Articles | Volume 16, issue 7
https://doi.org/10.5194/tc-16-2683-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-2683-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling enhanced firn densification due to strain softening
Falk M. Oraschewski
CORRESPONDING AUTHOR
Department of Geosciences, University of Tübingen, Tübingen, Germany
Physics of Ice, Climate, and Earth, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Aslak Grinsted
Physics of Ice, Climate, and Earth, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Related authors
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Falk M. Oraschewski, Inka Koch, M. Reza Ershadi, Jonathan D. Hawkins, Olaf Eisen, and Reinhard Drews
The Cryosphere, 18, 3875–3889, https://doi.org/10.5194/tc-18-3875-2024, https://doi.org/10.5194/tc-18-3875-2024, 2024
Short summary
Short summary
Mountain glaciers have a layered structure which contains information about past snow accumulation and ice flow. Using ground-penetrating radar instruments, the internal structure can be observed. The detection of layers in the deeper parts of a glacier is often difficult. Here, we present a new approach for imaging the englacial structure of an Alpine glacier (Colle Gnifetti, Switzerland and Italy) using a phase-sensitive radar that can detect reflection depth changes at sub-wavelength scales.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Falk M. Oraschewski, Inka Koch, M. Reza Ershadi, Jonathan D. Hawkins, Olaf Eisen, and Reinhard Drews
The Cryosphere, 18, 3875–3889, https://doi.org/10.5194/tc-18-3875-2024, https://doi.org/10.5194/tc-18-3875-2024, 2024
Short summary
Short summary
Mountain glaciers have a layered structure which contains information about past snow accumulation and ice flow. Using ground-penetrating radar instruments, the internal structure can be observed. The detection of layers in the deeper parts of a glacier is often difficult. Here, we present a new approach for imaging the englacial structure of an Alpine glacier (Colle Gnifetti, Switzerland and Italy) using a phase-sensitive radar that can detect reflection depth changes at sub-wavelength scales.
Mikkel Langgaard Lauritzen, Anne Munck Solgaard, Nicholas Mossor Rathmann, Bo Møllesøe Vinther, Aslak Grindsted, Brice Noël, Guðfinna Aðalgeirsdóttir, and Christine Schøtt Hvidberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-2223, https://doi.org/10.5194/egusphere-2024-2223, 2024
Short summary
Short summary
We study the Holocene period, which started about 11,700 years ago, through 841 computer simulations to better understand the history of the Greenland Ice Sheet. We accurately match historical surface elevation records, verifying our model. The simulations show that an ice bridge that used to connect the Greenland ice sheet to Canada collapsed around 4,900 years ago and still influences the ice sheet. Over the past 500 years, the Greenland ice sheet has contributed 12 millimeters to sea levels.
Aslak Grinsted, Nicholas Mossor Rathmann, Ruth Mottram, Anne Munck Solgaard, Joachim Mathiesen, and Christine Schøtt Hvidberg
The Cryosphere, 18, 1947–1957, https://doi.org/10.5194/tc-18-1947-2024, https://doi.org/10.5194/tc-18-1947-2024, 2024
Short summary
Short summary
Ice fracture can cause glacier crevassing and calving. These natural hazards can also modulate the flow and evolution of ice sheets. In a new study, we use a new high-resolution dataset to determine a new failure criterion for glacier ice. Surprisingly, the strength of ice depends on the mode of deformation, and this has potential implications for the currently used flow law of ice.
Ann-Sofie Priergaard Zinck and Aslak Grinsted
The Cryosphere, 16, 1399–1407, https://doi.org/10.5194/tc-16-1399-2022, https://doi.org/10.5194/tc-16-1399-2022, 2022
Short summary
Short summary
The Müller Ice Cap will soon set the scene for a new drilling project. To obtain an ice core with stratified layers and a good time resolution, thickness estimates are necessary for the planning. Here we present a new and fast method of estimating ice thicknesses from sparse data and compare it to an existing ice flow model. We find that the new semi-empirical method is insensitive to mass balance, is computationally fast, and provides good fits when compared to radar measurements.
Tamara Annina Gerber, Christine Schøtt Hvidberg, Sune Olander Rasmussen, Steven Franke, Giulia Sinnl, Aslak Grinsted, Daniela Jansen, and Dorthe Dahl-Jensen
The Cryosphere, 15, 3655–3679, https://doi.org/10.5194/tc-15-3655-2021, https://doi.org/10.5194/tc-15-3655-2021, 2021
Short summary
Short summary
We simulate the ice flow in the onset region of the Northeast Greenland Ice Stream to determine the source area and past accumulation rates of ice found in the EastGRIP ice core. This information is required to correct for bias in ice-core records introduced by the upstream flow effects. Our results reveal that the increasing accumulation rate with increasing upstream distance is predominantly responsible for the constant annual layer thicknesses observed in the upper 900 m of the ice core.
Aslak Grinsted and Jens Hesselbjerg Christensen
Ocean Sci., 17, 181–186, https://doi.org/10.5194/os-17-181-2021, https://doi.org/10.5194/os-17-181-2021, 2021
Short summary
Short summary
As we warm our planet, oceans expand, ice on land melts, and sea levels rise. On century timescales, we find that the sea level response to warming can be characterized by a single metric: the transient sea level sensitivity. Historical sea level exhibits substantially higher sensitivity than model-based estimates of future climates in authoritative climate assessments, implying recent projections could well underestimate the likely sea level rise by the end of this century.
Christine S. Hvidberg, Aslak Grinsted, Dorthe Dahl-Jensen, Shfaqat Abbas Khan, Anders Kusk, Jonas Kvist Andersen, Niklas Neckel, Anne Solgaard, Nanna B. Karlsson, Helle Astrid Kjær, and Paul Vallelonga
The Cryosphere, 14, 3487–3502, https://doi.org/10.5194/tc-14-3487-2020, https://doi.org/10.5194/tc-14-3487-2020, 2020
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) extends around 600 km from its onset in the interior of Greenland to the coast. Several maps of surface velocity and topography in Greenland exist, but accuracy is limited due to the lack of validation data. Here we present results from a 5-year GPS survey in an interior section of NEGIS. We use the data to assess a list of satellite-derived ice velocity and surface elevation products and discuss the implications for the ice stream flow in the area.
Related subject area
Discipline: Ice sheets | Subject: Ice Physics
Failure strength of glacier ice inferred from Greenland crevasses
Grain growth of natural and synthetic ice at 0 °C
Ice fabrics in two-dimensional flows: beyond pure and simple shear
Polarimetric radar reveals the spatial distribution of ice fabric at domes and divides in East Antarctica
Geothermal heat flux from measured temperature profiles in deep ice boreholes in Antarctica
Sensitivity of ice loss to uncertainty in flow law parameters in an idealized one-dimensional geometry
Observation of an optical anisotropy in the deep glacial ice at the geographic South Pole using a laser dust logger
Using a composite flow law to model deformation in the NEEM deep ice core, Greenland – Part 1: The role of grain size and grain size distribution on deformation of the upper 2207 m
Using a composite flow law to model deformation in the NEEM deep ice core, Greenland – Part 2: The role of grain size and premelting on ice deformation at high homologous temperature
The role of subtemperate slip in thermally driven ice stream margin migration
Deriving micro- to macro-scale seismic velocities from ice-core c axis orientations
Aslak Grinsted, Nicholas Mossor Rathmann, Ruth Mottram, Anne Munck Solgaard, Joachim Mathiesen, and Christine Schøtt Hvidberg
The Cryosphere, 18, 1947–1957, https://doi.org/10.5194/tc-18-1947-2024, https://doi.org/10.5194/tc-18-1947-2024, 2024
Short summary
Short summary
Ice fracture can cause glacier crevassing and calving. These natural hazards can also modulate the flow and evolution of ice sheets. In a new study, we use a new high-resolution dataset to determine a new failure criterion for glacier ice. Surprisingly, the strength of ice depends on the mode of deformation, and this has potential implications for the currently used flow law of ice.
Sheng Fan, David J. Prior, Brent Pooley, Hamish Bowman, Lucy Davidson, David Wallis, Sandra Piazolo, Chao Qi, David L. Goldsby, and Travis F. Hager
The Cryosphere, 17, 3443–3459, https://doi.org/10.5194/tc-17-3443-2023, https://doi.org/10.5194/tc-17-3443-2023, 2023
Short summary
Short summary
The microstructure of ice controls the behaviour of polar ice flow. Grain growth can modify the microstructure of ice; however, its processes and kinetics are poorly understood. We conduct grain-growth experiments on synthetic and natural ice samples at 0 °C. Microstructural data show synthetic ice grows continuously with time. In contrast, natural ice does not grow within a month. The inhibition of grain growth in natural ice is largely contributed by bubble pinning at ice grain boundaries.
Daniel H. Richards, Samuel S. Pegler, and Sandra Piazolo
The Cryosphere, 16, 4571–4592, https://doi.org/10.5194/tc-16-4571-2022, https://doi.org/10.5194/tc-16-4571-2022, 2022
Short summary
Short summary
Understanding the orientation of ice grains is key for predicting ice flow. We explore the evolution of these orientations using a new efficient model. We present an exploration of the patterns produced under a range of temperatures and 2D deformations, including for the first time a universal regime diagram. We do this for deformations relevant to ice sheets but not studied in experiments. These results can be used to understand drilled ice cores and improve future modelling of ice sheets.
M. Reza Ershadi, Reinhard Drews, Carlos Martín, Olaf Eisen, Catherine Ritz, Hugh Corr, Julia Christmann, Ole Zeising, Angelika Humbert, and Robert Mulvaney
The Cryosphere, 16, 1719–1739, https://doi.org/10.5194/tc-16-1719-2022, https://doi.org/10.5194/tc-16-1719-2022, 2022
Short summary
Short summary
Radio waves transmitted through ice split up and inform us about the ice sheet interior and orientation of single ice crystals. This can be used to infer how ice flows and improve projections on how it will evolve in the future. Here we used an inverse approach and developed a new algorithm to infer ice properties from observed radar data. We applied this technique to the radar data obtained at two EPICA drilling sites, where ice cores were used to validate our results.
Pavel Talalay, Yazhou Li, Laurent Augustin, Gary D. Clow, Jialin Hong, Eric Lefebvre, Alexey Markov, Hideaki Motoyama, and Catherine Ritz
The Cryosphere, 14, 4021–4037, https://doi.org/10.5194/tc-14-4021-2020, https://doi.org/10.5194/tc-14-4021-2020, 2020
Maria Zeitz, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 14, 3537–3550, https://doi.org/10.5194/tc-14-3537-2020, https://doi.org/10.5194/tc-14-3537-2020, 2020
Short summary
Short summary
The flow of ice drives mass losses in the large ice sheets. Sea-level rise projections rely on ice-sheet models, solving the physics of ice flow and melt. Unfortunately the parameters in the physics of flow are uncertain. Here we show, in an idealized setup, that these uncertainties can double flow-driven mass losses within the possible range of parameters. It is possible that this uncertainty carries over to realistic sea-level rise projections.
Martin Rongen, Ryan Carlton Bay, and Summer Blot
The Cryosphere, 14, 2537–2543, https://doi.org/10.5194/tc-14-2537-2020, https://doi.org/10.5194/tc-14-2537-2020, 2020
Short summary
Short summary
We report on the observation of a directional anisotropy in the intensity of backscattered light. The measurement was performed using a laser dust logger in the SPC14 drill hole at the geographic South Pole. We find the anisotropy axis to be compatible with the ice flow direction. It is discussed in comparison to a similar anisotropy observed by the IceCube Neutrino Observatory. In future, the measurement principle may provide a continuous record of crystal properties along entire drill holes.
Ernst-Jan N. Kuiper, Ilka Weikusat, Johannes H. P. de Bresser, Daniela Jansen, Gill M. Pennock, and Martyn R. Drury
The Cryosphere, 14, 2429–2448, https://doi.org/10.5194/tc-14-2429-2020, https://doi.org/10.5194/tc-14-2429-2020, 2020
Short summary
Short summary
A composite flow law model applied to crystal size distributions from the NEEM deep ice core predicts that fine-grained layers in ice from the last Glacial period localize deformation as internal shear zones in the Greenland ice sheet deforming by grain-size-sensitive creep. This prediction is consistent with microstructures in Glacial age ice.
Ernst-Jan N. Kuiper, Johannes H. P. de Bresser, Martyn R. Drury, Jan Eichler, Gill M. Pennock, and Ilka Weikusat
The Cryosphere, 14, 2449–2467, https://doi.org/10.5194/tc-14-2449-2020, https://doi.org/10.5194/tc-14-2449-2020, 2020
Short summary
Short summary
Fast ice flow occurs in deeper parts of polar ice sheets, driven by high stress and high temperatures. Above 262 K ice flow is further enhanced, probably by the formation of thin melt layers between ice crystals. A model applying an experimentally derived composite flow law, using temperature and grain size values from the deepest 540 m of the NEEM ice core, predicts that flow in fine-grained layers is enhanced by a factor of 10 compared to coarse-grained layers in the Greenland ice sheet.
Marianne Haseloff, Christian Schoof, and Olivier Gagliardini
The Cryosphere, 12, 2545–2568, https://doi.org/10.5194/tc-12-2545-2018, https://doi.org/10.5194/tc-12-2545-2018, 2018
Short summary
Short summary
The widths of the Siple Coast ice streams evolve on decadal to centennial timescales. We investigate how the rate of thermally driven ice stream widening depends on heat dissipation in the ice stream margin and at the bed, and on the inflow of cold ice from the ice ridge. As determining the migration rate requires resolving heat transfer processes on very small scales, we derive a parametrization of the migration rate in terms of parameters that are available from large-scale model outputs.
Johanna Kerch, Anja Diez, Ilka Weikusat, and Olaf Eisen
The Cryosphere, 12, 1715–1734, https://doi.org/10.5194/tc-12-1715-2018, https://doi.org/10.5194/tc-12-1715-2018, 2018
Short summary
Short summary
We investigate the effect of crystal anisotropy on seismic velocities in glacier ice by calculating seismic phase velocities using the exact c axis angles to describe the crystal orientations in ice-core samples for an alpine and a polar ice core. Our results provide uncertainty estimates for earlier established approximative calculations. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane.
Cited articles
Alley, K. E., Scambos, T. A., Anderson, R. S., Rajaram, H., Pope, A., and
Haran, T. M.: Continent-wide estimates of Antarctic strain rates from
Landsat 8-derived velocity grids, J. Glaciol., 64, 321–332,
https://doi.org/10.1017/jog.2018.23, 2018. a
Alley, R. B.: Firn densification by grain-boundary sliding: A first model,
J. Phys. Colloq., 48, C1-249–C1-256, https://doi.org/10.1051/jphyscol:1987135, 1987. a, b, c
Alley, R. B. and Bentley, C. R.: Ice-core analysis on the Siple Coast of
West Antarctica, Ann. Glaciol., 11, 1–7,
https://doi.org/10.3189/S0260305500006236, 1988. a, b, c, d
Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.:
In situ measurements of Antarctic snow compaction compared with
predictions of models, J. Geophys. Res., 115, F03011,
https://doi.org/10.1029/2009JF001306, 2010. a, b
Bons, P. D., Kleiner, T., Llorens, M.-G., Prior, D. J., Sachau, T., Weikusat,
I., and Jansen, D.: Greenland ice sheet: Higher nonlinearity of ice flow
significantly reduces estimated basal motion, Geophys. Res. Lett., 45,
6542–6548, https://doi.org/10.1029/2018GL078356, 2018. a
Bréant, C., Martinerie, P., Orsi, A., Arnaud, L., and Landais, A.: Modelling firn thickness evolution during the last deglaciation: constraints on sensitivity to temperature and impurities, Clim. Past, 13, 833–853, https://doi.org/10.5194/cp-13-833-2017, 2017. a
Buizert, C., Cuffey, K. M., Severinghaus, J. P., Baggenstos, D., Fudge, T. J., Steig, E. J., Markle, B. R., Winstrup, M., Rhodes, R. H., Brook, E. J., Sowers, T. A., Clow, G. D., Cheng, H., Edwards, R. L., Sigl, M., McConnell, J. R., and Taylor, K. C.: The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference, Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015, 2015. a, b, c
Buizert, C., Fudge, T. J., Roberts, W. H. G., Steig, E. J., Sherriff-Tadano,
S., Ritz, C., Lefebvre, E., Edwards, J., Kawamura, K., Oyabu, I., Motoyama,
H., Kahle, E. C., Jones, T. R., Abe-Ouchi, A., Obase, T., Martin, C., Corr,
H., Severinghaus, J. P., Beaudette, R., Epifanio, J. A., Brook, E. J.,
Martin, K., Chappellaz, J., Aoki, S., Nakazawa, T., Sowers, T. A., Alley,
R. B., Ahn, J., Sigl, M., Severi, M., Dunbar, N. W., Svensson, A.,
Fegyveresi, J. M., He, C., Liu, Z., Zhu, J., Otto-Bliesner, B. L.,
Lipenkov, V. Y., Kageyama, M., and Schwander, J.: Antarctic surface
temperature and elevation during the Last Glacial Maximum, Science, 372,
1097–1101, https://doi.org/10.1126/science.abd2897, 2021. a, b
Christianson, K., Peters, L. E., Alley, R. B., Anandakrishnan, S., Jacobel,
R. W., Riverman, K. L., Muto, A., and Keisling, B. A.: Dilatant till
facilitates ice-stream flow in northeast Greenland, Earth Planet. Sc.
Lett., 401, 57–69, https://doi.org/10.1016/j.epsl.2014.05.060, 2014. a
Crary, A. P. and Wilson, C. R.: Formation of “blue” glacier ice by horizontal
compressive forces, J. Glaciol., 3, 1045–1050,
https://doi.org/10.3189/S0022143000017445, 1961. a
Dansgaard, W. and Johnsen, S. J.: A flow model and a time scale for the ice
core from Camp Century, Greenland, J. Glaciol., 8, 215–223,
https://doi.org/10.3189/S0022143000031208, 1969. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a
Duva, J. M. and Crow, P. D.: Analysis of consolidation of reinforced materials
by power-law creep, Mech. Mater., 17, 25–32,
https://doi.org/10.1016/0167-6636(94)90011-6, 1994. a, b, c
Elsberg, D. H., Harrison, W. D., Zumberge, M. A., Morack, J. L., Pettit, E. C.,
Waddington, E. D., and Husmann, E.: Depth- and time-dependent vertical strain
rates at Siple Dome, Antarctica, J. Glaciol., 50, 511–521,
https://doi.org/10.3189/172756504781829684, 2004. a, b
Fahnestock, M. A., Joughin, I., Scambos, T. A., Kwok, R., Krabill, W. B., and
Gogineni, S.: Ice-stream-related patterns of ice flow in the interior of
northeast Greenland, J. Geophys. Res.-Atmos., 106, 34035–34045,
https://doi.org/10.1029/2001JD900194, 2001. a
Fausto, R. S. and van As, D.: Programme for Monitoring of the Greenland
Ice Sheet (PROMICE): Automatic weather station data, Version:
v03, Geological Survey of Denmark and Greenland (GEUS) [data set],
https://doi.org/10.22008/promice/data/aws, 2019. a
Fausto, R. S., Box, J. E., Vandecrux, B., van As, D., Steffen, K., MacFerrin,
M. J., Machguth, H., Colgan, W., Koenig, L. S., McGrath, D., Charalampidis,
C., and Braithwaite, R. J.: A snow density dataset for improving surface
boundary conditions in Greenland ice sheet firn modeling, Front. Earth
Sci., 6, 1–10, https://doi.org/10.3389/feart.2018.00051, 2018. a
Fausto, R. S., van As, D., Mankoff, K. D., Vandecrux, B., Citterio, M., Ahlstrøm, A. P., Andersen, S. B., Colgan, W., Karlsson, N. B., Kjeldsen, K. K., Korsgaard, N. J., Larsen, S. H., Nielsen, S., Pedersen, A. Ø., Shields, C. L., Solgaard, A. M., and Box, J. E.: Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data, Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, 2021. a
Fourteau, K., Gillet-Chaulet, F., Martinerie, P., and Faïn, X.: A
micro-mechanical model for the transformation of dry polar firn into ice
using the level-set method, Front. Earth Sci., 8, 1–15,
https://doi.org/10.3389/feart.2020.00101, 2020. a
Gagliardini, O.: Porous Law for snow and firn in Elmer/Ice,
http://elmerfem.org/elmerice/wiki/lib/exe/fetch.php?media=solvers:poroussolver.pdf (last access: 12 November 2021),
2012. a
Gagliardini, O. and Meyssonnier, J.: Flow simulation of a firn-covered cold
glacier, Ann. Glaciol., 24, 242–248, https://doi.org/10.3189/S0260305500012246, 1997. a, b, c, d
Gillet-Chaulet, F., Hindmarsh, R. C. A., Corr, H. F. J., King, E. C., and
Jenkins, A.: In-situ quantification of ice rheology and direct
measurement of the Raymond Effect at Summit, Greenland using a
phase-sensitive radar, Geophys. Res. Lett., 38, L24503,
https://doi.org/10.1029/2011GL049843, 2011. a, b
Glen, J. W.: The creep of polycrystalline ice, P. Roy Soc. Lond. A Mat., 228,
519–538, https://doi.org/10.1098/rspa.1955.0066, 1955. a
Goldsby, D. L. and Kohlstedt, D. L.: Superplastic deformation of ice:
Experimental observations, J. Geophys. Res.-Sol., 106, 11017–11030,
https://doi.org/10.1029/2000JB900336, 2001. a, b
Gow, A. J.: Deep core studies of the accumulation and densification of snow at
Byrd Station and Little America V, Antarctica, CRREL Res. Rep., 197, 1–45, http://hdl.handle.net/11681/5803 (last access: 10 June 2022), 1968. a
Greve, R. and Blatter, H.: Dynamics of Ice Sheets and Glaciers, first edn.,
Springer, Berlin, Heidelberg, ISBN 978-3-642-03414-5,
https://doi.org/10.1007/978-3-642-03415-2, 2009. a
Gundestrup, N. S., Dahl-Jensen, D., Hansen, B. L., and Kelty, J.: Bore-hole
survey at Camp Century, 1989, Cold Reg. Sci. Technol., 21, 187–193,
https://doi.org/10.1016/0165-232X(93)90006-T, 1993. a
Hansen, N., Langen, P. L., Boberg, F., Forsberg, R., Simonsen, S. B., Thejll, P., Vandecrux, B., and Mottram, R.: Downscaled surface mass balance in Antarctica: impacts of subsurface processes and large-scale atmospheric circulation, The Cryosphere, 15, 4315–4333, https://doi.org/10.5194/tc-15-4315-2021, 2021. a
Helsen, M. M., van den Broeke, M. R., van de Wal, R. S. W., van de Berg,
W. J., van Meijgaard, E., Davis, C. H., Li, Y., and Goodwin, I.: Elevation
changes in antarctica mainly determined by accumulation variability, Science,
320, 1626–1629, https://doi.org/10.1126/science.1153894, 2008. a
Herron, M. M. and Langway, C. C.: Firn densification: an empirical model, J.
Glaciol., 25, 373–385, https://doi.org/10.1017/S0022143000015239, 1980. a, b, c
Hörhold, M. W., Kipfstuhl, S., Wilhelms, F., Freitag, J., and Frenzel, A.:
The densification of layered polar firn, J. Geophys. Res.-Earth, 116,
F01001, https://doi.org/10.1029/2009JF001630, 2011. a
Horlings, A. N., Christianson, K., Holschuh, N., Stevens, C. M., and
Waddington, E. D.: Effect of horizontal divergence on estimates of firn-air
content, J. Glaciol., 67, 287–296, https://doi.org/10.1017/jog.2020.105, 2021. a, b, c, d
Howat, I.: MEaSUREs Greenland Ice Mapping Project (GIMP) Land Ice
and Ocean Classification Mask, Version 1,
NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA
[data set], https://doi.org/10.5067/B8X58MQBFUPA, 2017. a
Howat, I. M., Negrete, A., and Smith, B. E.: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets, The Cryosphere, 8, 1509–1518, https://doi.org/10.5194/tc-8-1509-2014, 2014. a
Joughin, I., Smith, B. E., Howat, I. M., and Scambos, T. A.: MEaSUREs
Multi-year Greenland Ice Sheet Velocity Mosaic, Version 1, NASA National Snow and Ice Data Center Distributed Active
Archive Center, Boulder,
Colorado USA [data set], https://doi.org/10.5067/QUA5Q9SVMSJG, 2016. a
Joughin, I., Smith, B. E., and Howat, I. M.: A complete map of Greenland
ice velocity derived from satellite data collected over 20 years, J.
Glaciol., 64, 1–11, https://doi.org/10.1017/jog.2017.73, 2018. a
Kirchner, J. F., Bentley, C. R., and Robertson, J. D.: Lateral density
differenences from seismic measurements at a site on the Ross Ice Shelf,
Antarctica, J. Glaciol., 24, 309–312, https://doi.org/10.3189/S0022143000014829,
1979. a
Langen, P. L., Fausto, R. S., Vandecrux, B., Mottram, R. H., and Box, J. E.:
Liquid water flow and retention on the Greenland ice sheet in the
regional climate model HIRHAM5: local and large-scale impacts, Front.
Earth Sci., 4, 1–18, https://doi.org/10.3389/feart.2016.00110, 2017. a
Licciulli, C., Bohleber, P., Lier, J., Gagliardini, O., Hoelzle, M., and Eisen,
O.: A full Stokes ice-flow model to assist the interpretation of
millennial-scale ice cores at the high-Alpine drilling site Colle
Gnifetti, Swiss/Italian Alps, J. Glaciol., 66, 35–48,
https://doi.org/10.1017/jog.2019.82, 2020. a
Lundin, J. M. D., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A.,
Ligtenberg, S. R. M., Simonsen, S. B., Cummings, E., Essery, R., Leahy, W.,
Harris, P., Helsen, M. M., and Waddington, E. D.: Firn Model
Intercomparison Experiment (FirnMICE), J. Glaciol., 63, 401–422,
https://doi.org/10.1017/jog.2016.114, 2017. a, b, c
Lüthi, M. and Funk, M.: Dating ice cores from a high Alpine glacier
with a flow model for cold firn, Ann. Glaciol., 31, 69–79,
https://doi.org/10.3189/172756400781820381, 2000. a
Maeno, N. and Ebinuma, T.: Pressure sintering of ice and its implication to the
densification of snow at polar glaciers and ice sheets, J. Phys. Chem., 87,
4103–4110, https://doi.org/10.1021/j100244a023, 1983. a, b
Matsuoka, K., Skoglund, A., Roth, G., De Pomereu, J., Griffiths, H., Headland, R., Herried, B., Katsumata, K., Le Brocq, A., Licht, K., Morgan, F., Neff, P., Ritz, C., Scheinert, M., Tamura, T., Van De Putte, A., Van Den Broeke, M., Von Deschwanden, A., Deschamps-Berger, C., Van Liefferinge, B., Tronstad, S., and Melvær, Y.: Quantarctica, Norwegian Polar Institute [data set], https://doi.org/10.21334/NPOLAR.2018.8516E961, 2018. a
Moon, T., Fisher, M., Harden, L., Simonoko, H., and Stafford, T.: QGreenland, Zenodo [code], https://doi.org/10.5281/ZENODO.6369184, 2021. a
Morris, E. M., Mulvaney, R., Arthern, R. J., Davies, D., Gurney, R. J.,
Lambert, P., De Rydt, J., Smith, A. M., Tuckwell, R. J., and Winstrup, M.:
Snow densification and recent accumulation along the iSTAR traverse,
Pine Island Glacier, Antarctica, J. Geophys. Res.-Earth, 122,
2284–2301, https://doi.org/10.1002/2017JF004357, 2017. a, b, c
Mottram, R. and Boberg, F.: Atmospheric climate model output from the regional climate model HIRHAM5 forced with ERA-Interim for Antarctica, Danish Meteorological Institute [data set], http://ensemblesrt3.dmi.dk/data/prudence/temp/RUM/HIRHAM/ANTARCTICA/ (last access: 15 June 2022), 2019. a
Mottram, R., Boberg, F., and Langen, P. L.: Atmospheric climate model output from the regional climate model HIRHAM5 forced with ERA-Interim for Greenland, Danish Meteorological Institute [data set], http://ensemblesrt3.dmi.dk/data/prudence/temp/RUM/HIRHAM/GREENLAND/ (last access: 15 June 2022), 2016. a
Mottram, R., Boberg, F., Langen, P., Yang, S., Rodehacke, C., Christensen,
J. H., and Madsen, M. S.: Surface mass balance of the Greenland ice sheet
in the regional climate model HIRHAM5: Present state and future
prospects, Low Temperature Science, 75, 105–115,
https://doi.org/10.14943/lowtemsci.75.105, 2017. a
Mouginot, J., Scheuchl, B., and Rignot, E.: Mapping of ice motion in
Antarctica using synthetic-aperture radar data, Remote Sens., 4,
2753–2767, https://doi.org/10.3390/rs4092753, 2012. a
Nye, J. F.: The distribution of stress and velocity in glaciers and ice-sheets,
P. Roy Soc. Lond. A Mat., 239, 113–133, https://doi.org/10.1098/rspa.1957.0026, 1957. a
Nye, J. F.: A method of determining the strain-rate tensor at the surface of a
glacier, J. Glaciol., 3, 409–419, https://doi.org/10.1017/S0022143000017093, 1959. a
Oraschewski, F. M.: Modelling of firn densification in the presence of horizontal
strain rates, MSc Thesis, University of Copenhagen, Copenhagen,
Denmark, https://doi.org/10.31237/osf.io/fdhxg, 2020. a
Orsi, A. J., Kawamura, K., Masson-Delmotte, V., Fettweis, X., Box, J. E.,
Dahl-Jensen, D., Clow, G. D., Landais, A., and Severinghaus, J. P.: The
recent warming trend in North Greenland, Geophys. Res. Lett., 44,
6235–6243, https://doi.org/10.1002/2016GL072212, 2017. a
Paden, J., Li, J., Leuschen, C., Rodriguez-Morales, F., and Hale, R.:
IceBridge Accumulation Radar L1B Geolocated Radar Echo Strength Profiles,
Version 2, NASA National Snow and Ice Data Center Distributed Active
Archive Center, Boulder, Colorado USA
[data set], https://doi.org/10.5067/0ZY1XYHNIQNY, 2018. a
Pedro, J. B., Rasmussen, S. O., and van Ommen, T. D.: Tightened constraints on the time-lag between Antarctic temperature and CO2 during the last deglaciation, Clim. Past, 8, 1213–1221, https://doi.org/10.5194/cp-8-1213-2012, 2012. a
Peters, J. F., Muthuswamy, M., Wibowo, J., and Tordesillas, A.:
Characterization of force chains in granular material, Phys. Rev. E, 72,
041307, https://doi.org/10.1103/PhysRevE.72.041307, 2005. a, b
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice flow of the Antarctic ice
sheet, Science, 333, 1427–1430, https://doi.org/10.1126/science.1208336, 2011. a
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-Based Antarctica
Ice Velocity Map, Version 2, NASA National Snow
and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA [data set],
https://doi.org/10.5067/D7GK8F5J8M8R, 2017. a
Riverman, K. L.: Enhanced firn densification in high-accumulation shear margins of the NE Greenland Ice Stream, seismic and surface elevation data, Zenodo [data set], https://doi.org/10.5281/zenodo.1345804, 2018. a, b, c, d
Riverman, K. L., Alley, R. B., Anandakrishnan, S., Christianson, K., Holschuh,
N. D., Medley, B., Muto, A., and Peters, L. E.: Enhanced firn densification
in high-accumulation shear margins of the NE Greenland Ice Stream, J. Geophys. Res.-Earth, 124, 365–382, https://doi.org/10.1029/2017JF004604,
2019. a, b, c, d, e, f, g, h, i, j
Salamatin, A. N., Lipenkov, V. Y., and Duval, P.: Bubbly-ice densification in
ice sheets: I. Theory, J. Glaciol., 43, 387–396,
https://doi.org/10.3189/S0022143000034961, 1997. a
Schaller, C. F., Freitag, J., Kipfstuhl, S., Laepple, T., Steen-Larsen, H. C., and Eisen, O.: A representative density profile of the North Greenland snowpack, The Cryosphere, 10, 1991–2002, https://doi.org/10.5194/tc-10-1991-2016, 2016. a
Schwander, J., Sowers, T., Barnola, J.-M., Blunier, T., Fuchs, A., and
Malaizé, B.: Age scale of the air in the summit ice: Implication for
glacial-interglacial temperature change, J. Geophys. Res.-Atmos., 102,
19483–19493, https://doi.org/10.1029/97JD01309, 1997. a
Schwerzmann, A. A.: Borehole analysis and flow modeling of firn-covered cold
glaciers, PhD thesis, ETH Zurich, Zurich, Switzerland,
https://doi.org/10.3929/ETHZ-A-005114924, 2006. a
Simonsen, S. B., Stenseng, L., Ađalgeirsdóttir, G., Fausto, R. S.,
Hvidberg, C. S., and Lucas-Picher, P.: Assessing a multilayered dynamic
firn-compaction model for Greenland with ASIRAS radar measurements,
J. Glaciol., 59, 545–558, https://doi.org/10.3189/2013JoG12J158, 2013. a, b
Stevens, C. M., Verjans, V., Lundin, J. M. D., Kahle, E. C., Horlings, A. N., Horlings, B. I., and Waddington, E. D.: The Community Firn Model (CFM) v1.0, Geosci. Model Dev., 13, 4355–4377, https://doi.org/10.5194/gmd-13-4355-2020, 2020. a, b
Stevens, C. M., Verjans, V., Kahle, E., Gkinis, V., Horlings, B. I., Horlings, A. N., Medley, B., Lundin, J. M. D., Vo, H., Waddington, E. D., and Oraschewski, F. M.: UWGlaciology/CommunityFirnModel: Version 1.1.9 of the Community Firn Model, Zenodo [code], https://doi.org/10.5281/zenodo.6628502, 2022.
a
Svensson, A., Dahl-Jensen, D., Steffensen, J. P., Blunier, T., Rasmussen, S. O., Vinther, B. M., Vallelonga, P., Capron, E., Gkinis, V., Cook, E., Kjær, H. A., Muscheler, R., Kipfstuhl, S., Wilhelms, F., Stocker, T. F., Fischer, H., Adolphi, F., Erhardt, T., Sigl, M., Landais, A., Parrenin, F., Buizert, C., McConnell, J. R., Severi, M., Mulvaney, R., and Bigler, M.: Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period, Clim. Past, 16, 1565–1580, https://doi.org/10.5194/cp-16-1565-2020, 2020. a
Vallelonga, P.: Northeast Greenland Ice Stream (NEGIS) 2012 ice core chemistry and density, National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce [data set], https://doi.org/10.25921/PWGG-J247, 2012. a, b
Vallelonga, P., Christianson, K., Alley, R. B., Anandakrishnan, S., Christian, J. E. M., Dahl-Jensen, D., Gkinis, V., Holme, C., Jacobel, R. W., Karlsson, N. B., Keisling, B. A., Kipfstuhl, S., Kjær, H. A., Kristensen, M. E. L., Muto, A., Peters, L. E., Popp, T., Riverman, K. L., Svensson, A. M., Tibuleac, C., Vinther, B. M., Weng, Y., and Winstrup, M.: Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS), The Cryosphere, 8, 1275–1287, https://doi.org/10.5194/tc-8-1275-2014, 2014. a, b, c
Weikusat, I., Jansen, D., Binder, T., Eichler, J., Faria, S. H., Wilhelms, F.,
Kipfstuhl, S., Sheldon, S., Miller, H., Dahl-Jensen, D., and Kleiner, T.:
Physical analysis of an Antarctic ice core – towards an
integration of micro- and macrodynamics of polar ice, Philos. T. Roy. Soc.
A., 375, 20150347, https://doi.org/10.1098/rsta.2015.0347, 2017. a
Zeising, O. and Humbert, A.: Indication of high basal melting at the EastGRIP drill site on the Northeast Greenland Ice Stream, The Cryosphere, 15, 3119–3128, https://doi.org/10.5194/tc-15-3119-2021, 2021. a, b
Zumberge, J. H., Giovinetto, M., Kehle, R., and Reid, J.: Deformation of the
Ross Ice Shelf near the Bay of Whales, Antarctica,
New York, IGY Glaciol. Rep. Ser., IGY World Data Center A: Glaciology, American Geographical Society, New York, 3, 1–148, https://babel.hathitrust.org/cgi/pt?id=uc1.31822009569526&view=1up&seq=429&skin=2021 (last access: 23 June 2022), 1960. a
Zumberge, M. A., Elsberg, D. H., Harrison, W. D., Husmann, E., Morack, J. L.,
Pettit, E. C., and Waddington, E. D.: Measurement of vertical strain and
velocity at Siple Dome, Antarctica, with optical sensors, J.
Glaciol., 48, 217–225, https://doi.org/10.3189/172756502781831421, 2002. a, b
Zwinger, T., Greve, R., Gagliardini, O., Shiraiwa, T., and Lyly, M.: A full
Stokes-flow thermo-mechanical model for firn and ice applied to the
Gorshkov crater glacier, Kamchatka, Ann. Glaciol., 45, 29–37,
https://doi.org/10.3189/172756407782282543, 2007. a
Short summary
Old snow (denoted as firn) accumulates in the interior of ice sheets and gets densified into glacial ice. Typically, this densification is assumed to only depend on temperature and accumulation rate. However, it has been observed that stretching of the firn by horizontal flow also enhances this process. Here, we show how to include this effect in classical firn models. With the model we confirm that softening of the firn controls firn densification in areas with strong horizontal stretching.
Old snow (denoted as firn) accumulates in the interior of ice sheets and gets densified into...