Articles | Volume 16, issue 4
https://doi.org/10.5194/tc-16-1447-2022
https://doi.org/10.5194/tc-16-1447-2022
Research article
 | 
22 Apr 2022
Research article |  | 22 Apr 2022

Convolutional neural network and long short-term memory models for ice-jam predictions

Fatemehalsadat Madaeni, Karem Chokmani, Rachid Lhissou, Saeid Homayouni​​​​​​​, Yves Gauthier, and Simon Tolszczuk-Leclerc

Related authors

Forest Change Mapping using Multi-Source Satellite SAR, Optical, and LiDAR Remote Sensing Data
Benyamin Hosseiny, Mahdieh Zaboli, and Saeid Homayouni
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-2024, 163–168, https://doi.org/10.5194/isprs-annals-X-4-2024-163-2024,https://doi.org/10.5194/isprs-annals-X-4-2024-163-2024, 2024
Evaluation of Polarimetric SAR Despeckling Methods for Crop Classification from RCM Compact Polarimetry Data
Ramin Farhadiani and Saeid Homayouni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-4-2024, 17–23, https://doi.org/10.5194/isprs-archives-XLVIII-M-4-2024-17-2024,https://doi.org/10.5194/isprs-archives-XLVIII-M-4-2024-17-2024, 2024
WHEAT BIOMASS ESTIMATION FROM UAV IMAGERY USING AN ENSEMBLE LEARNING APPROACH WITH BAYESIAN OPTIMIZATION
F. Moradi, A. Zarei, S. Ranjbar, and S. Homayouni
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-W1-2022, 515–522, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-515-2023,https://doi.org/10.5194/isprs-annals-X-4-W1-2022-515-2023, 2023
MEASURING SPATIAL ACCESSIBILITY TO HEALTHCARE FACILITIES IN ISFAHAN METROPOLITAN AREA IN IRAN
H. Rabiei-Dastjerdi, S. Mohammadi, R. Samouei, M. Kazemi, S. Matthews, G. McArdle, S. Homayouni, B. Kiani, and R. Sadeghi
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-W1-2022, 623–630, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-623-2023,https://doi.org/10.5194/isprs-annals-X-4-W1-2022-623-2023, 2023
IDENTIFYING SUITABLE LOCATIONS FOR MANGROVE PLANTATION USING GEOSPATIAL INFORMATION SYSTEM AND REMOTE SENSING
R. Sahraei, A. Ghorbanian, Y. Kanani-Sadat, S. Jamali, and S. Homayouni
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-W1-2022, 669–675, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-669-2023,https://doi.org/10.5194/isprs-annals-X-4-W1-2022-669-2023, 2023

Cited articles

Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J.: Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning, Nat. Biotechnol., 33, 831–838, 2015. 
Althoff, D., Rodrigues, L. N., and Bazame, H. C.: Uncertainty quantification for hydrological models based on neural networks: the dropout ensemble, Stoch. Env. Res. Risk A., 35, 1051–1067, 2021. 
Anaconda Software Distribution​​​​​​​: Anaconda Documentation, Version 2-2.4,​ https://docs.anaconda.com/ (last access: 10 February 2022)​​​​​, 2016. 
Apaydin, H., Feizi, H., Sattari, M. T., Colak, M. S., Shamshirband, S., and Chau, K. W.: Comparative analysis of recurrent neural network architectures for reservoir inflow forecasting, Water, 12, 1500, https://doi.org/10.3390/w12051500, 2020. 
Barnes-Svarney, P. L. and Montz, B. E.: An ice jam prediction model as a tool in floodplain management, Water Resour. Res., 21, 256–260, 1985. 
Download
Short summary
We developed three deep learning models (CNN, LSTM, and combined CN-LSTM networks) to predict breakup ice-jam events to be used as an early warning system of possible flooding in rivers. In the models, we used hydro-meteorological data associated with breakup ice jams. The models show excellent performance, and the main finding is that the CN-LSTM model is superior to the CNN-only and LSTM-only networks in both training and generalization accuracy.
Share