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Abstract. In cold regions, ice jams frequently result in se-
vere flooding due to a rapid rise in water levels upstream
of the jam. Sudden floods resulting from ice jams threaten
human safety and cause damage to properties and infras-
tructure. Hence, ice-jam prediction tools can give an early
warning to increase response time and minimize the possi-
ble damages. However, ice-jam prediction has always been
a challenge as there is no analytical method available for
this purpose. Nonetheless, ice jams form when some hydro-
meteorological conditions happen, a few hours to a few days
before the event. Ice-jam prediction can be addressed as a
binary multivariate time-series classification. Deep learning
techniques have been widely used for time-series classifi-
cation in many fields such as finance, engineering, weather
forecasting, and medicine. In this research, we successfully
applied convolutional neural networks (CNN), long short-
term memory (LSTM), and combined convolutional–long
short-term memory (CNN-LSTM) networks to predict the
formation of ice jams in 150 rivers in the province of Quebec
(Canada). We also employed machine learning methods in-
cluding support vector machine (SVM), k-nearest neighbors
classifier (KNN), decision tree, and multilayer perceptron
(MLP) for this purpose. The hydro-meteorological variables
(e.g., temperature, precipitation, and snow depth) along with
the corresponding jam or no-jam events are used as model in-
puts. Ten percent of the data were excluded from the model
and set aside for testing, and 100 reshuffling and splitting it-
erations were applied to 80 % of the remaining data for train-
ing and 20 % for validation. The developed deep learning
models achieved improvements in performance in compar-
ison to the developed machine learning models. The results

show that the CNN-LSTM model yields the best results in
the validation and testing with F1 scores of 0.82 and 0.92,
respectively. This demonstrates that CNN and LSTM models
are complementary, and a combination of both further im-
proves classification.

1 Introduction

Predicting ice-jams gives an early warning of possible flood-
ing events, but there is no analytical solution to predict
these events due to the complex interactions between the
hydro-meteorological variables (e.g., temperature, precipita-
tion, snow depth, and solar radiation) involved. To date, a
small number of empirical and statistical prediction methods
such as threshold methods, multi-regression models, logistic
regression models, and discriminant function analysis have
been developed for ice jams (Barnes-Svarney and Montz,
1985; Mahabir et al., 2006; Massie et al., 2002; White, 2003;
White and Daly, 2002; Zhao et al., 2012). However, these
methods are site-specific and have high rates of false-positive
errors (White, 2003). The numerical models developed for
ice-jam prediction – e.g., ICEJAM (Flato and Gerard, 1986;
see Carson et al., 2011), RIVJAM (Beltaos, 1993), HEC-
RAS (Brunner, 2002), ICESIM (Carson et al., 2003 ), and
RIVICE (Lindenschmidt, 2017) – have several limitations.
More particularly, the mathematical formulations used in
these models are complex and need many parameters, which
are often unavailable as they are challenging to measure
in ice conditions. The subsequent simplifications necessary
to model application decrease model accuracy (Shouyu and
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Honglan, 2005). A detailed overview of the previous models
for ice-jam prediction based on hydro-meteorological data is
presented in Madaeni et al. (2020).

Prediction of ice-jam occurrence can be considered as
a binary multivariate time-series classification (TSC) prob-
lem when the time series of various hydro-meteorological
variables can be used to classify jam or no-jam events.
Time-series classification (particularly multivariate) has been
widely used in various fields, including biomedical engineer-
ing, clinical prediction, human activity recognition, weather
forecasting, and finance. Multivariate time series provide
more patterns and improve classification performance com-
pared to univariate time series (Zheng et al., 2016). Time-
series classification is one of the most challenging problems
in data mining and machine learning.

Most existing TSC methods are feature-based, distance-
based, or ensemble methods (Cui et al., 2016). Feature ex-
traction is challenging due to the difficulty of handcrafting
useful features to capture intrinsic characteristics from time-
series data (Karim et al., 2019a; Zheng et al., 2014). Hence,
distance-based methods work better in TSC (Zheng et al.,
2014). Among the hundreds of methods developed for TSC,
the leading classifier with the best performance was an en-
semble nearest neighbor approach with dynamic time warp-
ing (DTW) (Fawaz et al., 2019a; Karim et al., 2019a).

In the k-nearest neighbors (KNN) classifier, the test in-
stance is classified by the majority vote of its k-nearest neigh-
bors in the training dataset. The entire dataset is necessary
to make a prediction based of KNN, which requires a lot of
processing memory. Hence, it is computationally expensive
and time-consuming when the database is large. It is also
sensitive to irrelevant features and data scale. Furthermore,
the number of neighbors included in the algorithm should
be carefully selected. The KNN classifier is very challenging
to be used for multivariate TSC. The dynamic time warping
approach is a robust alternative for Euclidean distance (the
most widely used time-series distance measure) to measure
the similarity between two time series by searching for an op-
timal alignment (minimum distance) between them (Zheng et
al., 2016). However, the combined KNN with DTW is time-
consuming and inefficient for long multivariate time series
(Lin et al., 2012; Zheng et al., 2014). Traditional classifi-
cation and data mining algorithms developed for TSC have
high computational complexity or low prediction accuracy.
This is due to the size and inherent complexity of time series,
seasonality, noise, and feature correlation (Lin et al., 2012).

There are some machine learning methods available for
TSC such as KNN and support vector machine (SVM). How-
ever, the focus of this research is on the deep learning models
that have greatly improved sequence classification and that
perform well with multivariate TSC. Deep learning methods
work with 2-D multivariate time series, and their deeper ar-
chitecture could further improve classification especially for
complex problems. This explains why deep learning methods
generally have more accurate and robust results than other

currently used methods (Wu et al., 2018). However, their
training is more time consuming and their interpretation is
more difficult.

Deep learning involves neural networks that use multi-
ple layers where nonlinear transformation is used to ex-
tract higher-level features from the input data. Although deep
learning has recently shown promising performance in vari-
ous fields such as image and speech recognition, document
classification, and natural language processing, only a few
studies were dedicated to using deep learning for TSC (Gu
et al., 2018; Fawaz et al., 2019a). Various studies show that
deep neural networks significantly outperform the ensemble
nearest neighbor with DTW (Fawaz et al., 2019a). The main
benefit of deep learning networks is automatic feature ex-
traction, which reduces the need for expert knowledge and
removes engineering bias during classification as the proba-
bilistic decision (e.g., classification) is taken by the network
(Fawaz et al., 2019b).

The most widely used deep neural networks for TSC are
multi-layer perceptron (MLP; i.e., fully connected deep neu-
ral networks), convolutional neural networks (CNNs), and
long short-term memory networks (LSTM). The application
of CNNs for TSC has recently become increasingly popu-
lar, and different types of CNNs are being developed with
superior accuracy for this purpose (Cui et al., 2016). Zheng
et al. (2014, 2016) introduce a multi-channel deep convo-
lutional neural network (MC-DCNN) for multivariate TSC,
where each variable (i.e., univariate time series) is trained
individually to extract features and finally concatenated us-
ing an MLP to perform classification (Fig. 1). The authors
showed that their model achieves a state-of-the-art perfor-
mance in terms of efficiency and accuracy on a challenging
dataset. The drawback of their model and similar architec-
tures (e.g., Devineau et al., 2018a) is that they do not capture
the correlation between variables as the feature extraction is
carried out separately for each variable.

Brunel et al. (2019) present CNNs adapted for TSC in
cosmology using 1-D filters to extract features from each
channel over time and a convolution in depth to capture the
correlation between the channels. They compared the results
from LSTMs with those from CNNs and demonstrated that
CNNs had better results. Nevertheless, both deep learning
approaches are very promising.

The combination of CNNs and LSTM units has already
yielded promising results in problems requiring temporal in-
formation classification, such as human activity recognition
(Li et al., 2017; Mutegeki and Han, 2020), text classifica-
tion (Luan and Lin, 2019; She and Zhang, 2018; Umer et
al., 2020), video classification (Lu et al., 2018; and Wu et
al., 2015), sentiment analysis (Ombabi et al., 2020; Sosa,
2017; Wang et al., 2016, 2019), typhoon formation forecast-
ing (Chen et al., 2019), and arrhythmia diagnosis (Oh et al.,
2018). In this architecture, convolutional operations capture
features and LSTMs capture time dependencies on the ex-
tracted features. Ordóñez and Roggen (2016) propose a deep
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Figure 1. A two-stage MC-DCNN architecture for activity classification. This architecture consists of a three-channel input, two filter layers,
two pooling layers, and two fully connected layers (after Zheng et al., 2014).

convolutional LSTM model (DeepConvLSTM) for activity
recognition (Fig. 2). Their results are compared to the results
from standard feedforward units showing that DeepConvL-
STM reaches a higher F1 score and better decision bound-
aries for classification. Furthermore, they noticed that the
LSTM model is also promising with relatively small datasets.
Furthermore, LSTMs perform better with longer temporal
dynamics, whereas the convolution filters can only capture
the temporal dependencies dynamics within the length of the
filter.

The project presented in this paper is part of a greater
project called DAVE, which aims at developing a tool for
regional ice-jam watches and warnings, based on the inte-
gration of three aspects: current ice cover conditions, hydro-
meteorological patterns associated with breakup ice jams,
and channel predisposition to ice-jam formation. The outputs
will be used to develop an ice-jam monitoring and warning
module that will transfer the knowledge to the end users man-
aging ice-jam consequences.

The objective of this research is to develop deep learn-
ing models to predict breakup ice-jam events to be used as
an early warning system of possible flooding. While most
TSC research in deep learning is performed on 1-D channels
(Hatami et al., 2018), our approach consists of using deep
learning frameworks for multivariate TSC, applied to ice-jam
prediction. Through our comprehensive literature review, we
noticed that CNN (e.g., Brunel et al., 2019; Cui et al., 2016;
Devineau et al., 2018b; Kashiparekh et al., 2019; Nosratabadi
et al., 2020; Yan et al., 2020; Yang et al., 2015; Yi et al., 2017;

Zheng et al., 2016), LSTM (e.g., Fischer and Krauss, 2018;
Lipton et al., 2015; Nosratabadi et al., 2020; Torres et al.,
2021), and a combined CNN-LSTM (e.g., Karim et al., 2017;
Livieris et al., 2020; Ordóñez and Roggen, 2016; Sainath et
al., 2015; Xingjian et al., 2015) have been widely used for
TSC. Numerous applications of CNN, LSTM, and their hy-
brid versions are currently used in the field of hydrology (Al-
thoff et al., 2021; Apaydin et al., 2020; Barzegar et al., 2020,
2021; Kratzert et al., 2018; Wunsch et al., 2021; Zhang et
al., 2018). Although deep learning methods seem promising
to address the requirements of ice-jam predictions, none of
these methods yet have been explored for ice-jam prediction.

Although machine learning methods have been widely
used in time-series forecasting of hydro-meteorological data,
they have been used less frequently in the prediction of ice
jams (Graf et al., 2022). Semenova et al. (2020) used KNN to
predict ice jams using hydro-meteorological variables such
as precipitation, snow depth, water level, water discharge,
and temperature. They developed their model with data col-
lected from the confluence of the Sukhona River and Yug
River in Russia between 1960 and 2016 and achieved accu-
racy of 82 %. Sarafanov et al. (2021) presented an ensemble-
based model of machine learning methods and a physi-
cal snowmelt-runoff model to account for the advantages
of physical models (interpretability) and machine learning
models (low forecasting error). Their hybrid models pro-
posed an automated approach for short-term flood forecast-
ing in the Lena River, Poland, using hydro-meteorological
variables (e.g., maximum water level, mean daily water and
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Figure 2. Architecture of the DeepConvLSTM framework used for activity recognition (after Ordóñez and Roggen, 2016).

air temperature, mean daily water discharge, relative humid-
ity, snow depth, and ice thickness). They applied an auto-
mated machine learning approach based on the evolutionary
algorithm to automatically identify machine learning mod-
els, tune hyperparameters, and combine stand-alone mod-
els into ensembles. Their model was validated on 10 hydro-
gauges for 2 years, showing that the hybrid model is much
more efficient than stand-alone models with a Nash–Sutcliffe
efficiency coefficient of 0.8. Graf et al. (2022) developed
an MLP and extreme gradient boosting model to predict
ice jams with data from 1983 to 2013, in the Warta River,
Poland. They employed water and air temperatures, river
flow, and water level as inputs to their models, showing
that both machine learning methods provide promising re-
sults. In Canada, De Coste et al. (2021) developed a hybrid
model including a number of machine learning models (e.g.,
KNN, SVM, random forest, and gradient boosting) for the
St. John River (New Brunswick). The most successful en-
semble model combining six different member models was
produced with a prediction accuracy of 86 % over 11 years
of record.

We developed three deep learning models – a CNN, an
LSTM, and a combined CNN-LSTM for ice-jam predictions
– and compared the results. The previous studies show that
these models successfully capture features, the correlation
between features (through convolution units), and time de-
pendencies (through memory units), which are subsequently
used for TSC. The combined CNN-LSTM can reduce errors
by compensating for the internal weaknesses of each model.
In the CNN-LSTM model, CNNs capture features, and then
the LSTMs identify time dependencies on the captured fea-
tures.

Furthermore, we also developed some machine learning
methods as simpler methods for ice-jam prediction. And
their results are compared with those obtained from the deep
learning models.

2 Materials and methods

2.1 Data and study area

It is known that specific hydro-meteorological conditions
lead to ice-jam occurrence (Turcotte and Morse, 2015; and
White, 2003). For instance, breakup ice jams occur when a
period of intense cold is followed by a rapid peak discharge
resulting from spring rainfall and snowmelt runoff (Massie
et al., 2002). Accumulated freezing degree days (AFDDs)
can be used as a proxy for intense cold periods. Sudden
spring runoff increase, however, is not often available at
the jam location and can be represented by liquid precip-
itation and snow depth a few days prior to ice-jam occur-
rence (Zhao et al., 2012). Prowse and Bonsal (2004) and
Prowse et al. (2007) assessed various hydroclimatic expla-
nations for river ice freeze-up and breakup, concluding that
shortwave radiation is the most critical factor influencing the
mechanical strength of ice and consequently the possibility
of breakup ice jams to occur. Turcotte and Morse (2015) ex-
plain that accumulated thawing degree day (ATDD), an indi-
cator of warming periods, partially covers the effect of short-
wave radiation. In previous studies addressing ice-jam and
breakup predictions, discharge and changes in discharge, wa-
ter level and changes in water level, AFDD, ATDD, precip-
itation, solar radiation, heat budget, and snowmelt or snow-
pack are the most frequently used variables (Madaeni et al.,
2020).

The inputs used in this study are historical ice-jam or no-
ice-jam occurrence (Fig. 3) as well as hydro-meteorological
variables from 150 rivers in Quebec, namely liquid pre-
cipitation (mm), minimum and maximum temperature (◦C),
AFDD (from 1 August of each year; ◦C), ATDD (from 1 Jan-
uary of each year; ◦C), snow depth (cm), and net radiation
(W m−2). The net solar radiation, which represents the total
energy available to influence the climate, is calculated as the
difference between incoming and outgoing energy. If the me-
dian temperature is greater than 1, precipitation is considered
to be liquid. The statistics of hydro-meteorological data used
in the models are presented in Table 1. The source, time pe-
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riod, and spatial resolution of the input variables are shown
in Table 2.

The ice-jam database was provided by the provincial pub-
lic safety department (Ministère de la sécurité publique du
Québec; MSPQ; Données Québec, 2021) for 150 rivers,
mainly in the St. Lawrence River basin. The database comes
from digital or paper events reported by local authorities un-
der the jurisdiction of the MSPQ from 1985 to 2014. More-
over, other data used to build this database were provided by
field observations collected by the Vigilance/Flood applica-
tion from 2013 to 2019. It contains 995 recorded jam events
that are not validated and contain many inaccuracies, mainly
in the toponymy of the rivers, location, dating, and jam event
redundancy.

The names of the watercourse of several recorded jams are
not given, are wrong, or are misspelled. The toponymy of the
rivers was corrected using the National Hydrographic Net-
work (NHN; Government of Canada, 2021b), the GeoBase of
the Quebec Hydrographic Network (Government of Canada,
2021a), and the Toporama Web Map Service (Government of
Canada, 2020) of the Sector of Earth Sciences. Other manual
corrections had to be carried out on ice-jam data. For exam-
ple, ice jam location is sometimes placed on the riverbanks
at a small distance (less than 20 m) from the river polygon.
In this case, the location of the ice jam is manually moved
inside the river polygon. In other cases, the ice-jam point is
placed further on the flooded shore at a distance between 20
and 200 m from the true ice jam. This was corrected based on
images with very high spatial resolution, based on the sinu-
osity and the narrowing of the river, the history of ice jams at
the site, and press archives. In addition, some ice jams were
placed too far from the river due to wrong coordinates in the
database. A single-digit correction in longitude or latitude re-
turned the jam to its exact location. There are certain cases
where the date of jam formation is verified by searching press
archives, notably when the date of formation is missing or
several jams with the same dates and close locations in a sec-
tion of a river are present.

The ice-jam database contains many duplicates. This re-
dundancy can be explained by the merging of two databases,
a double entry during ice-jam monitoring, or numerous
recordings for an ice jam that lasted for several days. To re-
mediate this, the duplicates were removed from the database.
The corrected ice-jam database contains 850 jams for 150
rivers, mainly in southern Quebec (Fig. 3). Ice jams formed
in November and December (freeze-up jams) are removed
from the model since the processes involved are different
from breakup ice jams (included from 15 January). The fi-
nal breakup ice-jam database used in this study includes 504
jam events.

2.2 Machine learning models for TSC

The most common machine learning techniques used for
TSC are SVM (Rodríguez and Alonso, 2004; Xing and

Keogh, 2010), KNN (Li et al., 2013; Xing and Keogh, 2010),
decision tree (DT; Brunello et al., 2019; Jović et al., 2012),
and multilayer perceptron (MLP; del Campo et al., 2021;
Nanopoulos et al., 2001). These models and their applica-
tions in TSC are beyond the scope of this study and will not
be further addressed.

We developed the mentioned machine learning methods
and compared their results with those of deep learning mod-
els. After some trials and errors, the parameters that are
changed from the default values for each machine learning
model are as follows. We developed an SVM with a poly-
nomial kernel with a degree of 5 that can distinguish curved
or nonlinear input space. The KNN is used with three neigh-
bors used for classification. The decision tree model is ap-
plied with all the default values. The shallow MLP is used
with the “lbfgs” solver (which can converge faster and per-
form better for small datasets), alpha of 1× 10−5, and three
layers with seven neurons in each layer.

2.3 Deep learning models for TSC

The most common and popular deep neural networks for
TSC are MLPs, CNNs, and LSTMs (Brownlee, 2018b; and
Torres et al., 2021). Although it is a very powerful approach,
MLP networks are limited by the fact that each input (i.e.,
time-series element) and output are treated independently,
which means that the temporal or space information is lost
(Lipton et al., 2015). Hence, an MLP needs some temporal
information in the input data to model sequential data, such
as time series (Ordóñez and Roggen, 2016). In this regard,
recurrent neural networks (RNNs) are specifically adapted to
sequence data through the direct connections between indi-
vidual layers (Jozefowicz et al., 2015). Recurrent neural net-
works perform the same repeating function with a straight-
forward structure, e.g., a single tanh (hyperbolic tangent)
layer, for every input of data (xt), and the inputs are related
to each other within their hidden internal state, which allows
it to learn the temporal dynamics of sequential data (Fig. 4).

Recurrent neural networks are rarely used in TSC due to
their significant limitations: RNNs mostly predict outputs for
each time-series element; they are sensitive to the first exam-
ples seen, and it is challenging to capture long-term depen-
dencies due to vanishing gradients, exploding gradients, and
their complex dynamics (Devineau et al., 2018b; Fawaz et
al., 2019b).

Long short-term memory RNNs are developed to improve
the performance of RNNs by integrating a memory compo-
nent to model long-term dependencies in time-series prob-
lems (Brunel et al., 2019; Karim et al., 2019a). Long short-
term memory networks do not have the problem of explod-
ing gradients. The LSTMs have four interacting neural net-
work layers in a very special way (Fig. 5). An LSTM has
three sigmoid (σ ) layers to control how much of each com-
ponent should be let through by outputting numbers between
zero and one. The input to an LSTM goes through three gates
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Table 1. Statistics of hydro-meteorological variables used in the models.

Statistic Liquid Minimum Maximum Net radiation ATDD AFDD Snow depth
precipitation (mm) temperature (◦C) temperature (◦C) (W m−2) (◦C) (◦C) (cm)

Minimum 0.00 −40.00 −25.97 −67.77 0.00 −2109.33 0.00
Maximum 50.87 12.05 27.48 222.69 280.82 −35.41 121.86
Mean 1.04 −9.41 0.98 59.75 8.83 −898.48 15.99
Median 0.00 −7.73 1.68 59.41 1.27 −890.74 11.50

Table 2. Source, duration, and spatial resolution of hydro-meteorological data used in the models.

Data Source Duration Spatial resolution

Min and max temperature∗ Daily Surface Weather Data (Daymet; Thornton
et al., 2020)

1979–2019 1 km

Liquid precipitation Canadian Precipitation Analysis (CaPA; Mah-
fouf et al., 2007)

2002–2019 10–15 km

Liquid precipitation North American Regional Reanalysis (NARR;
Mesinger et al., 2006)

1979–2001 30 km

Infrared radiation emitted by
the atmosphere

North American Regional Reanalysis (NARR) 1979–2019 30 km

Infrared radiation emitted from
the surface

North American Regional Reanalysis (NARR) 1979–2019 30 km

Snow depth North American Regional Reanalysis (NARR) 1979–2019 30 km

∗ The average was used to derive the AFDD and the ATDD.

(“forget”, “input”, and “output” gates) that control the opera-
tion performed on each LSTM block (Ordóñez and Roggen,
2016). The first step is the “forget gate” layer that gets the
output of the previous block (ht−1), the input for the current
block (Xt ), and the memory of the previous block (Ct − 1)
and gives a number between 0 and 1 for each number in the
cell state (Ct − 1; Understanding LSTM Networks, 2021).
The second step is called the “input gate” with two parts, a
sigmoid layer that decides which values to be updated and a
tanh layer that creates new candidate values for the cell state.
The new and old memories are then be combined and control
how much the new memory should influence the old mem-
ory. The last step (output gate) gives the output by applying
a sigmoid layer deciding how much new cell memory goes
to output and multiplies it by tanh applied to the cell state
(resulting in values between −1 and 1).

Recently, convolutional neural networks challenged the
assumption that RNNs (e.g., LSTMs) have the best perfor-
mance when working with sequences. Convolutional NNs
perform well when processing sequential data such as
speech recognition and sentence classification, similar to
TSC (Fawaz et al., 2019b).

Convolutional NNs are the most widely used deep learn-
ing methods in TSC problems (Fawaz et al., 2019b). They
learn spatial features from raw input time series using fil-

ters (Fawaz et al., 2019b). Convolutional NNs are robust and
need a relatively small amount of training time compared to
RNNs or MLPs. They work best for extracting local infor-
mation and reducing the complexity of the model.

A CNN is a kind of neural network with at least one con-
volutional (or filter) layer. A CNN usually involves several
convolutional layers, activation functions, and pooling lay-
ers for feature extraction, followed by dense layers used as
classifiers (Devineau et al., 2018b). The reason to use a se-
quence of filters is to learn various features from time series
for TSC. A convolutional layer consists of a set of learnable
filters that compute dot products between local regions in the
input and corresponding weights. With high-dimensional in-
puts, it is impractical to connect subsequent neurons to all
the neurons of the previous layer. Therefore, each neuron in
CNNs is connected to only a local region of the input – re-
ceptive field – whose size is equivalent to that of the filter
(Fig. 6). This feature reduces the number of parameters by
limiting the number of connections between neurons in dif-
ferent layers. The input is first convolved with a learned fil-
ter, and then an element-wise nonlinear activation function is
applied to the convolved results (Gu et al., 2018). The pool-
ing layer performs a downsampling operation such as maxi-
mum or average, reducing the spatial dimension. One of the
most powerful features of CNNs is called weight or param-
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Figure 3. Study area and historic ice-jam locations recorded in Quebec from 1985 to 2017.

Figure 4. An RNN with a single tanh layer, where A is a chunk of
the neural network, x is input data, and h is output data.

eter sharing, where all neurons share filters (weights) in a
particular feature map (Fawaz et al., 2019b). This allows us
to reduce the number of parameters.

2.4 Model libraries

In an Anaconda (Anaconda Software Distribution, 2016) en-
vironment, Python is implemented to develop CNN, LSTM,
and CNN-LSTM networks for TSC. To build and train net-
works, the networks are implemented in Theano (Bergstra et
al., 2010) using the Lasagne library (Dieleman et al., 2015).
Other core libraries used for importing, preprocessing, train-
ing data, and visualization of results include Pandas (Reback
et al., 2020), NumPy (Harris et al., 2020), scikit-learn (Pe-
dregosa et al., 2011), and Matplotlib. PyLab (Hunter, 2007).
The Spyder (Spyder-Documentation, 2009) package of Ana-
conda can be used as an interface; otherwise, the command
window can be used without any interface.

To develop machine learning models, scikit-learn machine
learning libraries are used except for NumPy, Pandas, and
scikit-learn preprocessing libraries.

2.5 Preprocessing

The data are comprised of variables with varying scales, and
the machine-learning algorithms can benefit from rescaling
the variables to all have one single scale. Scikit-learn (Pe-
dregosa et al., 2011) is a free library for machine learning in
Python that can be used to preprocess data. We examined
scikit-learn MinMaxScaler (scaling each variable between 0
and 1), Normalizer (scaling individual samples to the unit
norm), and StandardScaler (transforming to zero mean and
unit variance separately for each feature). The results show
that MinMaxScaler (Eq. 1) leads to the most accurate results.
Validation data rescaling is carried out based on minimum
and maximum values of the train data.

Xscaled =
X−Xmin

Xmax−Xmin
(1)

For each jam or no-jam event, the data from 15 d preced-
ing the event were used to predict the event on the 16th day.
A balanced dataset with the same number of jam and no-
jam events (1008 small sequences) was generated, prevent-
ing the model from becoming biased to jam or no-jam events.
The hydro-meteorological data related to no-jam events were
constructed by extracting data from the reaches of no-jam
records. Model generalizations were assessed by extracting
10 % of data for testing. With the remaining data, 80 % was
used for training and 20 % for validation. We used the Shuf-
fleSplit subroutine from the scikit-learn library, where the
database was randomly sampled during each reshuffling and
splitting iteration to generate training and validation sets. We
applied 100 reshuffling and splitting iterations for training
and validation. There are 726, 181, and 101 small sequences
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Figure 5. Structure of LSTM block with four interacting layers.

Figure 6. Structure of a convolution layer including two sets of fil-
ters.

for training, validation, and testing, respectively, with the size
of (16, 7), 16 d of data for the seven variables.

2.6 Training

Training a deep neural network with an excellent general-
ization to new unseen inputs is challenging. As a bench-
mark, a CNN model with parameters and layers similar to
previous studies (e.g., Ordóñez and Roggen, 2016) is devel-
oped. The model shows underfitting or overfitting with vari-
ous architectures and parameters. To overcome underfitting,
deeper models and more nodes can be added to each layer;
however, overfitting is more challenging to resolve. The ice-
jam dataset for Quebec contains 1008 balanced sequence in-
stances (with a length of 16), which is considered to be a
small amount of data in the context of deep learning. Deep
learning models tend to overfit small datasets by memorizing
inputs rather than training. This is due to the fact that small
datasets may not appropriately describe the relationship be-
tween input and output spaces.

2.6.1 Overcome overfitting

There are various ways to resolve the problem of overfit-
ting, including acquiring more data, data augmentation (e.g.,
cropping, rotating, and noise injection), dropout (Srivastava
et al., 2014), early stopping, batch normalization (Ioffe and

Figure 7. Train and validation errors over epochs for CNN-LSTM
model with a noise layer.

Szegedy, 2015), and regularization. Acquiring more data is
not possible with ice-jam records. We added the Gaussian
noise layer (from the Lasagne library), where the noise val-
ues are Gaussian-distributed with zero mean and a standard
deviation of 0.1 to the input. The noise layers applied to the
CNN and LSTM models significantly overcome the overfit-
ting problem through data augmentation. However, the per-
formance of the CNN-LSTM model dramatically deterio-
rates when a noise layer is added (Fig. 7). Adding a noise
layer to other layers does not improve any of the developed
models for ice-jam prediction.

Early stopping is another efficient method that halts the
training procedure at a point where further training would
decrease training loss, but validation loss starts to increase.
Neural networks need a loss function to guide optimization
problem resolution. The loss function is similar to an objec-
tive function for process-based hydrological models. Among
the developed models, only LSTM needs early stopping at 40
epochs (Fig. 8). More detailed explanations about the meth-
ods that are used in this study to overcome overfitting (e.g.,
batch normalization and L2 regularization) can be found in
the Appendix.
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Figure 8. Train and validation errors over epochs for an LSTM
model showing overfitting after 40 epochs.

2.6.2 Model hyperparameters

Finding hyperparameter values has been challenging due to
the complex architecture of deep learning models and the
large number of parameters (Garbin et al., 2020). The best
model architecture was identified by assessing model per-
formance with different layers and parameters such as the
number of layers (noise, batch normalization, convolutional,
pooling, LSTM, dropout, and dense) as well as different
pooling sizes and strides, different batch sizes, various scal-
ing of data (standardization and normalization), various fil-
ter sizes, number of units in LSTM and dense layers, the
type of the activation functions, regularization and learning
rates, weight decay, and number of filters in convolutional
layers. Hyperparameters are optimized through manual trial
and error searches as grid search experiments suffer from
poor dimensional coverage in dimensions (Bergstra and Ben-
gio, 2012). Another reason is that manual experiments are
much easier to conduct and interpret when investigating the
effect of one hyperparameter of interest. The optimized hy-
perparameters are presented in Table 3. The most important
parameters of the models are explained below, and additional
information is available in the Appendix.

Number of layers

The depth of models is related to the sequence length
(Devineau et al., 2018a), as deeper networks need more data
to provide better generalization (Fawaz et al., 2019a). In pre-
vious studies focused on CNNs, there were usually one, two,
or three convolution stages (Zheng et al., 2014). We tried dif-
ferent numbers of CNN, LSTM, and dense layers, and the
best combination was obtained with three CNN layers, two
LSTM layers, and two dense layers. The sequence length in
this study is small (16), and model performance was not im-
proved by simply increasing depth.

Number and size of convolution filters

Data with more classes need more filters, and longer time
series need longer filters to capture longer patterns and con-
sequently to produce accurate results (Fawaz et al., 2019a).
However, longer filters significantly increase the number of
parameters and potential for overfitting small datasets, while
a small filter size risks poor performance. In this study, two
convolutional layers with 1-D filters of size (5, 1) and stride
of (1, 1) were used to capture temporal variation for each
variable separately. Furthermore, one convolutional layer
with 2-D filters of size (5, 3) and stride of (1, 1) was used
to capture the correlation between variables via depth-wise
convolution of input time series. A big stride might cause the
model to miss valuable data used in predicting and smooth-
ing out the noise in the time series. The layers in CNNs have
a bias for each channel, sharing across all positions in each
channel.

Adaptive learning rates

The adaptive learning rate decreases the learning rate and
consequently weights over each epoch. We tried different
base learning and decay rates for each model and found that
the learning rate significantly impacts the model’s perfor-
mance. Finally, we chose a base learning rate of 0.1, 0.01,
and 0.001 for LSTM, CNN, and CNN-LSTM, respectively.
A decay rate of 0.8 was used for CNN and CNN-LSTM and a
rate of 0.95 for the LSTM model. Table 4 shows the adaptive
learning rates for CNN, LSTM, and CNN-LSTM calculated
using Eq. (2) for each epoch.

adaptive learning rate= base learning rate× decayepoch (2)

The experiments show that the learning rate is the most crit-
ical parameter influencing the model performance. A small
learning rate can cause the loss function to get stuck in local
minima, and a large learning rate can result in oscillations
around global minima without reaching it.

Our CNN-LSTM model is deeper than the other two mod-
els, and deeper models are more prone to a vanishing gradi-
ent problem. To overcome the vanishing gradients, it is gen-
erally recommended to use lower learning rates, e.g., lower
than 1× 10−4. Interestingly, we found that our CNN-LSTM
model works better with lower learning rates than the other
two models.

2.6.3 Model evaluation

The network on the validation set is evaluated after each
epoch during training to monitor the training progress. Dur-
ing validation, all non-deterministic layers are switched to
deterministic. For instance, noise layers are disabled, and the
update step of the parameters is not performed.

The classification accuracy cannot appropriately represent
model performance for unbalanced datasets, as the model can
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Table 3. Common and selected values for different parameters of the models.

Parameter Common values Selected value Source

Mini-batch size 16, 32, 64 16 Bengio (2012); Devineau et al. (2018b);
Masters and Luschi (2018)

Number of convolution filters 32, 64, 128 128 Brownlee (2017);
Maggiori et al. (2017)

Filter size 3, 5, 7 (5, 1) and (5, 3) Devineau et al. (2018b);
Maggiori et al. (2017)

Number of LSTM units 32, 64, 128 128 Brownlee (2017); Karim et al. (2019b);
Ordóñez and Roggen (2016)

Number of dense layer units 16, 32, 128, 256 32 Karim et al. (2019a);
Livieris et al. (2020);
Fawaz et al. (2019b)

Momentum in SGD 0.5, 0.99, 0.9 0.9 Brownlee (2018a)

Table 4. The adaptive learning rate for 50 epochs.

Learning rate

Epochs CNN CNN-LSTM LSTM

1 0.008 8.00× 10−4 0.095
2 0.006 6.40× 10−4 0.09
3 0.005 5.12× 10−4 0.086
4 0.004 4.10×−4 0.081
– – –
– – –
40 1.30× 10−6 1.33× 10−7 0.013
– – –
50 1.40× 10−7 1.43× 10−8 –

show a high accuracy by biasing towards the majority class
in the dataset (Ordóñez and Roggen, 2016). While we built a
balanced dataset (with the same number of jam and no-jam
events), randomly selecting test data, shuffling the inputs,
and splitting data into train and validation sets can result in a
slightly unbalanced dataset. In our case, the number of jams
and no jams for train and validation and test sets is presented
in Table 5. Therefore, the F1 score (Eq. 3), which considers
each class equally important, is used to measure the accuracy
of binary classification. The F1 score, as a weighted average
of the precision (Eq. 4) and recall (Eq. 5), ranges between 0
and 1, where 0 is the worse score and 1 is the best. In Eqs. (4)
and (5), TP, FP, and FN are true positive, false positive, and
false negative, respectively.

Table 5. The number of jam and no-jam events used in the rain and
validation and test datasets.

Train and validation Test

Jam 456 48
No jam 451 53

F1= 2×
precision× recall
precision+ recall

(3)

Precision=
TP

TP+FP
(4)

Recall=
TP

TP+FN
(5)

Although the model accuracy is usually used to examine the
performance of deep learning models, the model size (i.e.,
number of parameters) provides a second metric, which rep-
resents required memory and calculations, to be compared
among models with the same accuracy (Garbin et al., 2020).

After training the model, the well-trained network param-
eters are saved to a file and are later used to test network
generalizations using the test dataset, composed of data that
are not used during training and validation.

2.7 Architecture of models

The final architecture of CNN, LSTM, and CNN-LSTM
models is presented in Figs. 9, 10, and 11, respectively. The
layers, their output shapes, and their number of parameters
are respectively presented in Tables 6, 7, and 8 for CNN,
LSTM, and CNN-LSTM models.

Convolutional NN models often include pooling layers to
reduce data complexity and dimensionality. However, it is
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Table 6. Layers, output shapes, and number of parameters for the
CNN model.

Layers Output shape Number of parameters

Input (16, 1, 16, 7) 0
GaussianNoise (16, 1, 16, 7) 0
Conv2D (16, 128, 16, 7) 640
BatchNorm (16, 128, 16, 7) 512
Nonlinearity (16, 128, 16, 7) 0
Conv2D (16, 128, 16, 7) 81 920
BatchNorm (16, 128, 16, 7) 512
Nonlinearity (16, 128, 16, 7) 0
Conv2D (16, 128, 16, 7) 245 888
MaxPool2D (16, 128, 5, 2) 0
Dense (16, 32) 40 992
Dense (16, 32) 1056
Softmax (16, 2) 66

Table 7. Layers, output shapes, and number of parameters for the
LSTM model.

Layers Output shape Number of parameters

Input (16, 1, 16, 7) 0
GaussianNoise (16, 1, 16, 7) 0
Dimshuffle (16, 16, 1, 7) 0
BatchNorm (16, 16, 1, 7) 64
LSTM (16, 16, 128) 70 272
BatchNorm (16, 16, 128) 64
Nonlinearity (16, 16, 128) 0
LSTM (16, 16, 128) 132 224
Reshape (256, 128) 0
Dense (256, 32) 4128
Dense (256, 32) 1056
Softmax (256, 2) 66
Reshape (16, 16, 2) 0
Slice (16, 2) 0

not always necessary for every convolutional layer to be fol-
lowed by a pooling layer in the time-series domain (Ordóñez
and Roggen, 2016). For instance, Fawaz et al. (2019a) do not
apply any pooling layers in their TSC models. We tried max-
pooling layers after different convolutional layers in CNN
and CNN-LSTM networks and found that a pooling layer
following only the last convolutional layer improves the per-
formance of both models. This can be due to subsampling
the time series and using time series with a length of 16 that
eliminates the need for decreased dimensionality.

3 Results and discussion

3.1 Weight initialization

Among all the methods available for weight initialization in
the Lasagne library, Glorot uniform (i.e., Glorot and Ben-

gio, 2010) and He initializations (He et al., 2015) are the
most popular initialization techniques to set the initial ran-
dom weights in convolutional layers. The results reveal that
in our case, these methods yield comparable F1 scores. How-
ever, the histograms of F1 scores reveal that Glorot uniform
yields slightly better results (Fig. 12).

3.2 Model evaluation

3.2.1 Learning curves and F1 scores

Line plots of the loss (i.e., learning curves), which are the
loss over each epoch, are widely used to assess model perfor-
mance in machine learning. Furthermore, line plots clearly
indicate common learning problems, such as underfitting and
overfitting. The learning curves for CNN, LSTM, and CNN-
LSTM models are presented in Fig. 13. The LSTM model
starts to overfit at epoch 40, so an early stopping is con-
ducted. CNN-LSTM performs better than the other two mod-
els, as its training loss is the lowest and is lower than its vali-
dation loss. Histograms of F1 scores (Fig. 14 and Table 9)
show that CNN-LSTM outperforms the other two models
since it results in the highest average and the highest mini-
mum F1 scores for validation (0.82 and 0.75, respectively).
Figure 13 shows that the training error of the CNN model is
lower than that of the LSTM model, indicating that it trained
more efficiently. However, it is not true for the validation er-
ror. The validation error is less than the training error in the
LSTM model because of the regularization methods used,
as LSTM models are often harder to regularize, agreeing with
previous studies (e.g., Devineau et al., 2018b).

The LSTM network is validated better than the CNN
model since its average and minimum F1 scores for valida-
tion are better than the CNN model (by 1 % and 32 %, re-
spectively), and also LSTM yielded no F1 scores below 0.74
(Fig. 14 and Table 9).

As shown in Fig. 13, training loss is higher than validation
loss in some of the results. There are some reasons explain-
ing that. Regularization reduces the validation loss at the ex-
pense of increasing training loss. Regularization techniques
such as the application of noise layers are only used during
training but not during validation, resulting in smoother and
usually better functions in validation. There is no noise layer
in CNN-LSTM model that could result in a lower training
error than the validation error. However, other regularization
methods such as L2 regularization are used in all the models,
including the CNN-LSTM model.

Furthermore, batch normalization uses the mean and vari-
ance of each batch during the training phase, whereas it uses
the mean and variance of the whole training dataset in the
validation phase. Additionally, training loss is averaged over
each epoch, while validation losses are calculated upon com-
pletion of each training epoch. Hence, the training loss in-
cludes error calculations with fewer updates.
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Figure 9. Architecture of the CNN model for ice-jam prediction (adapted after Ordóñez and Roggen, 2016).

Figure 10. Architecture of the LSTM model for ice-jam prediction (adapted after Ordóñez and Roggen, 2016).

Table 8. Layers, output shapes, and number of parameters for the
CNN-LSTM model.

Layers Output shape Number of parameters

Input (16, 1, 16, 7) 0
Conv2D (16, 128, 16, 7) 640
BatchNorm (16, 128, 16, 7) 512
Nonlinearity (16, 128, 16, 7) 0
Conv2D (16, 128, 16, 7) 81 920
BatchNorm (16, 128, 16, 7) 512
Nonlinearity (16, 128, 16, 7) 0
Conv2D (16, 128, 16, 7) 245 888
MaxPool2D (16, 128, 5, 2) 0
Dimshuffle (16, 5, 128, 2) 0
BatchNorm (16, 5, 128, 2) 20
LSTM (16, 5, 128) 197 760
BatchNorm (16, 5, 128) 20
Nonlinearity (16, 5, 128) 0
LSTM (16, 5, 128) 132 224
Reshape (80, 128) 0
Dense (80, 32) 4128
Dense (80, 32) 1056
Softmax (80, 2) 66
Reshape (16, 5, 2) 0
Slice (16, 2) 0

Table 9. F1 scores of the validation phase for CNN, LSTM, and
CNN-LSTM models with 100 random training–validation splits.

Model F1 score

mean max min

CNN 0.80 0.88 0.42
LSTM 0.81 0.87 0.74
CNN-LSTM 0.82 0.88 0.75

Table 10. F1 scores of the validation phase for SVM, DT, and KNN
and MLP models with 100 random training–validation splits.

Model F1 score

mean max min

SVM 0.76 0.82 0.69
DT 0.74 0.80 0.67
KNN 0.75 0.84 0.68
MLP 0.75 0.83 0.68

Among the developed machine learning models, SVM
shows the best validation performance (Fig. 15 and Ta-
ble 10). However, F1 scores of deep learning models are
much higher than those of machine learning models with
an average of 6 % higher F1 score resulting from the CNN-
LSTM model compared to the SVM model (Tables 9 and
10).
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Figure 11. Architecture of the CNN-LSTM model for ice-jam prediction (adapted after Ordóñez and Roggen, 2016).

Figure 12. Histograms of F1 score for CNN using He (a) and Glorot uniform (b) weight initialization with 100 random training–validation
splits.

3.2.2 Number of parameters and run time

The total number of parameters in CNN, LSTM, and CNN-
LSTM networks are 371 586, 207 874, and 664 746, respec-
tively. The CNN-LSTM model had the best performance
with the highest number of parameters. Even though the
number of parameters for the LSTM model is less than that
of the CNN model, the LSTM model shows better validation
performance. Furthermore, the number of parameters in the
CNN-LSTM model is much higher than the other two mod-
els, without a large increase in computation time. All three
models were trained within 24 h using 100 shuffle splits for
training and validation. The models were run on a CPU with
four cores, 3.4 GHz clock speed, and 12 GB RAM. On the
other hand, a few minutes were enough to train the machine
learning models with 100 shuffle splits for training and vali-
dation. Although the training time for deep learning models
is much higher than that of machine learning models, their
superior performance, in this case, justifies their application.

3.3 Order of input variables

It is not clear whether the order of input variables in the input
file influences multivariate TSC or not when using 2-D filters
and 2-D max-pooling layers. In the benchmark model, the
variables were entered from left to right in the following ran-
dom order: precipitation, minimum temperature, maximum
temperature, net radiation, ATDD, AFDD, and snow depth.
Another run was conducted by changing the order of the vari-

ables for the following random order: snow depth, maximum
temperature, precipitation, AFDD, net radiation, minimum
temperature, and ATDD. Both models yielded the same mean
and minimum F1 scores, whereas the maximum F1 score of
the benchmark model is higher (0.88) than that of the com-
parative run (0.86). Therefore, it can be concluded that the
order does not significantly impact the results.

3.4 Testing

To examine the ability of the models to generalize to new
unseen data, we randomly set aside 10 % of the data from
the training and validation phase of all the developed deep
learning and machine learning models. A CNN, an LSTM,
and a CNN-LSTM model were trained, and the well-trained
parameters were saved and used to assess the model’s ability
to generalize. An SVM, a DT, a KNN, and an MLP model
were also trained. The trained models were saved and used
for testing. The test dataset is nearly balanced with 101 sam-
ples with the size of (16, 7), including 48 jam events and 53
no-jam events.

The results of the test models show that the CNN-LSTM
model had the best F1 score of 0.92 (Table 11). Tables 9 and
11 show that although LSTM had a slightly superior vali-
dation performance, CNN and LSTM models performed the
same in testing.

Testing results of machine learning models are presented
in Table 11. Among the machine learning models, KNN
yields the best results with F1 scores of 78 %. By compar-
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Table 11. Test F1 scores for the developed deep learning and ma-
chine learning models.

Models F1 score

CNN-LSTM 0.92
CNN 0.80
LSTM 0.80
KNN 0.78
SVM 0.75
DT 0.71
MLP 0.70

ing the best deep learning model (CNN-LSTM) with the best
machine learning model (KNN), it can be calculated that
the deep learning model outperforms the machine learning
model by a difference of 14 % (F1 score of 92 % and 78 %,
respectively).

3.5 Model comparison

Classifiers can be combined and used in pattern recognition
problems to reduce errors by covering for one another’s in-
ternal weaknesses (Parvin et al., 2011). Combined classifiers
may be less accurate than the most accurate classifier; how-
ever, the accuracy of the combined model is always superior
to the average accuracy of individual models. Combining two
models improved our results compared to convolution-only
or LSTM-only networks in both training and testing, support-
ing the previous studies (e.g., Sainath et al., 2015). It can be
because the CNN-LSTM model incorporates both the tem-
poral dependency of each variable by using LSTM networks
and the correlation between variables through CNN models.
The combined CNN-LSTM model efficiently benefits from
automatic feature learning by CNN plus the native support
for time series by LSTM.

Although LSTM slightly outperformed CNN in the valida-
tion phase, these models had comparable performance in the
testing phase. The CNN is able to partially include both tem-
poral dependency and the correlation between variables by
using 1-D and 2-D filters, respectively. Although the LSTM
is unable to incorporate the correlations between variables, it
gives promising results with a relatively small dataset. An-
other difference is that LSTM captures longer temporal dy-
namics, while the CNN only captures temporal dynamics
comprised within the length of its filters.

Even though our training data in supervised ice-jam pre-
diction are small, the results reveal that deep learning tech-
niques can give accurate results, which agrees with a previ-
ous study conducted by Ordóñez and Roggen (2016) in ac-
tivity recognition. The excellent performance of CNN and
CNN-LSTM models may be partially due to the character-
istic of CNN that decreases the total number of parameters
which does training with limited training data easier (Gao et

al., 2016). However, we expect our models to be improved in
the future by a larger dataset.

Among the developed machine learning models, SVM
showed the best performance in validation, whereas KNN
worked the best in testing. However, the performance of deep
learning models is much better than machine learning mod-
els in both validation and testing. The machine learning mod-
els do not consider correlations between variables. However,
it is not the only reason that deep learning models worked
better than machine learning models, as the LSTM also does
not consider correlations between variables but worked better
than machine learning models. This indicates that there are
other aspects of deep learning models that contribute to their
high performance level. For instance, deep learning models
perform well for the problems with complex nonlinear de-
pendencies, time dependencies, and multivariate inputs.

The developed CNN-LSTM model can be used for future
predictions of ice jams in Quebec to provide early warn-
ing of possible floods in the area by using historic hydro-
meteorological variables and their predictions for some days
in advance.

3.6 Discussion on the interpretability of deep learning
models

Even though the developed deep learning models performed
well in predicting ice jams in Quebec, the interpretability of
the results with respect to the physical processes involved in
ice jams is still essential. It is because although deep learn-
ing models have achieved superior performance in various
tasks, these complicated models use a large number of pa-
rameters and might sometimes exhibit unexpected behaviors
(Samek et al., 2017; Zhang et al., 2021). This is because
the real-world environment is still much more complex than
any model. Furthermore, the models may learn some spu-
rious correlations in the data and make correct predictions
for the wrong reason (Samek and Müller, 2019). Hence, in-
terpretability is especially important in some real-world ap-
plications like flood and ice-jam predictions where an er-
ror could have catastrophic consequences. Nonetheless, in-
terpretability can be used to extract novel domain knowledge
and hidden laws of nature in the research fields with limited
domain knowledge (Alipanahi et al., 2015) like ice-jam pre-
diction.

However, the nested nonlinear structure and the “black
box” nature of deep neural networks make the interpreta-
tion of their underlying mechanisms and decisions a signif-
icant challenge (Montavon et al., 2018; Zhang et al., 2021;
Wojtas and Chen, 2020). That is why deep neural network
interpretability still remains a young and emerging field of
research. Nevertheless, there are various methods available
to facilitate the understanding of decisions made by a deep
learning model such as feature importance ranking, sensitiv-
ity analysis, layer-wise relevance propagation, and the global
surrogate model. However, the interpretability of developed
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deep learning models for ice-jam prediction is beyond the
scope of this study, and it will be investigated in our future
works.

3.7 Model transferability

The transferability of a model between river basins is highly
desirable but has not yet been achieved because most river
ice-jam models are site-specific (Mahabir et al., 2007). The
developed models in this study can be used to predict fu-
ture ice jams some days before the event not only for Que-
bec but can also be transferred to eastern parts of Ontario
and western New Brunswick, since these areas have the sim-
ilar hydro-meteorological conditions. For other locations, the
developed models could be retrained with a small amount
of fine-tuning using labeled instances rather than building
from scratch. This interesting feature is due to the logic be-
hind the model, which could be transferred to other sites
with small modifications. To transfer a model from one river
basin to another, historical records of ice jams and equivalent
hydro-meteorological variables (e.g., precipitation, tempera-
ture, and snow depth) must be available as model inputs for
each site.

4 Conclusion

The main finding from this project is that the developed deep
models successfully predicted ice jams in Quebec and per-
formed much better than the developed machine learning
models. The results show that the CNN-LSTM model is su-
perior to the CNN-only and LSTM-only networks in both
validation and testing phases, although the LSTM and CNN
performed well.

To our best knowledge, this study is the first to apply deep
learning models to the ice-jam prediction. The developed
models are promising tools for the prediction of ice jams in
Quebec and other similar river basins in Canada, with retrain-
ing and a small amount of fine-tuning.

The developed models do not apply to freeze-up jams that
occur in early winter and are based on different processes
than breakup jams. We studied only breakup ice jams as
usually they result in flooding and are more dangerous than
freeze-up jams. Furthermore, there is a lack of data availabil-
ity for freeze-up ice jams in Quebec, and only 89 records of
freeze-up jams are available, which is too small.

The main limitation of this study is the availability of ice-
jam records. Indeed, small datasets may lead deep learning
models to overfit the data. Another limitation of the presented
work is the lack of interpretability of the results with respect
to the physical characteristics of the ice jam. This is a topic
of future research and our next step is to explore that.

It should also be noted that hydro-meteorological variables
are not the only drivers of ice-jam formation. Geomorpholog-
ical features such as river slope, sinuosity, physical barriers

Figure A1. A neural network with two hidden layers (left) and a
neural network with dropout (right; after Srivastava et al., 2014).

(such as an island or a bridge), channel narrowing, and river
confluence also govern the formation of ice jams. In the fu-
ture, a geospatial model using deep learning will be devel-
oped to examine the impacts of these geospatial parameters
on ice-jam formation.

Appendix A: Overcome overfitting

A1 Noise layer

Although data augmentation is common in image classifica-
tion (Wong et al., 2016), the application of data augmentation
in deep learning for time-series classification (TSC) still has
not been studied thoroughly (Fawaz et al., 2019b). A simple
form of random data augmentation that can be used for TSC
is a noise layer. Over the training process, each time an in-
put sample is exposed to the model, the noise layer creates
new samples in the vicinity of the training samples, resulting
in various input data every time. The noise layer is usually
added to the input data but can also be added to other layers.

A2 Dropout

The dropout (Srivastava et al., 2014) is the most successful
method for neural network regularization that randomly sets
some nodes in different layers to zero (Fig. A1). We used
dropout with the recommended rates of 0.1 for the input
layer and between 0.5 and 0.8 for hidden layers (Garbin et
al., 2020) in our models, but it could not improve any de-
veloped models. This agrees with previous studies revealing
that dropout does not work well with long short-term memo-
ries (LSTMs) (Zaremba et al., 2014) and convolutional neu-
ral networks (CNNs), and dropout layers do not work when
batch size is small (less than 256; Garbin et al., 2020). Fur-
thermore, it is in agreement with Garbin et al. (2020) stating
that utilizing batch normalization layers in a model reduces
the need for dropout layers.
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A3 Batch normalization

As explained earlier, the input data are scaled separately for
each feature to be between 0 and 1. However, in deep learn-
ing, the distribution of the input of each layer will be changed
by updates to all the preceding layers (i.e., internal covari-
ate shift). Hence, hidden layers try to learn to adapt to the
new distribution slowing down the training process. To solve
these problems, a recent method called batch normalization
(Ioffe and Szegedy, 2015) can be used. This method provides
any layer with zero mean and unit variance inputs and conse-
quently prevents exploding or vanishing gradient problems.
Furthermore, batch normalization adjusts the value for each
batch, results in more noise acting as a regularizer, similar
to dropout, and thus reduces the need for dropout (Garbin et
al., 2020). We performed batch normalization over each vari-
able in different layers in our models to find its best locations
through trial and error.

A4 L1 and L2 regularization

A network with large weights can be more complex and
unstable as large weights increase loss gradients exponen-
tially, resulting in exploding gradients that cause massive
output changes with minor changes in the inputs forcing the
model loss and weights to NaN values (Brownlee, 2022). To
keep the weights small, regularization methods can be ap-
plied, which adds an extra penalty term to the loss function
in proportion to the size of weights in the model. The two
main methods used to calculate the size of the weights are
L1 (Eq. A1) and L2 or weight decay (Eq. A2), where λ is
a parameter that controls the importance of the regulariza-
tion, and w is the network weight. The L1 regularization en-
courages weights to be 0.0 (causing underfitting) and very
few features with non-zero weights, while L2 regularization
forces the weights to be small rather than zero. Hence, L2
can predict more complex patterns when output is a func-
tion of all input features. We used an L2 regularization cost
by applying a penalty to the parameters of all layers in the
networks in CNN, LSTM, and CNN-LSTM models.

Loss function+ λ
∑n

i=1
|wi | (A1)

Loss function+ λ
∑n

i=1
w2
i (A2)

Appendix B: Model parameters

B1 Activation function

The activation function adds non-linearity to the network, al-
lowing the model to learn more complex relationships be-
tween inputs and outputs (Zheng et al., 2014, June). Each ac-
tivation function has its advantages and disadvantages, and
typical activation functions in deep learning are rectified lin-
ear unit (ReLU; Eq. A3), sigmoid (Eq. A4), and hyperbolic

Figure B1. Illustration of sigmoid, tanh, and ReLU activation func-
tions (after Zheng et al., 2016).

tangent (tanh; Eq. A5; Fig. A2; Gu et al., 2018). In deep neu-
ral networks, adding more layers with certain activation func-
tions results in the vanishing gradient problem where the gra-
dients of the loss function become almost zero, causing dif-
ficulties in training. For instance, the sigmoid function maps
a large input space into a small one between 0 and 1. Hence,
when the input is very positive or very negative, the sigmoid
function saturates (becomes very flat) and becomes insen-
sitive to small changes in its input, causing the derivatives
to disappear (Goodfellow et al., 2016). Therefore, in back-
propagation, small derivatives are multiplied together, caus-
ing the gradient to decrease exponentially, propagating back
to the first layer. This causes ineffective updates of weights
and biases of the initial layers and consequently inaccuracy.
Some solutions to overcome this problem include using spe-
cific activation functions like ReLU and tanh and using batch
normalization layers to prevent the activation functions from
becoming saturated. The ReLU recently gained lots of atten-
tion and has been widely used in recent deep learning mod-
els (Gamboa, 2017). The advantage of ReLU over sigmoid
and tanh is a better generalization, making the training faster
and simpler. Hence, we investigated the performance of the
model with ReLU, sigmoid, or tanh activation functions in
convolutional layers.

ReLU(x)=max(0,x) (B1)

Sigmoid(x)=
1

1+ e−x
(B2)

tanh(x)=
ex − e−x

ex + e−x
(B3)
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Figure B2. Learning rates that are too small, good, and too large from left to right (after Jordan, 2020).

B2 Learning rate

To find the minimum loss function, a move in the negative
direction of the gradient is required. This movement is called
the “learning rate”, which is the most significant hyperpa-
rameter in training a deep neural network. The model error
is calculated, and the errors corresponding to weights up-
dated by the learning rate are backpropagated in the network.
A learning rate that is too small needs many updates and
epochs, reaching the minimum (Fig. A3). On the other hand,
a learning rate that is too large causes dramatic updates and
leads to oscillations in loss over epochs (Fig. A3). A good
learning rate quickly reaches the minimum point between 0.1
and 1× 10−6 on a log scale.

B3 Padding

The convolution is applied where the input and the filter over-
lap. Hence, we pad the input by zeros with half the filter
size on both sides. Using stride of 1 with “Pads= same” (in
Lasagne) in the convolutional 2-D layers results in an output
size equal to the input size for each layer.

B4 Activation functions in CN layers

The experiments demonstrate that errors are very high using
tanh, whereas ReLU and sigmoid show almost the same per-
formance. As ReLU performs slightly better than sigmoid,
we used ReLU in our models.

B5 Dense layer

The dense layers with ReLU functions followed by one dense
layer with softmax function are applied after the feature
learning and LSTM layers to perform classification. To out-
put the binary classes from the network, softmax or sigmoid
functions can be used. We applied softmax as it gives a prob-
ability for each class where their total sum is one.

B6 Network optimization

Training CNN involves global optimization by defining a
loss function to be minimized over training. For the classifi-
cation task, the loss function of the models is calculated using
categorical cross-entropy between network outputs and tar-
gets (Eq. A6), where L is the loss, p is the prediction (prob-

ability), t is the target, and c is the number of classes. Then,
the mean of the loss is computed over each mini-batch.

L=−
∑c=2

i=1
ti log(pi) (B4)

B7 Update expression

The parameter updating procedure includes feedforwarding,
backpropagation, and estimating gradients. The inputs and
corresponding targets are iterated in mini-batches for train-
ing and validation. Mini-batches split the training data into
small batches, which are used during each iteration one af-
ter the other to calculate model error and update model pa-
rameters. It is computationally efficient not having all train-
ing data in memory and model developments, since batch
size significantly influences the training time (Fawaz et al.,
2019b, July). Mini-batches cause the model to update more
frequently, resulting in a more robust convergence and avoid-
ing local minima. There are various algorithms to update the
trainable parameters at each mini-batch. We tried the stochas-
tic gradient descent (SGD) with Nesterov momentum, RM-
SProp, Adadelta, and Adam updates to update the parameters
in Lasagne. The SGD with momentum updates the model
weights by adding a momentum term so that the overall gra-
dient depends on the current and previous gradients, causing
the weights to move in the previous direction without oscil-
lation.

We found that SGD with a momentum term of 0.9 works
better than other methods in our cases. The high values for
the momentum term result in larger update steps. It is recom-
mended to scale the learning rate by “1−momentum” for
using the high momentum values, which gives 0.1. Interest-
ingly, we already have applied the base learning rate of 0.1
for the LSTM model chosen through trial and error (as ex-
plained earlier); however, smaller values are chosen for CNN
and CNN-LSTM networks.
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