Articles | Volume 16, issue 7
https://doi.org/10.5194/tc-16-2683-2022
https://doi.org/10.5194/tc-16-2683-2022
Research article
 | 
08 Jul 2022
Research article |  | 08 Jul 2022

Modeling enhanced firn densification due to strain softening

Falk M. Oraschewski and Aslak Grinsted

Related authors

Layer-optimized SAR processing with a mobile phase-sensitive radar for detecting the deep englacial stratigraphy of Colle Gnifetti, Switzerland/Italy
Falk M. Oraschewski, Inka Koch, M. Reza Ershadi, Jonathan Hawkins, Olaf Eisen, and Reinhard Drews
EGUsphere, https://doi.org/10.5194/egusphere-2023-2731,https://doi.org/10.5194/egusphere-2023-2731, 2023
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Physics
Failure strength of glacier ice inferred from Greenland crevasses
Aslak Grinsted, Nicholas Mossor Rathmann, Ruth Mottram, Anne Munck Solgaard, Joachim Mathiesen, and Christine Schøtt Hvidberg
EGUsphere, https://doi.org/10.5194/egusphere-2023-1957,https://doi.org/10.5194/egusphere-2023-1957, 2023
Short summary
Grain growth of natural and synthetic ice at 0 °C
Sheng Fan, David J. Prior, Brent Pooley, Hamish Bowman, Lucy Davidson, David Wallis, Sandra Piazolo, Chao Qi, David L. Goldsby, and Travis F. Hager
The Cryosphere, 17, 3443–3459, https://doi.org/10.5194/tc-17-3443-2023,https://doi.org/10.5194/tc-17-3443-2023, 2023
Short summary
Ice fabrics in two-dimensional flows: beyond pure and simple shear
Daniel H. Richards, Samuel S. Pegler, and Sandra Piazolo
The Cryosphere, 16, 4571–4592, https://doi.org/10.5194/tc-16-4571-2022,https://doi.org/10.5194/tc-16-4571-2022, 2022
Short summary
Polarimetric radar reveals the spatial distribution of ice fabric at domes and divides in East Antarctica
M. Reza Ershadi, Reinhard Drews, Carlos Martín, Olaf Eisen, Catherine Ritz, Hugh Corr, Julia Christmann, Ole Zeising, Angelika Humbert, and Robert Mulvaney
The Cryosphere, 16, 1719–1739, https://doi.org/10.5194/tc-16-1719-2022,https://doi.org/10.5194/tc-16-1719-2022, 2022
Short summary
Geothermal heat flux from measured temperature profiles in deep ice boreholes in Antarctica
Pavel Talalay, Yazhou Li, Laurent Augustin, Gary D. Clow, Jialin Hong, Eric Lefebvre, Alexey Markov, Hideaki Motoyama, and Catherine Ritz
The Cryosphere, 14, 4021–4037, https://doi.org/10.5194/tc-14-4021-2020,https://doi.org/10.5194/tc-14-4021-2020, 2020

Cited articles

Alley, K. E., Scambos, T. A., Anderson, R. S., Rajaram, H., Pope, A., and Haran, T. M.: Continent-wide estimates of Antarctic strain rates from Landsat 8-derived velocity grids, J. Glaciol., 64, 321–332, https://doi.org/10.1017/jog.2018.23, 2018. a
Alley, R. B.: Firn densification by grain-boundary sliding: A first model, J. Phys. Colloq., 48, C1-249–C1-256, https://doi.org/10.1051/jphyscol:1987135, 1987. a, b, c
Alley, R. B. and Bentley, C. R.: Ice-core analysis on the Siple Coast of West Antarctica, Ann. Glaciol., 11, 1–7​​​​​​​, https://doi.org/10.3189/S0260305500006236, 1988. a, b, c, d
Arnaud, L., Barnola, J. M., and Duval, P.: Physical modeling of the densification of snow/firn and ice in the upper part of polar ice sheets, in: Physics of ice core records, pp. 285–305, Hokkaido University Press, http://hdl.handle.net/2115/32472 (last access: 22 June 2020​​​​​​​), 2000. a, b
Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.: In situ measurements of Antarctic snow compaction compared with predictions of models, J. Geophys. Res., 115, F03011, https://doi.org/10.1029/2009JF001306, 2010. a, b
Download
Short summary
Old snow (denoted as firn) accumulates in the interior of ice sheets and gets densified into glacial ice. Typically, this densification is assumed to only depend on temperature and accumulation rate. However, it has been observed that stretching of the firn by horizontal flow also enhances this process. Here, we show how to include this effect in classical firn models. With the model we confirm that softening of the firn controls firn densification in areas with strong horizontal stretching.