, the observed snow depths were upscaled to
a regional scale to match the scale and extent of the model
data (Sect. 3.1). Then daily snow depth changes were calcu-
lated for both datasets (Sect. 3.2), and the reliability of the
upscaled observations was assessed with two methods: first,
from the uncertainty in the upscaling method, and, second,
by fitting regression models to see whether avalanche condi-
tions were better explained by snow depth changes from the
modelled or observation data (Sect. 3.3). Snow depths were
compared across space and time with basic statistical mea-
sures (Sect. 3.4). Finally, to investigate the impact on snow-
pack stratigraphy, two sets of simulated snow profiles were
compared: one produced with the original NWP model data
and the second with adjusted precipitation inputs (Sect. 3.5).
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Figure 2. Methods used to analyse the reliability of the observations at regional scales, compare modelled and observed snow depths, and
measure the impact of snow depth discrepancies on snowpack simulations.

3.1 Upscaling observations to regional scale

Observed snow depths were upscaled to a regional scale in
two steps: first a lapse rate adjustment was applied to esti-
mate the observed value at the local treeline elevation, and
then a spatial interpolation was applied to predict treeline
elevation snow depths across the entire study area. The in-
terpolation was not designed to capture fine-scale patterns
across terrain but rather aggregate available observations in
an analogous way to how human forecasters interpret point
observations in regional hazard assessments.

Elevation adjustments were applied to the AWSs and man-
ual observations to account for differences between the ob-
servation elevation (zops) and the local treeline elevation
(Ztreeline)- Field summaries were not adjusted as their ele-
vations were unknown but typically already represent con-
ditions at treeline elevations (Canadian Avalanche Associa-
tion, 2016). HS was lapse rate adjusted with the exponential
precipitation-adjustment factor proposed by Thornton et al.
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(1997), which is commonly applied in hydrological models
(e.g., Liston and Elder, 2006; Schirmer and Jamieson, 2015):

1+0.35 e —
HSreetine = HSobs a+ (Ztreeline — Zobs)) 0

(1 —0.35(Ztreeline — Zobs)) '

where HSeeline 1 the adjusted snow depth at treeline derived
from the original observed depth HSs. A lapse rate factor of
0.35 was suggested for winter months in the western USA by
Thornton et al. (1997). Since the observations were restricted
to those within 500 vertical metres of treeline, the original
snow depths were multiplied by factors ranging from 0.70 to
1.42.

Spatial interpolations were applied to the treeline cor-
rected HS observations with simple kriging. The gstat pack-
age for R was used to fit a unique variogram model for HS on
each day of the study period to describe the structure of the
spatial correlation (Pebesma, 2004). Given the sparsity of ob-
servations, the best fitting of three possible variogram models
was chosen (spherical, exponential, and pure nugget), where
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the best fit was chosen according gstat’s default method of
weighting residuals (i.e., number of pairs in a bin divided
by the square of the bin’s distance). Simple kriging was ap-
plied with the best variogram model to predict HS at all 1260
model grid points for each day of the study period. Each
prediction combined all available observations from AWSs,
manual observations, and field summaries.

The kriging predictions also provided an estimate of pre-
diction variance (oﬁs), which was used to estimate the uncer-
tainty in the upscaled observations. Relative kriging standard
deviation (RKSD) was defined at the square root of the pre-
diction variance divided by the predicted height:

2
Ohs

HS
The RKSD is a relative measure where small values sug-
gest the interpolation error was small relative to the predicted

snow depth and large values suggest the error was large rela-
tive to the predicted snow depth.

RKSD =

@

3.2 Calculating daily snow depth changes

To identify snowfall events, daily snow depth changes (AHS)
were calculated by subtracting HS on consecutive days (e.g.,
Quéno et al., 2016; Vionnet et al., 2019). The objective was
to identify snowfall events large enough to impact avalanche
conditions, and so negative values of AHS were set to zero.
For the model data AHS was calculated at each grid point for
every day of the study period. For the observation data AHS
was calculated from the original observations for all cases
where HS was observed at the same location on consecutive
days, and then the same upscaling methods were applied to
estimate upscaled AHS values at treeline elevations on the
same spatial grid as the model data.

3.3 Regression models relating snow depth change to
avalanche conditions

To assess the reliability of the modelled and observed data to
represent regional-scale conditions, regression models were
fit to predict forecast avalanche conditions from snow depth
changes. Snowfall has been shown to be a strong predictor of
avalanche hazard, as Schirmer et al. (2009) found 3 d accu-
mulations of new snow to be a strong predictor of avalanche
danger and Horton et al. (2020b) found 3 d snow accumu-
lations to have a strong influence on the presence of storm
slab avalanche problems. Therefore, for this analysis we as-
sumed increases in snow depth should be proportional to the
likelihood of storm slab avalanche problems and the like-
lihood of increased avalanche danger. To test this assump-
tion, regression models were fit to predict (1) the presence
of storm slab problems and (2) the danger rating using the
3d snow depth change (AHS(3d)) as the single predictor.
The 3 d snow depth change was calculated by summing AHS
with a 3 d moving window over the study period.
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For each forecast region, a univariate logistic regression
model was fit to predict the probability of a storm slab
avalanche problem being present based on AHS(3d) from
model data at grid points in the region, and an analogous
logistic regression model was fit using AHS(3d) from up-
scaled observation data at the same locations. The goodness
of fit of the two models was compared with McFadden’s
pseudo-R? measure (an analogous value to the coefficient of
determination that can be applied to general linear models)
to assess whether the modelled or upscaled observations ex-
plained storm slab presence better in each forecast region.

A similar approach was used to fit ordinal regression
models in each forecast region to predict the probability of
the danger rating increasing with AHS(3d). These models
were restricted to days when storm slab avalanche problems
were present, as the danger would more likely be driven by
other factors on days without storm slab problems. The or-
dinal regression models were fit using the cumulative link
model from the ordinal package for R (Christensen, 2019).
Again, McFadden’s pseudo-R? measure was used to deter-
mine which dataset provided a better explanation of danger
ratings in each region.

3.4 Comparing snow depths

The continuous snow depth data from the model and up-
scaled observations allowed plotting spatial comparison on
maps and temporal comparisons on time series. Snow depths
were compared with basic quantitative metrics, including the
percent difference to provide a relative measure of the dif-
ferences, root mean square error to assess the magnitude of
the differences, bias to assess the prevailing direction of the
differences, and Spearman rank-order correlation coefficient
to determine whether a set of modelled and upscaled obser-
vation data increased at the same locations or times. These
statistics are defined as follows:

(Hsmod - Hsobs)

Percent difference (%) =
HSobs

100 %, 3)

1
Root mean square error (m) = \/ - Z(HSmod —HSops)?,  (4)
n

Bias (m) = 3 (HSmod — HSuny), )

where HS0q4 is the modelled snow depth, HSps is the snow
depth from upscaled observations, and 7 is the number of ob-
servation pairs. The Spearman rank-ordered correlation coef-
ficient is defined as the Pearson correlation between the rank
values of HS0q4 and HSyps rather than the correlation be-
tween the values themselves.

3.5 Adjusting precipitation inputs of the simulated
snow profiles

To illustrate the impact snow depth discrepancies could have
on how forecasters interpret the simulated snowpack struc-
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ture, a sample of locations were chosen to compare the snow-
pack simulations with the original NWP model inputs and
profiles with adjusted precipitation inputs. One representa-
tive location was chosen for each region by selecting the grid
point that most frequently had the median modelled snow
depth over the study period. A precipitation-adjustment fac-
tor (k) was calculated for each location according to

k = Hsobs

= ; (6)
Hsmod

based on the modelled and upscaled HS at that location over
the study period. Averaging the factor provided a rough ap-
proximation of the potential magnitude and direction of pre-
cipitation biases at that location. The hourly precipitation in-
puts at each grid point location were multiplied by k, and
SNOWPACK was re-run to produce a second set of pro-
files. This method assumes the main driver of snow depth
differences was biased precipitation inputs. While precipi-
tation biases play an important role in these difference, er-
rors in modelled snow depth are influenced by many pro-
cesses in snowpack models including the parameterization
of snow density (Helfricht et al., 2018), handling of precip-
itation type, and simulating settlement processes. While this
simple precipitation-adjustment method is not the state of the
art in data assimilation (Cluzet et al., 2022; Winstral et al.,
2018), it provides a simple approach to analyse the impact of
precipitation errors in different regions.

The original and precipitation-adjusted profile simulations
were compared numerically by applying the similarity mea-
sure introduced by Herla et al. (2021). The similarity mea-
sure performs a pairwise comparison of two profiles from
a perspective of stratigraphy features relevant to avalanche
hazard. To calculate the similarity measure, the algorithm
first aligns each layer with dynamic time warping, where
the deposition date, grain type, and hardness are used to
match layers in the two profiles. After alignment, the algo-
rithm compares the similarity of the grain type and hard-
ness of aligned layers, while putting more weight on weak
layers, melt—freeze crusts, and new snow layers. The simi-
larity measure ranges from O to 1, where 0 corresponds to
highly dissimilar profiles and 1 corresponds to identical pro-
files. The similarity value of the original and precipitation-
adjusted profiles was computed for each day of the study pe-
riod to quantify the impact adjusting precipitation inputs had
on the interpretation of avalanche hazard conditions.

https://doi.org/10.5194/tc-16-3393-2022
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4 Results

4.1 Reliability of snow depth observations for
regional-scale assessments

Snow depths were upscaled with greater confidence in areas
with dense observation networks, such as the southern end
of the Coast range and the central Columbia range (Fig. 3).
In these areas, the average RKSD of the snow depths was
20 %-30 % of the total estimated snow depth, while areas
with lowest confidence had RKSD values up to 40 %—60 %
of the snow depth. The median RKSD for all grid points
over the study period was 34 %, suggesting the aggregation
of snow depths from available observations had considerable
uncertainty across many forecast regions.

Predicting avalanche conditions with snow depth changes
over 3d periods yielded relatively comparable results with
model and upscaled observation data (Table 1). In the
Columbia regions the observation data consistently ex-
plained the presence of storm slab avalanche problems and
danger ratings better than modelled data. However, in several
of the Coast and Rockies regions the modelled data explained
avalanche conditions better than the observation data, and in
many regions the McFadden pseudo-R? values were compa-
rable in magnitude.

In the interior, the regions where avalanche conditions
were predicted better with upscaled observations were typ-
ically the regions with smaller RKSD values (e.g., Glacier
and South Columbia), suggesting the observations were rela-
tively consistent and representative of avalanche conditions.
However, the South Coast region also had areas with rela-
tively small RKSD, yet avalanche conditions were predicted
better with modelled snow depth changes, suggesting that
even though the observation networks were relatively con-
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Table 1. Comparison of regression models predicting the presence of storm slab avalanche problems and danger ratings with modelled data
versus upscaled observation data. McFadden’s pseudo-R2 values are listed for each model to compare their goodness of fit. The model with

the better fit for each region is identified with an asterisks.

Range Region Storm slab problem ‘ Danger rating
Observations  Model ‘ Observations  Model
Coast Yukon 0.01 0.12* 0.00  0.04*
Northwest Coastal 021  0.22* 0.01  0.05*
Northwest Inland 0.12* 0.07 0.09* 0.06
Vancouver Island 0.12* 0.04 0.07* 0.04
South Coast 0.31 0.32* 0.04 0.04*
Sea to Sky 0.34* 0.33 0.08* 0.03
South Coast Inland 0.30 0.18 0.09* 0.06
Columbias  Cariboos 0.29* 0.23 0.21* 0.15
North Columbia 0.25* 0.24 0.13* 0.11
Glacier 0.35* 0.29 0.18* 0.08
South Columbia 0.27* 0.23 0.12* 0.08
Kootenay Boundary 0.31* 0.24 0.07* 0.03
Purcells 0.24* 0.21 0.29* 0.14
Rockies North Rockies 0.16* 0.13 0.09* 0.05
Jasper 0.16* 0.12 0.02 0.08*
Banff, Yoho, and Kootenay 0.07  0.15* 0.33* 0.21
Little Yoho 0.17 0.29* 0.33 0.24*
Kananaskis 0.20 0.14 1.00* 0.33
Lizard Flathead 0.46* 0.35 0.04 0.08*
South Rockies 0.33  0.38* 0.10* 0.09
Waterton Lakes 0.13* 0.10 0.21* 0.13

sistent they may have been less representative of conditions
in avalanche terrain.

4.2 Comparing modelled and observed snow depths
4.2.1 Regional-scale spatial patterns

Snow depths on 31 March 2021 are mapped in Fig. 4 to il-
lustrate regional-scale patterns by the end of the winter sea-
son. Observed snow depths were relatively deep along west-
ern parts of the Coast range as well as the central parts of
the Columbias (i.e., greater than 250 cm). Shallower snow
depths were observed on the eastern side of the Coast range,
the perimeters of the Columbias, and throughout most of
the Rockies (Fig. 4a—b). Modelled snow depths had similar
regional-scale patterns, but with more extreme differences
between the deep and shallow snowpack areas within each
region (Fig. 4c). For example, the snow depths from upscaled
observations ranged from 114 to 399 cm across the entire
study area, while modelled snow depths ranged from 50 to
939 cm. Despite the different ranges, the median snow depths
were similar with values of 227 and 259 cm for the observed
and modelled data, respectively.

The percent difference between snow depths from model
and upscaled observation data shows where regional-scale
discrepancies were most pronounced (Fig. 4d). Modelled

The Cryosphere, 16, 3393-3411, 2022

snow depths were substantially greater than observations in
most parts of the Coast range, especially on the western (up-
slope) side of the range. With large snow depths in the Coast
range, the root mean square errors were relatively large and
exceeded 100 cm in many regions (Table 2), and the aver-
age snow depth biases were positive, except for the Yukon
and Vancouver Island regions. Positive snow depth correla-
tions for most regions in the Coast range suggest there was
moderate agreement on the location of the relatively deeper
and shallower areas at a sub-regional scale, except for the
Vancouver Island and South Coast regions, where weak or
negative correlations suggest the model and observation data
disagreed on the location of deeper areas.

In the Columbias, snow depths from the model and up-
scaled observation data were relatively similar (Fig. 4d), al-
though the modelled depths were substantially higher than
observations in the western Purcell and central Cariboo
regions. The root mean square error for regions in the
Columbias ranged from 44 to 89 cm (Table 2), with relatively
smaller biases than the other ranges. Positive correlations be-
tween 0.20 and 0.45 suggest the model and observation data
had moderate agreement in where the relatively deeper and
shallower snowpacks existed throughout the range.

In the Rockies, there was reasonable agreement between
snow depths in the central regions of Banff, Yoho, and Koote-
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Figure 4. Comparison of observed and modelled snow depths on 31 March 2021 with (a) original snow depths from 176 observations, (b) the
observed snow depths upscaled to treeline elevations at 1260 model grid points, (¢) the modelled snow depth at the same grid points, and
(d) the percent difference between the snow depths from model and upscaled observation data (positive values indicate modelled depths were
greater than upscaled observations). Panel (a) shows the latitudinal transect between 49 and 51° N used in Fig. 5.

nay and Jasper, but modelled depths were substantially lower
than upscaled observations in the southern and northern parts
of the range (Fig. 4d). Negative biases existed in all re-
gions except Little Yoho (Table 2), highlighting how mod-
elled depths were systematically lower than observed depths
in the Rockies. While the regions in the southern Rockies had
fewer grid points to compute correlations, their negative val-
ues mean the model and observation data disagreed on where
the relatively deeper and shallower snowpacks existed.

To further illustrate the predominant spatial patterns across
the three major mountain ranges, snow depths are plot-
ted along a latitudinal cross section between 49 and 51° N
(Fig. 5). The western (windward) side of the Coast range had
substantially larger modelled snow depths than upscaled ob-
servations, while there was reasonable agreement along the
highest terrain and the leeward side of the Coast range. In
the Columbias, the windward side had the greatest observed
snow depths, which were slightly larger than modelled; how-
ever, modelled depths were greater than observed over the
highest terrain in the eastern side of the Columbias. In the
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Rockies, there was minimal variation between the windward
and leeward sides for both the modelled and observed snow
depths.

4.2.2 Temporal patterns

Time series of snow depths show the agreement between
model and observation data over the course of the 2020-2021
winter (Fig. 6). Some regions such as the South Coast Inland,
Glacier, and Banff, Yoho, and Kootenay had relatively con-
sistent agreement over the season, while other regions had
major discrepancies. Discrepancies arose from both system-
atic biases that persisted for the duration of the season and
from differences originating from specific events. For ex-
ample, systematic biases are evident in the Sea to Sky re-
gion, where modelled depths were consistently greater than
upscaled observations, and in the Kananaskis region, where
modelled depths were consistently lower. Examples of spe-
cific events causing discrepancies include Vancouver Island,
where the observed depths increased in early January with-
out a corresponding increase in modelled depths, and in
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Table 2. Statistics comparing snow depths from model and upscaled observation data within each forecast region on 31 March 2021.

Range Region Observations*  Number of Root mean square  Bias  Correlation
grid points error (cm)  (cm)
Coast Yukon 1 18 125 91 0.79
Northwest Coastal 10 211 184 96 0.40
Northwest Inland 6 193 123 75 0.61
Vancouver Island 4 34 100 —18 —0.26
South Coast 5 12 116 80 0.16
Sea to Sky 5 86 190 126 0.41
South Coast Inland 12 92 95 33 0.72
Columbias  Cariboos 11 109 79 51 0.38
North Columbia 5 70 75 26 0.45
Glacier 7 4 52 2 0.20
South Columbia 13 71 69 11 0.44
Kootenay Boundary 14 55 44 22 0.24
Purcells 11 67 89 27 0.45
Rockies North Rockies 13 152 82 —6 0.46
Jasper 7 19 43 28 0.49
Banff, Yoho, and Kootenay 11 6 52 -—19 0.26
Little Yoho 0 2 26 26 —1.00
Kananaskis 5 3 9 —-96 —0.50
Lizard Flathead 5 19 46 —34 -0.15
South Rockies 2 34 76  —68 —0.21
Waterton Lakes 5 3 69 51 —1.00

* Number of point observations in forecast region prior to upscaling; however, the upscaling includes observations from neighbouring areas.

the Yukon region, where changes in modelled and observed
depths occurred at different times throughout the season.

Agreement in the timing of new snow was measured with
the correlation between daily snow height changes AHS
from the model and upscaled observation data (Fig. 7a). The
median correlation for all grid points was 0.54 but ranged
from 0.06 to 0.78. Correlations were strongest in the southern
Coast range, the central Columbias, and the central Rockies
and relatively weaker in the northern Coast range and south-
ern Rockies. The correlation was generally weaker in areas
with larger RKSD (Fig. 7b), suggesting disagreements were
not only influenced by model errors but also by uncertainty
in the upscaled observations.

4.3 Impact on modelled snowpack structure

4.3.1 Regional-scale snowpack patterns with NWP
forcings

Snow profile simulations from each forecast region illus-
trate typical climatic patterns across western Canada (Fig. 8).
Grain types are colour-coded following the suggestions of
Horton et al. (2020a) rather than Fierz et al. (2009) to better
highlight features relevant to avalanche conditions (i.e., new
snow and weak layers). The maritime climate in the Coast
range resulted in thick layers of new snow, rounded grains,
and melt forms. Profiles in the Columbias had typical tran-
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sitional snowpacks with thick layers of rounded grains inter-
spersed with thin layers of persistent grain types. The conti-
nental Rockies had the thinnest snowpacks and were largely
composed of faceted grain types.

Overlaying the snow depth from upscaled observations
on each simulated profile shows how well the snow depths
agreed over time. The modelled stratigraphy was likely
simulated better at locations where the modelled snow
depth closely agreed with upscaled observations (e.g., South
Columbia), although matching snow depths is not sufficient
to guarantee accurate stratigraphy. Many simulated profiles
had large discrepancies with the upscaled observations, in
which case it is less clear whether the model was erroneous
or the upscaled observations were not representative for that
location.

4.3.2 Impact of adjusting precipitation inputs

The precipitation-adjustment factors (k) calculated by com-
paring the modelled snow depths to upscaled observations
at the locations in Fig. 8 ranged from 0.72 for the Sea to
Sky location (where observed depths were much smaller than
modelled depths) to 1.91 for the Kananaskis location (where
observed depths were much greater). Adjusting precipitation
inputs by these factors resulted in a variety of impacts on
the simulated snowpack structure. Profiles are compared for
one location in each mountain range in Fig. 9, including an

https://doi.org/10.5194/tc-16-3393-2022



S. Horton and P. Haegeli: Snow model evaluation

Wind <0,
—_—

) ® Coast
ce ® Columbias
® Rockies

(b)

HS from model (cm)

100

700
600 (c)
500
400
300
200
100

HS from observations (cm)

20 o o (d)

Percent difference (%)

-126 -124 -122 -120 -118 -116 -114
Longitude (° W)

Figure 5. Latitudinal cross section between 49 and 51° N of (a)
the elevation of treeline grid points with the black line showing the
moving average, (b) modelled snow depth at treeline grid points,
(c) snow depths from upscaled observations at the same grid points,
and (d) percent difference between model and upscaled observation
snow depths.

example with a large reduction of precipitation for the Sea
to Sky profile in the Coast range (k = 0.72), a small reduc-
tion in precipitation for the North Columbia profile in the
Columbias (k = 0.94), and a large increase in precipitation
for the Kananaskis profile in the Rockies (k = 1.91). Profiles
for the remaining regions are shown in Appendix A.

The adjusted Sea to Sky profile contained similar snow-
pack features to the original profile (Fig. 9a), despite a dra-
matic reduction in the amount of precipitation. Similar lay-
ers of rounded grains and the same prominent weak layers
existed in both profiles. The average similarity value of the
two sets of profiles was 0.79, suggesting the profiles were
relatively similar in terms of features important to avalanche
hazard. The similarity measure had a statistically significant
decrease over the course of the season, meaning differences
compounded over time. The adjusted North Columbia pro-
file had minimal differences from the original profile after
adjusting the precipitation by a factor of 0.94 (Fig. 9b), with
an average similarity value of 0.91 that did not change signif-
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Figure 6. Interquartile range of snow depths for each avalanche
forecast region throughout the study period from model (blue) and

upscaled observation (green) data.

icantly over time. The adjusted Kananaskis profile, however,
had a dramatically different snowpack structure after increas-
ing precipitation by a factor of 1.91 (Fig. 9c). The original
profile was primarily composed of a thick depth hoar layer
and small amounts of new snow above it, which after ad-
justment was stretched into thicker layers of faceted crystals,
rounding faceted particles, and a few thin well-defined depth
hoar layers. The average similarity value of 0.50 suggests
the profiles were substantially different in terms of avalanche
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Figure 7. Correlation between daily change in snow depth AHS
from model and upscaled observation data over the study period (a)
mapped across the study area and (b) plotted against the average
relative kriging standard deviation representing the uncertainty in
the upscaled observations. Simple regression lines are fitted for each
mountain range to show poorer AHS correlations when upscaled
observations had greater uncertainty.

hazard considerations, and the similarity values suggest a sta-
tistically significant decrease over the course of the season.
The similarity between the original and precipitation-
adjusted profiles is shown for all 21 regions in Fig. 10. The
similarity values ranged from 0.50 for the Kananaskis pro-
files to 0.94 for the South Columbia profiles, with a median
value of 0.81. Small precipitation adjustments generally re-
sulted in profiles that were similar to the original profiles
from an avalanche hazard perspective, as was the case for
the North Columbia profile, while large changes in precip-
itation resulted in more substantial structural changes. The
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Figure 8. Simulated snowpack structure at a representative location
in each forecast region with the snow depths from upscaled observa-
tions shown with black squares. Snowpack layers are colour-coded
by grain type following Horton et al. (2020a).

impacts of precipitation adjustments were most dramatic for
profiles in the Rockies, as 7 of the 10 locations with the low-
est similarity values were in the Rockies (all with values
less than 0.8). All profiles in the Columbias had similarity
values greater than 0.8, suggesting precipitation adjustments
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Figure 9. Timelines of simulated snowpack structure before and
after precipitation adjustments at locations in (a) the Sea to Sky
region where modelled snow depths were much larger than upscaled
observations, (b) the North Columbia region where the modelled
and upscaled observation snow depths closely agreed, and (c) the
Kananaskis region where modelled snow depths were much smaller
than upscaled observations. Snowpack layers are colour-coded by
grain type following Horton et al. (2020a).

had relatively smaller impacts on simulated avalanche condi-
tions. Profiles in the Coast range had a wide range of simi-
larity values. The similarity values became statistically lower
over the course of the season in three of seven Coast profiles,
three of six Columbias profiles, and six of eight Rockies pro-
files, suggesting the impact of precipitation adjustments be-
came more compounded over time in colder continental cli-
mates.

5 Discussion

5.1 Implications for weather forecasting

Lundquist et al. (2020) argue the increasing skill in mod-
elling mountain precipitation relative to traditional observa-
tion networks warrants new multi-disciplinary methods for
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evaluating models. Avalanche safety operations spend con-
siderable effort collecting weather observations at high ele-
vations, which could be a valuable addition to verify weather
forecasts and improve analysis products which primarily rely
on low-elevation precipitation measurements (e.g., Roy et al.,
2018). Our analysis of upscaled snow depth observations re-
vealed patterns in how the HRDPS weather model performed
in remote regions of western Canada, such as the system-
atic overprediction of precipitation on the windward side of
the Coast range (Fig. 5). This specific bias likely originated
from the NWP model’s handling of hydrometeor drift and
spillover in complex terrain (Mo et al., 2019), which could
be better calibrated with avalanche weather observations. An
additional analysis (not shown) using snow water equivalent
and precipitation measurements from the same observation
networks was not as clear, likely because fewer sites mea-
sure these variables.

This study highlights several shortcomings of resolving
regional-scale conditions with the mountain observation net-
works in western Canada. For example, many areas had
sparse and intermittent observations that resulted in large un-
certainties when upscaling snow depths to regional scales
(Fig. 3). Evaluating model performance in these areas should
be done with caution, as the classic interpretations of the ver-
ification metrics may be less meaningful (e.g., Table 2).

The regression models highlight that in many regions snow
depth changes from the model data could explain regional
avalanche conditions with comparable skill to the upscaled
observations (Table 1), with the main exceptions being small
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data-rich regions like Glacier. However, avalanche conditions
in some of the large heavy snowfall regions in the Coast
range were better explained by modelled snow depth changes
than by upscaled observations. This could be caused by fore-
casters putting more weight on weather forecasts in these
regions but could also be caused by shortcomings of the
observation networks in these harsh coastal environments.
While these regression models were limited by human as-
sessment errors and by oversimplifying the factors influenc-
ing avalanche hazard, they provide a simple example of how
model weather data can be comparable to observation data in
some regional-scale contexts.

5.2 Implications for snowpack modelling

Given precipitation has been shown to be a primary source
of uncertainty in snowpack simulations (Raleigh et al., 2015;
Richter et al., 2020), meaningful methods to identify and
correct erroneous precipitation inputs could dramatically im-
prove the quality of snowpack models. However, this study
highlights large gaps and uncertainties in many observation
networks that warrant careful approaches when evaluating
snowpack models, especially at regional scales.

Adjusting precipitation inputs illustrated how precipitation
input errors could impact the simulated snowpack structure
from an avalanche hazard perspective. The greatest change
was observed in the continental Rockies regions (Fig. 10). In
cold climates, changes in snow depths would have a greater
impact on temperature gradients in the snowpack and, as a
result, the formation of weak faceted layers. Increasing pre-
cipitation could result in substantially fewer faceted layers
and a less hazardous snowpack structure, while decreasing
precipitation could result in substantially more faceted lay-
ers and a more dangerous structure. Locations in the Coast
range, on the other hand, exhibited fewer differences in their
snowpack structure after precipitation adjustments. Chang-
ing snow depths in maritime climates has less impact on
the temperature gradients, and as a result the precipitation-
adjusted profiles resembled a stretched or compressed ver-
sion of the original profiles, usually containing the same
weak layers and crusts.

The precipitation-adjustment method applied in this study
is likely insufficient for an operational model system, as it
assumes a constant bias over time and oversimplifies the
causes of snow depth errors. More advanced data assimi-
lation methods have recently been suggested for snowpack
models (Largeron et al., 2020), including methods presented
by Winstral et al. (2018) and Cluzet et al. (2022) that use
similar snow observation networks in Europe. Cluzet et al.
(2022) found assimilating snow depth observations improved
simulations in areas of France with relatively sparse obser-
vations but that the density of snow observations was corre-
lated with the density of precipitation observations. For large
regions in western Canada, sparse and inconsistent observa-
tions would pose a challenge to implementing data assimi-
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lation methods, especially considering snow depth changes
over short timescales were poorly resolved with the upscaled
observations (Fig. 7).

5.3 Implications for avalanche forecasting

This study found moderate to strong agreement between
modelled and observed snow depths in many situations
across western Canada. In cases with strong agreement, the
simulated snowpack structure can be interpreted by forecast-
ers with a higher degree of confidence. In situations where
the modelled and observed snow depths differ, the simulated
snowpack structure must be evaluated more critically. Con-
siderations should include the representativeness of local ob-
servations, whether the NWP model has a known precipita-
tion bias in that region, and the sensitivity of the snowpack
structure to precipitation errors in that climate.

Assessing the quality of the upscaled snow depth obser-
vations identified areas where forecasters deal with sparse
and uncertain observations (Fig. 3). Snowpack models could
be particularly valuable in these regions, but to interpret the
models it would help to collect targeted snow depth informa-
tion from automated weather stations, field observers, crowd
sourcing platforms (e.g., Community Snow Observations),
and satellite-derived snow cover products.

This study focused on regional-scale patterns to provide
a general understanding of model performance; however,
snowpack models also have potential to simulate finer-scale
spatial patterns. While such patterns are relevant to avalanche
forecasters, they become even more difficult to verify with
sparse observations. Therefore, we suggest snowpack mod-
els forced with NWP models should first be understood at
coarse regional scales. For example, the correlations in Ta-
ble 2 indicate how well the model and upscaled observa-
tion data agreed on the location of deep and shallow snow-
pack areas at a sub-regional scale. Sub-regional patterns re-
solved by snowpack models could be meaningful in regions
where these correlations were strong, but further investiga-
tion would be necessary in regions with weak correlations to
determine whether the patterns suggested by the model are
reliable.

Exploring applications at finer scales could be considered
in areas with high-quality observations and strong agreement
between modelled and observed snow depths. Aggregating
observations across a common reference treeline elevation
provided a consistent approach for regional-scale compar-
isons; however, more precise aggregations such as sub-grid
parametrization of sky view factor (Helbig and van Herwi-
jnen, 2017) would be required for verifying snow depth at
smaller scales. The comparisons presented in this study were
also point-wise, where modelled and upscaled observations
were compared at the same location, but spatial verification
techniques such as neighbourhood and feature-oriented ap-
proaches could also be meaningful to understand patterns rel-
evant to forecasters (Gilleland et al., 2009).
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6 Conclusions

Forcing snowpack models with high-resolution NWP mod-
els is a promising method to support avalanche forecast-
ing. However, in many situations there are limited obser-
vation data available for verification. Furthermore, the skill
in modelling mountain precipitation continues to improve to
the point where it rivals observation networks in many con-
texts. Aggregating snow depth observations from networks
of automated weather stations and manual observations from
professional avalanche observers can provide insights into
model performance at coarse spatial and temporal scales.
Applying this approach over a winter season across the di-
verse mountain climates of western Canada provided several
insights about using snowpack models for avalanche fore-
casting. First, the quality and density of weather observations
should be considered when verifying NWP and snowpack
models. The number and consistency of observations in some
areas resulted in relatively large uncertainties when upscal-
ing snow depths to regional scales, and in almost half of the
forecast regions, the forecast avalanche conditions were ex-
plained with modelled snow depth changes better than with
snow depth changes from upscaled observations. Despite
limitations in the observation data, the comparison of mod-
elled and observed snow depths strongly suggested an over-
prediction of precipitation in the maritime Coast range and
an underprediction in many parts of the continental Rock-
ies. The agreement in snow depth was strongest in the tran-
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sitional Columbia range, which also had the highest density
of quality observations. The potential impacts of snow depth
discrepancies were illustrated by comparing the snow pro-
files produced from the original NWP model data with pro-
files produced with adjusted precipitation inputs. Precipita-
tion adjustments had the most dramatic effect in cold conti-
nental climates where the snow depths heavily influenced the
degree of faceting. In warmer maritime climates, adjusting
precipitation inputs often resulted in stretched or compressed
profiles with similar snowpack structure.

These results also highlight how meteorologists and NWP
model developers could benefit from the observation net-
works of avalanche safety operations. Snow depth obser-
vations could be a particularly valuable data stream to un-
derstand and evaluate NWP model performance in remote
mountainous areas. From an avalanche forecasting perspec-
tive, this study highlights how limitations in observation net-
works pose a challenge to verifying snowpack models, as
well as how these limitations need to be carefully considered
when interpreting simulated profiles. This provides a start-
ing point for future research into how operational snowpack
model systems could perform real-time verification and as-
similation with available snow observations.
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Appendix A: Original and precipitation-adjusted
profiles for all regions
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Figure A1l. Timelines of simulated snowpack structure before and after precipitation adjustments. Two profile timelines are shown for each
forecast region, with the original profiles to the left and the precipitation-adjusted profiles to the right. The precipitation-adjustment factors
(k) are shown in the title of the adjusted profiles. Snowpack layers are colour-coded by grain type following Horton et al. (2020a).
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