Articles | Volume 16, issue 8
https://doi.org/10.5194/tc-16-3269-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-3269-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial patterns of snow distribution in the sub-Arctic
Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA
Greta Miller
Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA
Robert Busey
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA
Min Chen
Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA
Emma R. Lathrop
Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA
Julian B. Dann
Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA
Mara Nutt
Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA
Ryan Crumley
Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA
Shannon L. Dillard
Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA
Department of Geography, University of Wisconsin–Madison, Madison, WI, USA
Baptiste Dafflon
Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Jitendra Kumar
Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
W. Robert Bolton
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA
Cathy J. Wilson
Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA
Colleen M. Iversen
Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
Stan D. Wullschleger
Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
Related authors
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753, https://doi.org/10.5194/egusphere-2025-1753, 2025
Short summary
Short summary
Predicting hydrological runoff in Arctic permafrost regions is difficult due to limited observations and complex terrain. We used a detailed physics-based model to improve runoff estimates in a Earth system land model. Our method improved runoff accuracy and worked well across two different Arctic regions. This helps make climate models more reliable for understanding water flow in permafrost areas under a changing climate.
Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren N. Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett
The Cryosphere, 19, 393–400, https://doi.org/10.5194/tc-19-393-2025, https://doi.org/10.5194/tc-19-393-2025, 2025
Short summary
Short summary
Temporally continuous snow depth estimates are important for understanding changing snow patterns and impacts on frozen ground in the Arctic. In this work, we developed an approach to predict snow depth from variability in snow–ground interface temperature using small temperature sensors that are cheap and easy to deploy. This new technique enables spatially distributed and temporally continuous snowpack monitoring that has not previously been possible.
Nathan Alec Conroy, Jeffrey M. Heikoop, Emma Lathrop, Dea Musa, Brent D. Newman, Chonggang Xu, Rachael E. McCaully, Carli A. Arendt, Verity G. Salmon, Amy Breen, Vladimir Romanovsky, Katrina E. Bennett, Cathy J. Wilson, and Stan D. Wullschleger
The Cryosphere, 17, 3987–4006, https://doi.org/10.5194/tc-17-3987-2023, https://doi.org/10.5194/tc-17-3987-2023, 2023
Short summary
Short summary
This study combines field observations, non-parametric statistical analyses, and thermodynamic modeling to characterize the environmental causes of the spatial variability in soil pore water solute concentrations across two Arctic catchments with varying extents of permafrost. Vegetation type, soil moisture and redox conditions, weathering and hydrologic transport, and mineral solubility were all found to be the primary drivers of the existing spatial variability of some soil pore water solutes.
Ian Shirley, Sebastian Uhlemann, John Peterson, Katrina Bennett, Susan S. Hubbard, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2023-968, https://doi.org/10.5194/egusphere-2023-968, 2023
Preprint archived
Short summary
Short summary
Snow depth has a strong impact on soil temperatures and carbon cycling in the arctic. Because of this, we want to understand why snow is deeper in some places than others. Using cameras mounted on a drone, we mapped snow depth, vegetation height, and elevation across a watershed in Alaska. In this paper, we develop novel techniques using image processing and machine learning to characterize the influence of topography and shrubs on snow depth in the watershed.
Xiang Huang, Charles J. Abolt, and Katrina E. Bennett
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-8, https://doi.org/10.5194/tc-2023-8, 2023
Manuscript not accepted for further review
Short summary
Short summary
Near-surface humidity is a sensitive parameter for predicting snow depth. Greater values of the relative humidity are obtained if the saturation vapor pressure was calculated with over-ice correction compared to without during the winter. During the summer thawing period, the choice of whether or not to employ an over-ice correction corresponds to significant variability in simulated thaw depths.
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Bob Busey, Sofia T. Avendaño, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, Cathy J. Wilson, and Katrina E. Bennett
The Cryosphere, 15, 4005–4029, https://doi.org/10.5194/tc-15-4005-2021, https://doi.org/10.5194/tc-15-4005-2021, 2021
Short summary
Short summary
Polygon-shaped landforms present in relatively flat Arctic tundra result in complex landscape-scale water drainage. The drainage pathways and the time to transition from inundated conditions to drained have important implications for heat and carbon transport. Using fundamental hydrologic principles, we investigate the drainage pathways and timing of individual polygons, providing insights into the effects of polygon geometry and preferential flow direction on drainage pathways and timing.
Jonathan Bachman, John Lamb, Craig Ulrich, Neslihan Taş, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2025-2341, https://doi.org/10.5194/egusphere-2025-2341, 2025
Short summary
Short summary
We studied how Arctic landscapes change as the ground thaws by comparing measurements taken ten years apart. We found that some areas sank and new ponds formed, with different patterns depending on the shape of the land. These changes affect how water and carbon flow and cycle through the environment. The results help understand how and where the Arctic is shifting, and highlight the need for repeated observations to track long-term changes.
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753, https://doi.org/10.5194/egusphere-2025-1753, 2025
Short summary
Short summary
Predicting hydrological runoff in Arctic permafrost regions is difficult due to limited observations and complex terrain. We used a detailed physics-based model to improve runoff estimates in a Earth system land model. Our method improved runoff accuracy and worked well across two different Arctic regions. This helps make climate models more reliable for understanding water flow in permafrost areas under a changing climate.
Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren N. Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett
The Cryosphere, 19, 393–400, https://doi.org/10.5194/tc-19-393-2025, https://doi.org/10.5194/tc-19-393-2025, 2025
Short summary
Short summary
Temporally continuous snow depth estimates are important for understanding changing snow patterns and impacts on frozen ground in the Arctic. In this work, we developed an approach to predict snow depth from variability in snow–ground interface temperature using small temperature sensors that are cheap and easy to deploy. This new technique enables spatially distributed and temporally continuous snowpack monitoring that has not previously been possible.
Charles E. Miller, Peter C. Griffith, Elizabeth Hoy, Naiara S. Pinto, Yunling Lou, Scott Hensley, Bruce D. Chapman, Jennifer Baltzer, Kazem Bakian-Dogaheh, W. Robert Bolton, Laura Bourgeau-Chavez, Richard H. Chen, Byung-Hun Choe, Leah K. Clayton, Thomas A. Douglas, Nancy French, Jean E. Holloway, Gang Hong, Lingcao Huang, Go Iwahana, Liza Jenkins, John S. Kimball, Tatiana Loboda, Michelle Mack, Philip Marsh, Roger J. Michaelides, Mahta Moghaddam, Andrew Parsekian, Kevin Schaefer, Paul R. Siqueira, Debjani Singh, Alireza Tabatabaeenejad, Merritt Turetsky, Ridha Touzi, Elizabeth Wig, Cathy J. Wilson, Paul Wilson, Stan D. Wullschleger, Yonghong Yi, Howard A. Zebker, Yu Zhang, Yuhuan Zhao, and Scott J. Goetz
Earth Syst. Sci. Data, 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024, https://doi.org/10.5194/essd-16-2605-2024, 2024
Short summary
Short summary
NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) conducted airborne synthetic aperture radar (SAR) surveys of over 120 000 km2 in Alaska and northwestern Canada during 2017, 2018, 2019, and 2022. This paper summarizes those results and provides links to details on ~ 80 individual flight lines. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band SAR data.
Nathan Alec Conroy, Jeffrey M. Heikoop, Emma Lathrop, Dea Musa, Brent D. Newman, Chonggang Xu, Rachael E. McCaully, Carli A. Arendt, Verity G. Salmon, Amy Breen, Vladimir Romanovsky, Katrina E. Bennett, Cathy J. Wilson, and Stan D. Wullschleger
The Cryosphere, 17, 3987–4006, https://doi.org/10.5194/tc-17-3987-2023, https://doi.org/10.5194/tc-17-3987-2023, 2023
Short summary
Short summary
This study combines field observations, non-parametric statistical analyses, and thermodynamic modeling to characterize the environmental causes of the spatial variability in soil pore water solute concentrations across two Arctic catchments with varying extents of permafrost. Vegetation type, soil moisture and redox conditions, weathering and hydrologic transport, and mineral solubility were all found to be the primary drivers of the existing spatial variability of some soil pore water solutes.
Bharat Sharma, Jitendra Kumar, Auroop R. Ganguly, and Forrest M. Hoffman
Biogeosciences, 20, 1829–1841, https://doi.org/10.5194/bg-20-1829-2023, https://doi.org/10.5194/bg-20-1829-2023, 2023
Short summary
Short summary
Rising atmospheric carbon dioxide increases vegetation growth and causes more heatwaves and droughts. The impact of such climate extremes is detrimental to terrestrial carbon uptake capacity. We found that due to overall climate warming, about 88 % of the world's regions towards the end of 2100 will show anomalous losses in net biospheric productivity (NBP) rather than gains. More than 50 % of all negative NBP extremes were driven by the compound effect of dry, hot, and fire conditions.
Ian Shirley, Sebastian Uhlemann, John Peterson, Katrina Bennett, Susan S. Hubbard, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2023-968, https://doi.org/10.5194/egusphere-2023-968, 2023
Preprint archived
Short summary
Short summary
Snow depth has a strong impact on soil temperatures and carbon cycling in the arctic. Because of this, we want to understand why snow is deeper in some places than others. Using cameras mounted on a drone, we mapped snow depth, vegetation height, and elevation across a watershed in Alaska. In this paper, we develop novel techniques using image processing and machine learning to characterize the influence of topography and shrubs on snow depth in the watershed.
Joanmarie Del Vecchio, Emma R. Lathrop, Julian B. Dann, Christian G. Andresen, Adam D. Collins, Michael M. Fratkin, Simon Zwieback, Rachel C. Glade, and Joel C. Rowland
Earth Surf. Dynam., 11, 227–245, https://doi.org/10.5194/esurf-11-227-2023, https://doi.org/10.5194/esurf-11-227-2023, 2023
Short summary
Short summary
In cold regions of the Earth, thawing permafrost can change the landscape, impact ecosystems, and lead to the release of greenhouse gases. In this study we used many observational tools to better understand how sediment moves on permafrost hillslopes. Some topographic change conforms to our understanding of slope stability and sediment transport as developed in temperate landscapes, but much of what we observed needs further explanation by permafrost-specific geomorphic models.
Xiang Huang, Charles J. Abolt, and Katrina E. Bennett
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-8, https://doi.org/10.5194/tc-2023-8, 2023
Manuscript not accepted for further review
Short summary
Short summary
Near-surface humidity is a sensitive parameter for predicting snow depth. Greater values of the relative humidity are obtained if the saturation vapor pressure was calculated with over-ice correction compared to without during the winter. During the summer thawing period, the choice of whether or not to employ an over-ice correction corresponds to significant variability in simulated thaw depths.
Carlotta Brunetti, John Lamb, Stijn Wielandt, Sebastian Uhlemann, Ian Shirley, Patrick McClure, and Baptiste Dafflon
Earth Surf. Dynam., 10, 687–704, https://doi.org/10.5194/esurf-10-687-2022, https://doi.org/10.5194/esurf-10-687-2022, 2022
Short summary
Short summary
This paper proposes a method to estimate thermal diffusivity and its uncertainty over time, at numerous locations and at an unprecedented vertical spatial resolution from soil temperature time series. We validate and apply this method to synthetic and field case studies. The improved quantification of soil thermal properties is a cornerstone for advancing the indirect estimation of the fraction of soil components needed to predict subsurface storage and fluxes of water, carbon, and nutrients.
Rachael E. McCaully, Carli A. Arendt, Brent D. Newman, Verity G. Salmon, Jeffrey M. Heikoop, Cathy J. Wilson, Sanna Sevanto, Nathan A. Wales, George B. Perkins, Oana C. Marina, and Stan D. Wullschleger
The Cryosphere, 16, 1889–1901, https://doi.org/10.5194/tc-16-1889-2022, https://doi.org/10.5194/tc-16-1889-2022, 2022
Short summary
Short summary
Degrading permafrost and shrub expansion are critically important to tundra biogeochemistry. We observed significant variability in soil pore water NO3-N in an alder-dominated permafrost hillslope in Alaska. Proximity to alder shrubs and the presence or absence of topographic gradients and precipitation events strongly influence NO3-N availability and mobility. The highly dynamic nature of labile N on small spatiotemporal scales has implications for nutrient responses to a warming Arctic.
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary
Short summary
The relative ratio of wetland methane (CH4) emission pathways determines how much CH4 is oxidized before leaving the soil. We found an ebullition modeling approach that has a better performance in deep layer pore water CH4 concentration. We suggest using this approach in land surface models to accurately represent CH4 emission dynamics and response to climate change. Our results also highlight that both CH4 flux and belowground concentration data are important to constrain model parameters.
Elchin E. Jafarov, Daniil Svyatsky, Brent Newman, Dylan Harp, David Moulton, and Cathy Wilson
The Cryosphere, 16, 851–862, https://doi.org/10.5194/tc-16-851-2022, https://doi.org/10.5194/tc-16-851-2022, 2022
Short summary
Short summary
Recent research indicates the importance of lateral transport of dissolved carbon in the polygonal tundra, suggesting that the freeze-up period could further promote lateral carbon transport. We conducted subsurface tracer simulations on high-, flat-, and low-centered polygons to test the importance of the freeze–thaw cycle and freeze-up time for tracer mobility. Our findings illustrate the impact of hydraulic and thermal gradients on tracer mobility, as well as of the freeze-up time.
Baptiste Dafflon, Stijn Wielandt, John Lamb, Patrick McClure, Ian Shirley, Sebastian Uhlemann, Chen Wang, Sylvain Fiolleau, Carlotta Brunetti, Franklin H. Akins, John Fitzpatrick, Samuel Pullman, Robert Busey, Craig Ulrich, John Peterson, and Susan S. Hubbard
The Cryosphere, 16, 719–736, https://doi.org/10.5194/tc-16-719-2022, https://doi.org/10.5194/tc-16-719-2022, 2022
Short summary
Short summary
This study presents the development and validation of a novel acquisition system for measuring finely resolved depth profiles of soil and snow temperature at multiple locations. Results indicate that the system reliably captures the dynamics in snow thickness, as well as soil freezing and thawing depth, enabling advances in understanding the intensity and timing in surface processes and their impact on subsurface thermohydrological regimes.
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Martijn M. T. A. Pallandt, Jitendra Kumar, Marguerite Mauritz, Edward A. G. Schuur, Anna-Maria Virkkala, Gerardo Celis, Forrest M. Hoffman, and Mathias Göckede
Biogeosciences, 19, 559–583, https://doi.org/10.5194/bg-19-559-2022, https://doi.org/10.5194/bg-19-559-2022, 2022
Short summary
Short summary
Thawing of Arctic permafrost soils could trigger the release of vast amounts of carbon to the atmosphere, thus enhancing climate change. Our study investigated how well the current network of eddy covariance sites to monitor greenhouse gas exchange at local scales captures pan-Arctic flux patterns. We identified large coverage gaps, e.g., in Siberia, but also demonstrated that a targeted addition of relatively few sites can significantly improve network performance.
Haruko M. Wainwright, Sebastian Uhlemann, Maya Franklin, Nicola Falco, Nicholas J. Bouskill, Michelle E. Newcomer, Baptiste Dafflon, Erica R. Siirila-Woodburn, Burke J. Minsley, Kenneth H. Williams, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 26, 429–444, https://doi.org/10.5194/hess-26-429-2022, https://doi.org/10.5194/hess-26-429-2022, 2022
Short summary
Short summary
This paper has developed a tractable approach for characterizing watershed heterogeneity and its relationship with key functions such as ecosystem sensitivity to droughts and nitrogen export. We have applied clustering methods to classify hillslopes into
watershed zonesthat have distinct distributions of bedrock-to-canopy properties as well as key functions. This is a powerful approach for guiding watershed experiments and sampling as well as informing hydrological and biogeochemical models.
Jiancong Chen, Baptiste Dafflon, Anh Phuong Tran, Nicola Falco, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 25, 6041–6066, https://doi.org/10.5194/hess-25-6041-2021, https://doi.org/10.5194/hess-25-6041-2021, 2021
Short summary
Short summary
The novel hybrid predictive modeling (HPM) approach uses a long short-term memory recurrent neural network to estimate evapotranspiration (ET) and ecosystem respiration (Reco) with only meteorological and remote-sensing inputs. We developed four use cases to demonstrate the applicability of HPM. The results indicate HPM is capable of providing ET and Reco estimations in challenging mountainous systems and enhances our understanding of watershed dynamics at sparsely monitored watersheds.
Qina Yan, Haruko Wainwright, Baptiste Dafflon, Sebastian Uhlemann, Carl I. Steefel, Nicola Falco, Jeffrey Kwang, and Susan S. Hubbard
Earth Surf. Dynam., 9, 1347–1361, https://doi.org/10.5194/esurf-9-1347-2021, https://doi.org/10.5194/esurf-9-1347-2021, 2021
Short summary
Short summary
We develop a hybrid model to estimate the spatial distribution of the thickness of the soil layer, which also provides estimations of soil transport and soil production rates. We apply this model to two examples of hillslopes in the East River watershed in Colorado and validate the model. The results show that the north-facing (NF) hillslope has a deeper soil layer than the south-facing (SF) hillslope and that the hybrid model provides better accuracy than a machine-learning model.
Yaoping Wang, Jiafu Mao, Mingzhou Jin, Forrest M. Hoffman, Xiaoying Shi, Stan D. Wullschleger, and Yongjiu Dai
Earth Syst. Sci. Data, 13, 4385–4405, https://doi.org/10.5194/essd-13-4385-2021, https://doi.org/10.5194/essd-13-4385-2021, 2021
Short summary
Short summary
We developed seven global soil moisture datasets (1970–2016, monthly, half-degree, and multilayer) by merging a wide range of data sources, including in situ and satellite observations, reanalysis, offline land surface model simulations, and Earth system model simulations. Given the great value of long-term, multilayer, gap-free soil moisture products to climate research and applications, we believe this paper and the presented datasets would be of interest to many different communities.
Ryan L. Crumley, David F. Hill, Katreen Wikstrom Jones, Gabriel J. Wolken, Anthony A. Arendt, Christina M. Aragon, Christopher Cosgrove, and Community Snow Observations Participants
Hydrol. Earth Syst. Sci., 25, 4651–4680, https://doi.org/10.5194/hess-25-4651-2021, https://doi.org/10.5194/hess-25-4651-2021, 2021
Short summary
Short summary
In this study, we use a new snow data set collected by participants in the Community Snow Observations project in coastal Alaska to improve snow depth and snow water equivalence simulations from a snow process model. We validate our simulations with multiple datasets, taking advantage of snow telemetry (SNOTEL), snow depth and snow water equivalence, and remote sensing measurements. Our results demonstrate that assimilating citizen science snow depth measurements can improve model performance.
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Bob Busey, Sofia T. Avendaño, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, Cathy J. Wilson, and Katrina E. Bennett
The Cryosphere, 15, 4005–4029, https://doi.org/10.5194/tc-15-4005-2021, https://doi.org/10.5194/tc-15-4005-2021, 2021
Short summary
Short summary
Polygon-shaped landforms present in relatively flat Arctic tundra result in complex landscape-scale water drainage. The drainage pathways and the time to transition from inundated conditions to drained have important implications for heat and carbon transport. Using fundamental hydrologic principles, we investigate the drainage pathways and timing of individual polygons, providing insights into the effects of polygon geometry and preferential flow direction on drainage pathways and timing.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
A. D. Collins, C. G. Andresen, L. M. Charsley-Groffman, T. Cochran, J. Dann, E. Lathrop, G. J. Riemersma, E. M. Swanson, A. Tapadinhas, and C. J. Wilson
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIV-M-2-2020, 1–8, https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-1-2020, https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-1-2020, 2020
Cited articles
Adams, M. S., Bühler, Y., and Fromm, R.: Multitemporal accuracy and
precision assessment of unmanned aerial system photogrammetry for
slope-scale snow depth maps in Alpine terrain, Pure Appl. Geophys., 175,
3303–3324, 2018.
AMAP: An Update to Key Findings of Snow, Water, Ice and Permafrost in the
Arctic (SWIPA) 2017, Arct. Monit. Assess. Programme AMAP Oslo Nor., 1–12,
2019.
Anderton, S. P., White, S. M., and Alvera, B.: Evaluation of spatial
variability in snow water equivalent for a high mountain catchment, Hydrol.
Process., 18, 435–453, https://doi.org/10.1002/hyp.1319, 2004.
Arndt, K. A., Lipson, D. A., Hashemi, J., Oechel, W. C., and Zona, D.: Snow
melt stimulates ecosystem respiration in Arctic ecosystems, Glob. Change
Biol., 26, 5042–5051, https://doi.org/10.1111/gcb.15193, 2020.
Assini, J. and Young, K. L.: Snow cover and snowmelt of an extensive High Arctic wetland: spatial and temporal seasonal patterns, Hydrolog. Sci. J., 57, 738–755, https://doi.org/10.1080/02626667.2012.666853, 2012.
Atchley, A. L., Painter, S. L., Harp, D. R., Coon, E. T., Wilson, C. J., Liljedahl, A. K., and Romanovsky, V. E.: Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83), Geosci. Model Dev., 8, 2701–2722, https://doi.org/10.5194/gmd-8-2701-2015, 2015.
Atchley, A. L., Coon, E. T., Painter, S. L., Harp, D. R., and Wilson, C. J.:
Influences and interactions of inundation, peat, and snow on active layer
thickness, Geophys. Res. Lett., 43, 5116–5123, 2016.
Bair, E. H., Abreu Calfa, A., Rittger, K., and Dozier, J.: Using machine
learning for real-time estimates of snow water equivalent in the watersheds
of Afghanistan, The Cryosphere, 12, 1579–1594,
https://doi.org/10.5194/tc-12-1579-2018, 2018.
Bennett, K., Bolton, R., Lathrop, E., Dann, J., Miller, G., Nutt, M., and
Wilson, C.: End-of-Winter Snow Depth, Temperature, Density, and SWE Measurements at Teller Road Site, Seward Peninsula, Alaska, 2019, 2020 Next Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA [data set], https://doi.org/10.5440/1798170, 2020.
Berg, N. H.: Blowing snow at a Colorado alpine site: measurements and
implications, Arctic Alpine Res., 18, 147–161, 1986.
Bisht, G., Riley, W. J., Hammond, G. E., and Lorenzetti, D. M.: Development and evaluation of a variably saturated flow model in the global E3SM Land Model (ELM) version 1.0, Geosci. Model Dev., 11, 4085–4102, https://doi.org/10.5194/gmd-11-4085-2018, 2018.
Bjerke, J. W., Tømmervik, H., Zielke, M., and Jørgensen, M.: Impacts
of snow season on ground-ice accumulation, soil frost and primary
productivity in a grassland of sub-Arctic Norway, Environ. Res. Lett., 10,
095007, https://doi.org/10.1088/1748-9326/10/9/095007, 2015.
Boelman, N. T., Gough, L., McLaren, J. R., and Greaves, H.: Does NDVI
reflect variation in the structural attributes associated with increasing
shrub dominance in arctic tundra?, Environ. Res. Lett., 6, 1–12, 2011.
Boike, J., Nitzbon, J., Anders, K., Grigoriev, M., Bolshiyanov, D., Langer, M., Lange, S., Bornemann, N., Morgenstern, A., Schreiber, P., Wille, C., Chadburn, S., Gouttevin, I., Burke, E., and Kutzbach, L.: A 16-year record (2002–2017) of permafrost, active-layer, and meteorological conditions at the Samoylov Island Arctic permafrost research site, Lena River delta, northern Siberia: an opportunity to validate remote-sensing data and land surface, snow, and permafrost models, Earth Syst. Sci. Data, 11, 261–299, https://doi.org/10.5194/essd-11-261-2019, 2019.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001.
Broxton, P. D., Van Leeuwen, W. J., and Biederman, J. A.: Improving snow
water equivalent maps with machine learning of snow survey and lidar
measurements, Water Resour. Res., 55, 3739–3757, 2019.
Bruland, O., Sand, K., and Killingtveit, Å.: Snow distribution at a high Arctic site at Svalbard, Hydrol. Res., 32, 1–12, https://doi.org/10.2166/nh.2001.0001, 2001.
Busey, R. C., Hinzman, L. D., Cassano, J., and Cassano, E.: Permafrost
distributions on the Seward Peninsula: past, present, and future, Ninth
International Conference on Permafrost, Fairbanks, AK, 215–220, 2008.
Busey, R. C., Bolton, W. R., Wilson, C. J., and Cohen, L.: Surface
meteorology at Teller site stations, Seward Peninsula, Alaska, ongoing from
2016, Next Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge National Laboratory [data set], U.S. Department of Energy, Oak Ridge, Tennessee, USA, https://doi.org/10.5440/1437633, 2017.
Caldwell, P. M., Mametjanov, A., Tang, Q., Van Roekel, L. P., Golaz, J.,
Lin, W., Bader, D. C., Keen, N. D., Feng, Y., and Jacob, R.: The DOE E3SM
coupled model version 1: Description and results at high resolution, J. Adv.
Model. Earth Sy., 11, 4095–4146, 2019.
Callaghan, T. V., Johansson, M., Brown, R. D., Groisman, P. Ya., Labba, N.,
Radionov, V., Bradley, R. S., Blangy, S., Bulygina, O. N., Colman, J. E.,
Essery, R. L. H., Forbes, B. C., Forchhammer, M. C., Golubev, V. N.,
Honrath, R. E., Juday, G. P., Meshcherskaya, A. V., Phoenix, G. K., Pomeroy,
J., Rautio, A., Robinson, D. A., Schmidt, N. M., Serreze, M. C., Shevchenko,
V. P., Shiklomanov, A. I., Shmakin, A. B., Sköld, P., Sturm, M., Woo,
M.-K., and Wood, E. F.: Multiple effects of changes in arctic snow cover,
Ambio, 40, 32–45, https://doi.org/10.1007/s13280-011-0213-x, 2011.
Cooper, E. J.: Warmer shorter winters disrupt Arctic terrestrial ecosystems,
Annu. Rev. Ecol. Evol. S., 45, 271–295, 2014.
Crumley, R. L., Hill, D. F., Wikstrom Jones, K., Wolken, G. J., Arendt, A. A., Aragon, C. M., Cosgrove, C., and Community Snow Observations Participants: Assimilation of citizen science data in snowpack modeling using a new snow data set: Community Snow Observations, Hydrol. Earth Syst. Sci., 25, 4651–4680, https://doi.org/10.5194/hess-25-4651-2021, 2021.
Deems, J. S., Fassnacht, S. R., and Elder, K. J.: Interannual consistency in
fractal snow depth patterns at two Colorado mountain sites, J.
Hydrometeorol., 9, 977–988, 2008.
Dixon, D. and Boon, S.: Comparison of the SnowHydro snow sampler with
existing snow tube designs, Hydrol. Process., 26, 2555–2562,
https://doi.org/10.1002/hyp.9317, 2012.
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré,
G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., and Leitão, P.
J.: Collinearity: a review of methods to deal with it and a simulation study
evaluating their performance, Ecography, 36, 27–46, 2013.
Dozier, J., Bair, E. H., and Davis, R. E.: Estimating the spatial
distribution of snow water equivalent in the world's mountains, Wiley
Interdiscip. Rev. Water, 3, 461–474, 2016.
Dvornikov, Y., Khomutov, A., Mullanurov, D., Ermokhina, K., Gubarkov, A.,
and Leibman, M.: GIS and field data based modelling of snow water equivalent
in shrub tundra, Fennia, 193, 53–65, https://doi.org/10.11143/46363, 2015.
Erickson, T. A., Williams, M. W., and Winstral, A.: Persistence of
topographic controls on the spatial distribution of snow in rugged mountain
terrain, Colorado, United States, Water Resour. Res., 41, W04014, https://doi.org/10.1029/2003WR002973, 2005.
Essery, R. and Pomeroy, J.: Vegetation and topographic control of wind-blown
snow distribution in distributed and aggregated simulations for an Arctic
tundra basin, J. Hydrometeorol., 5, 735–744, 2004.
Evans, B. M., Walker, D. A., Benson, C. S., Nordstrand, E. A., and Petersen, G. W.:
Spatial interrelationships between terrain, snow distribution and vegetation
patterns at an arctic foothills site in Alaska, Holarct. Ecol., 12,
270–278, 1989.
Fleming, M. D.: Develop an existing vegetation layer for the Western Alaska LCC region, 21 pp., https://lccnetwork.org/resource/develop-existing-vegetation-layer-western-alaska-lcc-region (last access: 29 July 2022), 2015.
Fletcher, C. G., Kushner, P. J., Hall, A., and Qu, X.: Circulation responses
to snow albedo feedback in climate change, Geophys. Res. Lett., 36, L09702,
https://doi.org/10.1029/2009GL038011, 2009.
Forchhammer, M. C., Schmidt, N. M., Høye, T. T., Berg, T. B.,
Hendrichsen, D. K., and Post, E.: Population dynamical responses to climate
change, Adv. Ecol. Res., 40, 391–419, https://doi.org/10.1016/S0065-2504(07)00017-7,
2008.
Ford, J. and Bedford, B. L.: Hydrology of Alaskan wetlands, U.S.A, Arctic
Alpine Res., 19, 209–229, 1987.
Franke, R.: Scattered data interpolation: tests of some methods,
Math. Comput., 38, 181–200, 1982.
Freudiger, D., Kohn, I., Seibert, J., Stahl, K., and Weiler, M.: Snow
redistribution for the hydrological modeling of alpine catchments, WIREs
Water, 4, e1232, https://doi.org/10.1002/wat2.1232, 2017.
Gisnås, K., Westermann, S., Schuler, T. V., Litherland, T., Isaksen, K., Boike, J., and Etzelmüller, B.: A statistical approach to represent small-scale variability of permafrost temperatures due to snow cover, The Cryosphere, 8, 2063–2074, https://doi.org/10.5194/tc-8-2063-2014, 2014.
Gregorutti, B., Michel, B., and Saint-Pierre, P.: Correlation and variable
importance in random forests, Stat. Comput., 27, 659–678,
https://doi.org/10.1007/s11222-016-9646-1, 2017.
Grünberg, I., Wilcox, E. J., Zwieback, S., Marsh, P., and Boike, J.: Linking tundra vegetation, snow, soil temperature, and permafrost, Biogeosciences, 17, 4261–4279, https://doi.org/10.5194/bg-17-4261-2020, 2020.
Grünewald, T., Stötter, J., Pomeroy, J. W., Dadic, R., Moreno Baños, I., Marturià, J., Spross, M., Hopkinson, C., Burlando, P., and Lehning, M.: Statistical modelling of the snow depth distribution in open alpine terrain, Hydrol. Earth Syst. Sci., 17, 3005–3021, https://doi.org/10.5194/hess-17-3005-2013, 2013.
Hannula, H.-R., Lemmetyinen, J., Kontu, A., Derksen, C., and Pulliainen, J.: Spatial and temporal variation of bulk snow properties in northern boreal and tundra environments based on extensive field measurements, Geosci. Instrum. Method. Data Syst., 5, 347–363, https://doi.org/10.5194/gi-5-347-2016, 2016.
Harder, P., Pomeroy, J. W., and Helgason, W. D.: Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques, The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020, 2020.
Hinzman, L., Kane, D., Yoshikawa, K., Carr, A., Bolton, W., and Fraver, M.:
Hydrological variations among watersheds with varying degrees of permafrost, in Proceedings of the Eighth International Conference on Permafrost, 21–25 July 2003, Balkema Publishers, Zurich, Switzerland, 407–411,
2003.
Hirashima, H., Ohata, T., Kodama, Y., Yabuki, H., Sato, N., and Georgiadi,
A.: Nonuniform distribution of tundra snow cover in Eastern Siberia, J.
Hydrometeorol., 5, 373–389, 2004.
Homan, J. W. and Kane, D. L.: Arctic snow distribution patterns at the
watershed scale, Hydrol. Res., 46, 507–520,
https://doi.org/10.2166/nh.2014.024, 2015.
Huntington, H., Callaghan, T., Fox, S., and Krupnik, I.: Matching
Traditional and Scientific Observations to Detect Environmental Change: A
Discussion on Arctic Terrestrial Ecosystems, AMBIO J. Hum. Environ., 33,
18–23, https://doi.org/10.1007/0044-7447-33.sp13.18, 2004.
Iversen, C., Breen, A., Salmon, V., VanderStel, H., and Wullschleger, S.:
NGEE Arctic Plant Traits: Vegetation Plot Locations, Ecotypes, and Photos,
Kougarok Road Mile Marker 64, Seward Peninsula, Alaska, 2016, Next
Generation Ecosystems Experiment – Arctic, NGEE Arctic, Oak Ridge National Laboratory
(ORNL) [data set], Oak Ridge, TN (United States), https://doi.org/10.5440/1346196,
2019.
Jaedicke, Ch. and Sandvik, A. D.: High resolution snow distribution data from complex Arctic terrain: a tool for model validation, Nat. Hazards Earth Syst. Sci., 2, 147–155, https://doi.org/10.5194/nhess-2-147-2002, 2002.
Jafarov, E. E., Coon, E. T., Harp, D. R., Wilson, C. J., Painter, S. L.,
Atchley, A. L., and Romanovsky, V. E.: Modeling the role of preferential
snow accumulation in through talik development and hillslope groundwater
flow in a transitional permafrost landscape, Environ. Res. Lett., 13,
105006, https://doi.org/10.1088/1748-9326/aadd30, 2018.
Jenness, J.: Topographic Position Index (tpi_jen. avx)
extension for ArcView 3. x, v. 1.3 a. Jenness Enterprises, 2006.
Jonas, T., Marty, C., and Magnusson, J.: Estimating the snow water
equivalent from snow depth measurements in the Swiss Alps, J. Hydrol., 378,
161–167, https://doi.org/10.1016/j.jhydrol.2009.09.021, 2009.
Jorgenson, T., Yoshikawa, K., Kanevskiy, M., Shur, Y., Romanovsky, V., Marchenko, S., Grosse, G., Brown, J., and Jones, B.: Permafrost Characteristics of Alaska, [data set], https://catalog.northslopescience.org/no/dataset/54 (last access: 29 July 2022), 2008.
Karimi, S. S., Saintilan, N., Wen, L., and Valavi, R.: Application of
Machine Learning to Model Wetland Inundation Patterns Across a Large
Semiarid Floodplain, Water Resour. Res., 55, 8765–8778,
https://doi.org/10.1029/2019WR024884, 2019.
King, F., Erler, A. R., Frey, S. K., and Fletcher, C. G.: Application of machine learning techniques for regional bias correction of snow water equivalent estimates in Ontario, Canada, Hydrol. Earth Syst. Sci., 24, 4887–4902, https://doi.org/10.5194/hess-24-4887-2020, 2020.
Kirnbauer, R. and Blöschl, G.: How similar are snow cover patterns from
year to year?, Dtsch. Gewasserkundliche Mitteilungen, 37, 113–121, 1994.
Konduri, S., Breen, A., Hargrove, W. W., Hoffman, F. M. Iversen, C. M. Salmon, V. G., Ganguly, A. R., and Kumar, J.: Hyperspectral remote sensing-based plant community map for region around NGEE-Arctic intensive research watersheds at Seward Peninsula, Alaska, 2017–2019 Next Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA [data set], https://doi.org/10.5440/1828604, 2022.
König, M. and Sturm, M.: Mapping snow distribution in the Alaska Arctic
using aerial photography and topographic relationships, Water Resour. Res.,
34, 3471–3483, 1998.
Kouki, K., Räisänen, P., Luojus, K., Luomaranta, A., and Riihelä, A.: Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014, The Cryosphere, 16, 1007–1030, https://doi.org/10.5194/tc-16-1007-2022, 2022.
Léger, E., Dafflon, B., Robert, Y., Ulrich, C., Peterson, J. E., Biraud, S. C., Romanovsky, V. E., and Hubbard, S. S.: A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska, The Cryosphere, 13, 2853–2867, https://doi.org/10.5194/tc-13-2853-2019, 2019.
Liaw, A. and Wiener, M.: Classification and regression by randomForest, R
News, 2, 18–22, 2002.
Liston, G. E.: Representing subgrid snow cover heterogeneities in regional
and global models, J. Climate, 17, 1381–1397, 2004.
Liston, G. E. and Elder, K.: A distributed snow-evolution modeling system
(SnowModel), J. Hydrometeorol., 7, 1259–1276, 2006.
Liston, G. E. and Sturm, M.: A snow-transport model for complex terrain, J.
Glaciol., 44, 498–516, 1998.
Liston, G. E., Haehnel, R. B., Sturm, M., Hiemstra, C. A., Berezovskaya, S.,
and Tabler, R. D.: Instruments and Methods. Simulating complex snow
distributions in windy environments using SnowTran-3D, J. Glaciol., 53,
241–256, https://doi.org/10.3189/172756507782202865, 2007.
Liu, C., Huang, X., Li, X., and Liang, T.: MODIS Fractional Snow Cover
Mapping Using Machine Learning Technology in a Mountainous Area, Remote
Sens., 12, 962, https://doi.org/10.3390/rs12060962, 2020.
López-Moreno, J. I. and Nogués-Bravo, D.: A generalized additive
model for the spatial distribution of snowpack in the Spanish Pyrenees,
Hydrol. Process., 19, 3167–3176, https://doi.org/10.1002/hyp.5840, 2005.
López-Moreno, J. I., Latron, J., and Lehmann, A.: Effects of sample and
grid size on the accuracy and stability of regression-based snow
interpolation methods, Hydrol. Process., 15, 1914–1928, https://doi.org/10.1002/hyp.7564, 2009.
López-Moreno, J. I., Leppänen, L., Luks, B., Holko, L., Picard, G.,
Sanmiguel-Vallelado, A., Alonso-González, E., Finger, D. C., Arslan, A.
N., Gillemot, K., Sensoy, A., Sorman, A., Ertaş, M. C., Fassnacht, S.
R., Fierz, C., and Marty, C.: Intercomparison of measurements of bulk snow
density and water equivalent of snow cover with snow core samplers:
Instrumental bias and variability induced by observers, Hydrol. Process.,
34, 3120–3133, https://doi.org/10.1002/hyp.13785, 2020.
Louppe, G., Wehenkel, L., Sutera, A., and Geurts, P.: Understanding variable
importances in forests of randomized trees, NIPS'13: Proceedings of the 26th International Conference on Neural Information Processing Systems, Vol. 1, 431–439,
2013.
Małecki, J.: Snow accumulation on a small high‐arctic glacier svenbreen: variability and topographic controls, Geogr. Ann., 97, 809–817, https://doi.org/10.1111/geoa.12115, 2015.
Manning, J. A. and Garton, E. O.: Reconstructing historical snow depth
surfaces to evaluate changes in critical demographic rates and habitat
components of snow-dependent and snow-restricted species, Methods Ecol.
Evol., 3, 71–80, https://doi.org/10.1111/j.2041-210X.2011.00144.x, 2012.
Mauritz, M., Bracho, R., Celis, G., Hutchings, J., Natali, S. M., Pegoraro,
E., Salmon, V. G., Schädel, C., Webb, E. E., and Schuur, Edward. A. G.:
Nonlinear CO2 flux response to 7 years of experimentally induced permafrost
thaw, Glob. Change Biol., 23, 3646–3666, https://doi.org/10.1111/gcb.13661,
2017.
McCaully, R. E., Arendt, C. A., Newman, B. D., Salmon, V. G., Heikoop, J. M., Wilson, C. J., Sevanto, S., Wales, N. A., Perkins, G. B., Marina, O. C., and Wullschleger, S. D.: High nitrate variability on an Alaskan permafrost hillslope dominated by alder shrubs, The Cryosphere, 16, 1889–1901, https://doi.org/10.5194/tc-16-1889-2022, 2022.
McFadden, J. P., Liston, G. E., Sturm, M., Pielke, R. A., and Chapin, F. S.:
Interactions of shrubs and snow in arctic tundra: measurements and models,
Sixth scientific assembly of the International Association of Hydrological
Sciences, Maastricht, The Netherlands, 317–325, 2001.
Meloche, J., Langlois, A., Rutter, N., McLennan, D., Royer, A., Billecocq,
P. and Ponomarenko, S., High-resolution snow depth prediction using Random
Forest algorithm with topographic parameters: a case study in the Greiner
Watershed, Nunavut, Hydrol. Process., 36, e14546, https://doi.org/10.1002/hyp.14546, 2022.
Mendoza, P. A., Shaw, T. E., McPhee, J., Musselman, K. N., Revuelto, J., and
MacDonell, S.: Spatial distribution and scaling properties of lidar-derived
snow depth in the extratropical Andes, Water Resour. Res., 56,
e2020WR028480, https://doi.org/10.1029/2020WR028480, 2020.
Mott, R., Schirmer, M., and Lehning, M.: Scaling properties of wind and snow
depth distribution in an Alpine catchment, J. Geophys. Res.-Atmos.,
116, D06106, https://doi.org/10.1029/2010JD014886, 2011.
Mott, R., Vionnet, V., and Grünewald, T.: The Seasonal Snow Cover
Dynamics: Review on Wind-Driven Coupling Processes, Front. Earth Sci., 6, 197,
https://doi.org/10.3389/feart.2018.00197, 2018.
Mudryk, L., Santolaria-Otín, M., Krinner, G., Ménégoz, M., Derksen, C., Brutel-Vuilmet, C., Brady, M., and Essery, R.: Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble, The Cryosphere, 14, 2495–2514, https://doi.org/10.5194/tc-14-2495-2020, 2020.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Niittynen, P., Heikkinen, R. K., and Luoto, M.: Snow cover is a neglected
driver of Arctic biodiversity loss, Nat. Clim. Change, 8, 997–1001,
https://doi.org/10.1038/s41558-018-0311-x, 2018.
Overland, J., Dunlea, E., Box, J. E., Corell, R., Forsius, M., Kattsov, V.,
Olsen, M. S., Pawlak, J., Reiersen, L.-O., and Wang, M.: The urgency of
Arctic change, Polar Sci., 21, 6–13, 2019.
Painter, S. L., Coon, E. T., Atchley, A. L., Berndt, M., Garimella, R.,
Moulton, J. D., Svyatskiy, D., and Wilson, C. J.: Integrated
surface/subsurface permafrost thermal hydrology: Model formulation and
proof-of-concept simulations, Water Resour. Res., 52, 6062–6077,
https://doi.org/10.1002/2015WR018427, 2016.
Parr, C., Sturm, M., and Larsen, C.: Snowdrift Landscape Patterns: An Arctic
Investigation, Water Resour. Res., 56, e2020WR027823, https://doi.org/10.1029/2020WR027823,
2020.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V.: Scikit-learn:
Machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Pomeroy, J., Gray, D., Brown, T., Hedstrom, N., Quinton, W., Granger, R.,
and Carey, S.: The cold regions hydrological model: a platform for basing
process representation and model structure on physical evidence, Hydrol.
Process., 21, 2650–2667, 2007.
Pulliainen, J., Luojus, K., Derksen, C., Mudryk, L., Lemmetyinen, J.,
Salminen, M., Ikonen, J., Takala, M., Cohen, J., Smolander, T., and Norberg,
J.: Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018,
Nature, 581, 294–298, https://doi.org/10.1038/s41586-020-2258-0, 2020.
Rees, A., English, M., Derksen, C., Toose, P., and Silis, A.: Observations
of late winter Canadian tundra snow cover properties, Hydrol. Process., 28,
3962–3977, https://doi.org/10.1002/hyp.9931, 2014.
Revuelto, J., López-Moreno, J. I., Azorin-Molina, C., and Vicente-Serrano, S. M.: Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence, The Cryosphere, 8, 1989–2006, https://doi.org/10.5194/tc-8-1989-2014, 2014.
Revuelto, J., Billecocq, P., Tuzet, F., Cluzet, B., Lamare, M., Larue, F.,
and Dumont, M.: Random forests as a tool to understand the snow depth
distribution and its evolution in mountain areas, Hydrol. Process., 34. 5384–5401, https://doi.org/10.1002/hyp.13951, 2020.
Revuelto, J., López-Moreno, J. I., and Alonso-González, E.: Light
and shadow in mapping alpine snowpack with unmanned aerial vehicles in the
absence of ground control points, Water Resour. Res., 57, e2020WR028980, https://doi.org/10.1029/2020WR028980,
2021.
Riseth, J. Å., Tømmervik, H., Helander-Renvall, E., Labba, N.,
Johansson, C., Malnes, E., Bjerke, J. W., Jonsson, C., Pohjola, V., Sarri,
L.-E., Schanche, A., and Callaghan, T. V.: Sámi traditional ecological
knowledge as a guide to science: snow, ice and reindeer pasture facing
climate change, Polar Rec., 47, 202–217,
https://doi.org/10.1017/S0032247410000434, 2011.
Rogers, M. C., Sullivan, P. F., and Welker, J. M.: Evidence of nonlinearity
in the response of net ecosystem CO2 exchange to increasing levels of winter
snow depth in the High Arctic of Northwest Greenland, Arct. Antarct. Alp.
Res., 43, 95–106, 2011.
Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W.: Monitoring Vegetation Systems in the Great Plains with ERTS, Third ERTS-1 Symposium NASA, NASA SP-351, Washington DC, 309–317, 1974.
Salmon, V. G., Soucy, P., Mauritz, M., Celis, G., Natali, S. M., Mack, M.
C., and Schuur, E. A. G.: Nitrogen availability increases in a tundra
ecosystem during five years of experimental permafrost thaw, Glob. Change
Biol., 22, 1927–1941, https://doi.org/10.1111/gcb.13204, 2016.
Schaefer, J. A. and Messier, F.: Scale-dependent correlations of Arctic
vegetation and snow cover, Arctic Alpine Res., 27, 38–43, 1995.
Scott, P. A. and Rouse, W. R.: Impacts of increased winter snow cover on
upland tundra vegetation: a case example, Clim. Res., 5, 25–30, 1995.
Servén, D., Brummitt, C., and Abedi, H.: pyGAM: Generalized Additive Models in Python, Zenodo [code], https://doi.org/10.5281/zenodo.1476122, 2018.
Shook, K. R.: Simulation of the ablation of prairie snowcovers, PhD Thesis, University of Saskatchewan, Ottawa, National Library of Canada, 1997.
Shook, K. and Gray, D. M.: Small‐scale spatial structure of shallow snowcovers, Hydrol. Process., 10, 1283–1292, https://doi.org/10.1002/(SICI)1099-1085(199610)10:10<1283::AID-HYP460>3.0.CO;2-M, 1996.
Stuefer, S., Kane, D. L., and Liston, G. E.: In situ snow water equivalent
observations in the US Arctic, Hydrol. Res., 44, 21–34,
https://doi.org/10.2166/nh.2012.177,
2013.
Sturm, M. and Holmgren, J.: Effects of microtopography on texture,
temperature and heat flow in Arctic and sub-Arctic snow, Ann. Glaciol., 19,
63–68, https://doi.org/10.3189/1994AoG19-1-63-68, 1994.
Sturm, M. and Holmgren, J.: An automatic snow depth probe for field
validation campaigns, Water Resour. Res., 54, 9695–9701, 2018.
Sturm, M. and Stuefer, S.: Wind-blown flux rates derived from drifts at
arctic snow fences, J. Glaciol., 59, 21–34,
https://doi.org/10.3189/2013JoG12J110, 2013.
Sturm, M. and Wagner, A. M.: Using repeated patterns in snow distribution
modeling: An Arctic example, Water Resour. Res., 46, W12549,
https://doi.org/10.1029/2010WR009434, 2010.
Sturm, M., Racine, C., and Tape, K.: Climate change: increasing shrub
abundance in the Arctic, Nature, 411, 546–547, 2001a.
Sturm, M., McFadden, J. P., Liston, G. E., Chapin III, F. S., Racine, C. H.,
and Holmgren, J.: Snow-shrub interactions in arctic tundra: a hypothesis
with climatic implications, J. Clim., 14, 336–344, 2001b.
Sturm, M., Douglas, T., Racine, C., and Liston, G. E.: Changing snow and
shrub conditions affect albedo with global implications, J. Geophys. Res.-Biogeo., 110, G01004, https://doi.org/10.1029/2005JG000013, 2005.
Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., and Lea, J.:
Estimating snow water equivalent using snow depth data and climate classes,
J. Hydrometeorol., 11, 1380–1394, https://doi.org/10.1175/2010JHM1202.1,
2010.
Tarboton, D. G., Blöschl, G., Cooley, K., Kirnbauer, R., and Luce, C.:
Spatial snow cover processes at Kühtai and Reynolds creak, in: Spatial
patterns in catchment hydrology: observations and modelling, edited by:
Grayson, R. and Blöschl, G., Cambridge University Press, Cambridge,
158–186, ISBN 0521633168, 2000.
Trujillo, E., Ramírez, J. A., and Elder, K. J.: Topographic,
meteorologic, and canopy controls on the scaling characteristics of the
spatial distribution of snow depth fields, Water Resour. Res., 43, W07409,
https://doi.org/10.1029/2006WR005317, 2007.
Uhlemann, S., Dafflon, B., Peterson, J., Ulrich, C., Shirley, I., Michail,
S., and Hubbard, S.: Geophysical Monitoring Shows that Spatial Heterogeneity
in Thermohydrological Dynamics Reshapes a Transitional Permafrost System,
Geophys. Res. Lett., 48, e2020GL091149, https://doi.org/10.1029/2020GL091149, 2021.
Wainwright, H. M., Liljedahl, A. K., Dafflon, B., Ulrich, C., Peterson, J. E., Gusmeroli, A., and Hubbard, S. S.: Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods, The Cryosphere, 11, 857–875, https://doi.org/10.5194/tc-11-857-2017, 2017.
Weiss, A.: Topographic position and landforms analysis, Poster presentation,
ESRI user conference, San Diego, CA, 9 July, Vol. 2002, 2001.
Westergaard-Nielsen, A., Lund, M., Pedersen, S. H., Schmidt, N. M.,
Klosterman, S., Abermann, J., and Hansen, B. U.: Transitions in high-Arctic
vegetation growth patterns and ecosystem productivity tracked with automated
cameras from 2000 to 2013, Ambio, 46, 39–52,
https://doi.org/10.1007/s13280-016-0864-8, 2017.
Wilson, C., Bolton, R., Busey, R., Lathrop, E., and Dann, J.: End-of-Winter
Snow Depth, Temperature, Density and SWE Measurements at Kougarok Road Site,
Seward Peninsula, Alaska, Next Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy [data set], Oak Ridge, Tennessee, USA, https://doi.org/10.5440/1593874, 2020a.
Wilson, C., Bolton, R., Busey, R., Lathrop, E., Dann, J., Charsley-Groffman,
L., and Benentt, Katrina E.: End-of-Winter Snow Depth, Temperature, Density
and SWE Measurements at Teller Road Site, Seward Peninsula, Alaska, 2016–2018, Next Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy [data set], Oak Ridge, Tennessee, USA,
https://doi.org/10.5440/1592103, 2020b.
Winstral, A. and Marks, D.: Long-term snow distribution observations in a
mountain catchment: Assessing variability, time stability, and the
representativeness of an index site, Water Resour. Res., 50, 293–305, 2014.
Winstral, A., Elder, K., and Davis, R. E.: Spatial Snow Modeling of
Wind-Redistributed Snow Using Terrain-Based Parameters, J. Hydrometeorol.,
3, 524–538, https://doi.org/10.1175/1525-7541(2002)003<0524:SSMOWR>2.0.CO;2, 2002.
Woo, M. and Young, K. L.: Modeling arctic snow distribution and melt at the
1 km grid scale, Nord. Hydrol., 35, 295–307, 2004.
Young, K. L., Brown, L., and Labine, C.: Snow cover variability at Polar
Bear Pass, Nunavut, Arct. Sci., 4, 669–690,
https://doi.org/10.1139/as-2017-0016, 2018.
Zhu, X., Lee, S.-Y., Wen, X., Wei, Z., Ji, Z., Zheng, Z., and Dong, W.:
Historical evolution and future trend of Northern Hemisphere snow cover in
CMIP5 and CMIP6 models, Environ. Res. Lett., 16, 065013,
https://doi.org/10.1088/1748-9326/ac0662, 2021.
Zimmerman, D., Pavlik, C., Ruggles, A., and Armstrong, M. P.: An
experimental comparison of ordinary and universal kriging and inverse
distance weightin, Math. Geol., 31, 375–390, 1999.
Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E.,
Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., Chang, R. Y.-W.,
Henderson, J. M., Murphy, P. C., P., G. J., Moreaux, V., Liljedahl, A.,
Watts, J. D., Kimball, J. S., Lipson, D. A., and Oechel, W. C.: Cold season
emissions dominate the Arctic tundra methane budget, P. Natl. Acad. Sci. USA, 113, 40–45,
https://doi.org/10.1073/pnas.1516017113, 2016.
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations...