Articles | Volume 15, issue 2
https://doi.org/10.5194/tc-15-595-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-595-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Distributed summer air temperatures across mountain glaciers in the south-east Tibetan Plateau: temperature sensitivity and comparison with existing glacier datasets
Federal Institute for Forest, Snow and Landscape Research (WSL),
Birmensdorf, Switzerland
Wei Yang
Key Laboratory of Tibetan Environment Changes and Land Surface
Processes, Institute of Tibetan Plateau Research, Chinese Academy of
Sciences (CAS), Beijing, China
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing
100101, China
Álvaro Ayala
Centre for Advanced Studies in Arid Zones (CEAZA), La Serena, Chile
Claudio Bravo
School of Geography, University of Leeds, Leeds, UK
Chuanxi Zhao
Key Laboratory of Tibetan Environment Changes and Land Surface
Processes, Institute of Tibetan Plateau Research, Chinese Academy of
Sciences (CAS), Beijing, China
Francesca Pellicciotti
Federal Institute for Forest, Snow and Landscape Research (WSL),
Birmensdorf, Switzerland
Department of Geography, Northumbria University, Newcastle, UK
Related authors
Marin Kneib, Evan S. Miles, Pascal Buri, Stefan Fugger, Michael McCarthy, Thomas E. Shaw, Zhao Chuanxi, Martin Truffer, Matthew J. Westoby, Wei Yang, and Francesca Pellicciotti
The Cryosphere, 16, 4701–4725, https://doi.org/10.5194/tc-16-4701-2022, https://doi.org/10.5194/tc-16-4701-2022, 2022
Short summary
Short summary
Ice cliffs are believed to be important contributors to the melt of debris-covered glaciers, but this has rarely been quantified as the cliffs can disappear or rapidly expand within a few weeks. We used photogrammetry techniques to quantify the weekly evolution and melt of four cliffs. We found that their behaviour and melt during the monsoon is strongly controlled by supraglacial debris, streams and ponds, thus providing valuable insights on the melt and evolution of debris-covered glaciers.
Stefan Fugger, Catriona L. Fyffe, Simone Fatichi, Evan Miles, Michael McCarthy, Thomas E. Shaw, Baohong Ding, Wei Yang, Patrick Wagnon, Walter Immerzeel, Qiao Liu, and Francesca Pellicciotti
The Cryosphere, 16, 1631–1652, https://doi.org/10.5194/tc-16-1631-2022, https://doi.org/10.5194/tc-16-1631-2022, 2022
Short summary
Short summary
The monsoon is important for the shrinking and growing of glaciers in the Himalaya during summer. We calculate the melt of seven glaciers in the region using a complex glacier melt model and weather data. We find that monsoonal weather affects glaciers that are covered with a layer of rocky debris and glaciers without such a layer in different ways. It is important to take so-called turbulent fluxes into account. This knowledge is vital for predicting the future of the Himalayan glaciers.
Francesca Pellicciotti, Adrià Fontrodona-Bach, David R. Rounce, Catriona L. Fyffe, Leif S. Anderson, Álvaro Ayala, Ben W. Brock, Pascal Buri, Stefan Fugger, Koji Fujita, Prateek Gantayat, Alexander R. Groos, Walter Immerzeel, Marin Kneib, Christoph Mayer, Shelley MacDonell, Michael McCarthy, James McPhee, Evan Miles, Heather Purdie, Ekaterina Rets, Akiko Sakai, Thomas E. Shaw, Jakob Steiner, Patrick Wagnon, and Alex Winter-Billington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3837, https://doi.org/10.5194/egusphere-2025-3837, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock debris covers many of the world glaciers, modifying the transfer of atmospheric energy to the debris and into the ice. Models of different complexity simulate this process, and we compare 14 models at 9 sites to show that the most complex models at the debris-atmosphere interface have the highest performance. However, we lack debris properties and their derivation from measurements is ambiguous, hindering global modelling and calling for both model development and data collection.
Zihao Li, Qiuyu Wang, Huan Xu, Wei Yang, and Wenke Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-1772, https://doi.org/10.5194/egusphere-2025-1772, 2025
Short summary
Short summary
Our results show a steady retreat of glaciers in southeastern Tibet from 2000 to 2022, with an average annual loss of 85.03 ± 7.60 km². The retreat rate accelerated after 2010, increasing from 57.72 ± 16.81 km² to 97.72 ± 17.67 km² per year. The annual mass loss was calculated at 6.20 ± 0.22 gigatons. These findings underline the urgent need for continued monitoring of glacier dynamics due to climate change.
Claudio Bravo, Sebastián Cisternas, Maximiliano Viale, Pablo Paredes, Deniz Bozkurt, and Nicolás García-Lee
The Cryosphere, 19, 1897–1913, https://doi.org/10.5194/tc-19-1897-2025, https://doi.org/10.5194/tc-19-1897-2025, 2025
Short summary
Short summary
We analysed the impact of a summer snow accumulation event linked to an atmospheric river in central Chile. Using observational and remote sensing data, we show that accumulation prevails in all the glaciers of the Maipo River basin, and this sole event defines the fact that the Olivares Alfa glacier mass balance was close to equilibrium despite it being a dry year. This demonstrates that an unseasonal accumulation event can counteract the seasonal trends affecting subtropical Andean glaciers.
Tong Zhang, Wei Yang, Yuzhe Wang, Chuanxi Zhao, Qingyun Long, and Cunde Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2025-659, https://doi.org/10.5194/egusphere-2025-659, 2025
Short summary
Short summary
This study investigates the 2018 Sedongpu glacier detachment in Southeastern Tibet using a two-dimensional ice flow model that includes an ice stiffness and basal slip positive feedback mechanism. The model simulates rapid transitions in glacier flow, triggering detachment when ice stress exceeds yield strength. The results, including ice speed and duration, align with observations, demonstrating the potential for early warning of similar hazards in the region.
He Sun, Tandong Yao, Fengge Su, Wei Yang, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 4361–4381, https://doi.org/10.5194/hess-28-4361-2024, https://doi.org/10.5194/hess-28-4361-2024, 2024
Short summary
Short summary
Our findings show that runoff in the Yarlung Zangbo (YZ) basin is primarily driven by rainfall, with the largest glacier runoff contribution in the downstream sub-basin. Annual runoff increased in the upper stream but decreased downstream due to varying precipitation patterns. It is expected to rise throughout the 21st century, mainly driven by increased rainfall.
Nicolás García-Lee, Claudio Bravo, Álvaro Gónzalez-Reyes, and Piero Mardones
Weather Clim. Dynam., 5, 1137–1151, https://doi.org/10.5194/wcd-5-1137-2024, https://doi.org/10.5194/wcd-5-1137-2024, 2024
Short summary
Short summary
This study analyses the 0 °C isotherm in Patagonia from 1959 to 2021, using observational and fifth-generation European Centre for Medium-Range Weather Forecasts atmospheric reanalysis data. The model aligns well with observations, highlighting significant altitude variations between the western and eastern sides of the austral Andes, a correlation between isotherm fluctuations and the Southern Annular Mode index, and an upward trend in the study area (especially in northwestern Patagonia).
Álvaro Ayala, Simone Schauwecker, and Shelley MacDonell
Hydrol. Earth Syst. Sci., 27, 3463–3484, https://doi.org/10.5194/hess-27-3463-2023, https://doi.org/10.5194/hess-27-3463-2023, 2023
Short summary
Short summary
As the climate of the semiarid Andes is very dry, much of the seasonal snowpack is lost to the atmosphere through sublimation. We propose that snowmelt runoff originates from specific areas that we define as snowmelt hotspots. We estimate that snowmelt hotspots produce half of the snowmelt runoff in a small study catchment but represent about a quarter of the total area. Snowmelt hotspots may be important for groundwater recharge, rock glaciers, and mountain peatlands.
Chuanxi Zhao, Wei Yang, Evan Miles, Matthew Westoby, Marin Kneib, Yongjie Wang, Zhen He, and Francesca Pellicciotti
The Cryosphere, 17, 3895–3913, https://doi.org/10.5194/tc-17-3895-2023, https://doi.org/10.5194/tc-17-3895-2023, 2023
Short summary
Short summary
This paper quantifies the thinning and surface mass balance of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau during different seasons, based on high spatio-temporal resolution UAV-derived (unpiloted aerial
vehicle) data and in situ observations. Through a comparison approach and high-precision results, we identify that the glacier dynamic and debris thickness are strongly related to the future fate of the debris-covered glaciers in this region.
Wei Yang, Zhongyan Wang, Baosheng An, Yingying Chen, Chuanxi Zhao, Chenhui Li, Yongjie Wang, Weicai Wang, Jiule Li, Guangjian Wu, Lin Bai, Fan Zhang, and Tandong Yao
Nat. Hazards Earth Syst. Sci., 23, 3015–3029, https://doi.org/10.5194/nhess-23-3015-2023, https://doi.org/10.5194/nhess-23-3015-2023, 2023
Short summary
Short summary
We present the structure and performance of the early warning system (EWS) for glacier collapse and river blockages in the southeastern Tibetan Plateau. The EWS warned of three collapse–river blockage chain events and seven small-scale events. The volume and location of the collapses and the percentage of ice content influenced the velocities of debris flows. Such a study is helpful for understanding the mechanism of glacier hazards and for establishing similar EWSs in other high-risk regions.
Wei Yang, Huabiao Zhao, Baiqing Xu, Jiule Li, Weicai Wang, Guangjian Wu, Zhongyan Wang, and Tandong Yao
The Cryosphere, 17, 2625–2628, https://doi.org/10.5194/tc-17-2625-2023, https://doi.org/10.5194/tc-17-2625-2023, 2023
Short summary
Short summary
There is very strong scientific and public interest regarding the snow thickness on Mountain Everest. Previously reported snow depths derived by different methods and instruments ranged from 0.92 to 3.5 m. Our measurements in 2022 provide the first clear radar image of the snowpack at the top of Mount Everest. The snow thickness at Earth's summit was averaged to be 9.5 ± 1.2 m. This updated snow thickness is considerably deeper than values reported during the past 5 decades.
He Sun, Tandong Yao, Fengge Su, Wei Yang, Guifeng Huang, and Deliang Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-16, https://doi.org/10.5194/hess-2023-16, 2023
Manuscript not accepted for further review
Short summary
Short summary
Based on field research campaigns since 2017 in the Yarlung Zangbo (YZ) river basin and a well-validated model, our results reveal that large regional differences in runoff regimes and changes exist in the basin. Annual runoff shows decreasing trend in the downstream sub-basin but increasing trends in the upper and middle sub-basins, due to opposing precipitation changes. Glacier runoff plays more important role in annual total runoff in downstream basin.
Marin Kneib, Evan S. Miles, Pascal Buri, Stefan Fugger, Michael McCarthy, Thomas E. Shaw, Zhao Chuanxi, Martin Truffer, Matthew J. Westoby, Wei Yang, and Francesca Pellicciotti
The Cryosphere, 16, 4701–4725, https://doi.org/10.5194/tc-16-4701-2022, https://doi.org/10.5194/tc-16-4701-2022, 2022
Short summary
Short summary
Ice cliffs are believed to be important contributors to the melt of debris-covered glaciers, but this has rarely been quantified as the cliffs can disappear or rapidly expand within a few weeks. We used photogrammetry techniques to quantify the weekly evolution and melt of four cliffs. We found that their behaviour and melt during the monsoon is strongly controlled by supraglacial debris, streams and ponds, thus providing valuable insights on the melt and evolution of debris-covered glaciers.
Loris Compagno, Matthias Huss, Evan Stewart Miles, Michael James McCarthy, Harry Zekollari, Amaury Dehecq, Francesca Pellicciotti, and Daniel Farinotti
The Cryosphere, 16, 1697–1718, https://doi.org/10.5194/tc-16-1697-2022, https://doi.org/10.5194/tc-16-1697-2022, 2022
Short summary
Short summary
We present a new approach for modelling debris area and thickness evolution. We implement the module into a combined mass-balance ice-flow model, and we apply it using different climate scenarios to project the future evolution of all glaciers in High Mountain Asia. We show that glacier geometry, volume, and flow velocity evolve differently when modelling explicitly debris cover compared to glacier evolution without the debris-cover module, demonstrating the importance of accounting for debris.
Stefan Fugger, Catriona L. Fyffe, Simone Fatichi, Evan Miles, Michael McCarthy, Thomas E. Shaw, Baohong Ding, Wei Yang, Patrick Wagnon, Walter Immerzeel, Qiao Liu, and Francesca Pellicciotti
The Cryosphere, 16, 1631–1652, https://doi.org/10.5194/tc-16-1631-2022, https://doi.org/10.5194/tc-16-1631-2022, 2022
Short summary
Short summary
The monsoon is important for the shrinking and growing of glaciers in the Himalaya during summer. We calculate the melt of seven glaciers in the region using a complex glacier melt model and weather data. We find that monsoonal weather affects glaciers that are covered with a layer of rocky debris and glaciers without such a layer in different ways. It is important to take so-called turbulent fluxes into account. This knowledge is vital for predicting the future of the Himalayan glaciers.
Chuanxi Zhao, Wei Yang, Matthew Westoby, Baosheng An, Guangjian Wu, Weicai Wang, Zhongyan Wang, Yongjie Wang, and Stuart Dunning
The Cryosphere, 16, 1333–1340, https://doi.org/10.5194/tc-16-1333-2022, https://doi.org/10.5194/tc-16-1333-2022, 2022
Short summary
Short summary
On 22 March 2021, a ~ 50 Mm 3 ice-rock avalanche occurred from 6500 m a.s.l. in the Sedongpu basin, southeastern Tibet. It caused temporary blockage of the Yarlung Tsangpo river, a major tributary of the Brahmaputra. We utilize field investigations, high-resolution satellite imagery, seismic records, and meteorological data to analyse the evolution of the 2021 event and its impact, discuss potential drivers, and briefly reflect on implications for the sustainable development of the region.
Benjamin Aubrey Robson, Shelley MacDonell, Álvaro Ayala, Tobias Bolch, Pål Ringkjøb Nielsen, and Sebastián Vivero
The Cryosphere, 16, 647–665, https://doi.org/10.5194/tc-16-647-2022, https://doi.org/10.5194/tc-16-647-2022, 2022
Short summary
Short summary
This work uses satellite and aerial data to study glaciers and rock glacier changes in La Laguna catchment within the semi-arid Andes of Chile, where ice melt is an important factor in river flow. The results show the rate of ice loss of Tapado Glacier has been increasing since the 1950s, which possibly relates to a dryer, warmer climate over the previous decades. Several rock glaciers show high surface velocities and elevation changes between 2012 and 2020, indicating they may be ice-rich.
Yan Zhong, Qiao Liu, Matthew Westoby, Yong Nie, Francesca Pellicciotti, Bo Zhang, Jialun Cai, Guoxiang Liu, Haijun Liao, and Xuyang Lu
Earth Surf. Dynam., 10, 23–42, https://doi.org/10.5194/esurf-10-23-2022, https://doi.org/10.5194/esurf-10-23-2022, 2022
Short summary
Short summary
Slope failures exist in many paraglacial regions and are the main manifestation of the interaction between debris-covered glaciers and slopes. We mapped paraglacial slope failures (PSFs) along the Hailuogou Glacier (HLG), Mt. Gongga, southeastern Tibetan Plateau. We argue that the formation, evolution, and current status of these typical PSFs are generally related to glacier history and paraglacial geomorphological adjustments, and influenced by the fluctuation of climate conditions.
Yanbin Lei, Tandong Yao, Lide Tian, Yongwei Sheng, Lazhu, Jingjuan Liao, Huabiao Zhao, Wei Yang, Kun Yang, Etienne Berthier, Fanny Brun, Yang Gao, Meilin Zhu, and Guangjian Wu
The Cryosphere, 15, 199–214, https://doi.org/10.5194/tc-15-199-2021, https://doi.org/10.5194/tc-15-199-2021, 2021
Short summary
Short summary
Two glaciers in the Aru range, western Tibetan Plateau (TP), collapsed suddenly on 17 July and 21 September 2016, respectively, causing fatal damage to local people and their livestock. The impact of the glacier collapses on the two downstream lakes (i.e., Aru Co and Memar Co) is investigated in terms of lake morphology, water level and water temperature. Our results provide a baseline in understanding the future lake response to glacier melting on the TP under a warming climate.
Cited articles
ASF DAAC: ALOS PALSAR_Radiometric_Terrain_Corrected_low_res,
Includes Material © JAXA/METI 2007, Accessed through ASF DAAC
20 March 2020, https://doi.org/10.5067/JBYK3J6HFSVF, 2020.
Arnold, N. S., Rees, W. G., Hodson, A. J., and Kohler, J.: Topographic
controls on the surface energy balance of a high Arctic valley glacier, J.
Geophys. Res., 111, F02011, https://doi.org/10.1029/2005JF000426, 2006.
Ayala, A., Pellicciotti, F., and Shea, J.: Modeling 2m air temperatures
over mountain glaciers: Exploring the influence of katabatic cooling and
external warming, J. Geophys. Res.-Atmos, 120, 1–19, https://doi.org/10.1002/2015JD023137, 2015.
Betts, A. K., Chan, D. Z., and Desjardins, R. L.: Near-Surface Biases in
ERA5 Over the Canadian Prairies, Front. Environ. Sci., 7, 129,
https://doi.org/10.3389/fenvs.2019.00129, 2019.
Bonekamp, P. N. J., van Heerwaarden, C. C., Steiner, J. F., and Immerzeel, W. W.: Using 3D turbulence-resolving simulations to understand the impact of surface properties on the energy balance of a debris-covered glacier, The Cryosphere, 14, 1611–1632, https://doi.org/10.5194/tc-14-1611-2020, 2020.
Bravo, C., Loriaux, T., Rivera, A., and Brock, B. W.: Assessing glacier melt contribution to streamflow at Universidad Glacier, central Andes of Chile, Hydrol. Earth Syst. Sci., 21, 3249–3266, https://doi.org/10.5194/hess-21-3249-2017, 2017.
Bravo, C., Quincey, D. J., Ross, A. N., Rivera, A., Brock, B. W., Miles, E., and Silva, A.: Air Temperature Characteristics, Distribution, and Impact
on Modeled Ablation for the South Patagonia Ice field, J. Geophys. Res.-Atmos., 124, 907–925, https://doi.org/10.1029/2018JD028857,
2019a.
Bravo, C., Bozkurt, D., Gonzalez-reyes, Á., Quincey, D. J., Ross, A. N.,
Farias-Barahona, D., and Rojas, M.: Assessing Snow Accumulation Patterns
and Changes on the Patagonian Icefields, Front. Environ. Sci., 7, 1–18, https://doi.org/10.3389/fenvs.2019.00030, 2019b.
Brock, B. W., Mihalcea, C., Kirkbride, M. P., Diolaiuti, G., Cutler, M. E. J., and Smiraglia, C.: Meteorology and surface energy fluxes in the
2005–2007 ablation seasons at the Miage debris-covered glacier, Mont Blanc
Massif, Italian Alps, J. Geophys. Res, 115, D09106, https://doi.org/10.1029/2009JD013224, 2010.
Caidong, C. and Sorteberg, A.: Modelled mass balance of Xibu glacier,
Tibetan Plateau: Sensitivity to climate change, J. Glaciol, 56, 235–248, https://doi.org/10.3189/002214310791968467, 2010.
Carturan, L., Cazorzi, F., De Blasi, F., and Dalla Fontana, G.: Air temperature variability over three glaciers in the Ortles–Cevedale (Italian Alps): effects of glacier fragmentation, comparison of calculation methods, and impacts on mass balance modeling, The Cryosphere, 9, 1129–1146, https://doi.org/10.5194/tc-9-1129-2015, 2015.
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate, Copernicus Climate Change
Service Climate Data Store (CDS), available at:
https://cds.climate.copernicus.eu/cdsapp#!/home (last access: 5 May 2020),
2017.
Ding, B., Yang, K., Yang, W., He, X., Chen, Y., Lazhu, Guo, X., Wang, L., Wu, H., and Yao, T.: Development of a Water and Enthalpy Budget-based Glacier mass balance
Model (WEB-GM) and its preliminary validation, Water Resour. Res., 53, 3146–3178, https://doi.org/10.1002/2016WR018865, 2017.
Gabbi, J., Carenzo, M., Pellicciotti, F., Bauder, A., and Funk, M.: A
comparison of empirical and physically based glacier surface melt models for
long-term simulations of glacier response, J. Glaciol, 60, 1140–1154,
https://doi.org/10.3189/2014JoG14J011, 2014.
Gardner, A. S., Sharp, M. J., Koerner, R. M., Labine, C., Boon, S., Marshall, S. J., Burgess, D. O., and Lewis, D.: Near-Surface Temperature Lapse
Rates over Arctic Glaciers and Their Implications for Temperature
Downscaling, J. Climate, 22, 4281–4298, https://doi.org/10.1175/2009JCLI2845.1, 2009.
Georges, C. and Kaser, G.: Ventilated and unventilated air temperature
measurements for glacier-climate studies on a tropical high mountain site, J. Geophys. Res., 107, 4775, https://doi.org/10.1029/2002JD002503, 2002.
Greuell, W. and Böhm, R.: 2 m temperatures along melting mid-latitude
glaciers, and implications for the sensitivity of the mass balance to
variations in temperature, J. Glaciol, 44, 9–20, 1998.
Greuell, W., Knap, W. H., and Smeets, P. C.: Elevational changes in
meteorological variables along a midlatitude glacier during summer, J.
Geophys. Res., 102, 25941, https://doi.org/10.1029/97JD02083, 1997.
Hannah, D. M., Gurnell, A. M., and McGregor, G. R.: Spatio-temporal
variation in microclimate, the surface energy balance and ablation over a
cirque glacier, Int. J. Climatol., 20, 733–758,
https://doi.org/10.1002/1097-0088(20000615)20:7<733::AID-JOC490>3.0.CO;2-F, 2000.
Heynen, M., Miles, E., Ragettli, S., Buri, P., Immerzeel, W., and Pellicciotti, F.: Air temperature variability in a high elevation Himalayan
catchment, Ann. Glaciol., 57, 212–222, https://doi.org/10.3189/2016AoG71A076, 2016.
Huintjes, E., Sauter, T., Schröter, B., Maussion, F., Yang, W., Kropácek, J., Buchroithner, M., Scherer, D., Kang, S., and Schneider, C.: Evaluation of a Coupled Snow
and Energy Balance Model for Zhadang Glacier, Tibetan Plateau, Using
Glaciological Measurements and Time-Lapse Photography, Arct. Antarct. Alp.
Res., 47, 573–590, https://doi.org/10.1657/AAAR0014-073,
2015.
Immerzeel, W. W., Petersen, L., Ragettli, S., and Pellicciotti, F.: The
importance of observed gradients of air temperature and precipitation for
modeling runoff from a glacierized watershed, Water Resour. Res., 50,
2212–2226, https://doi.org/10.1002/2013WR014506, 2014.
Jiskoot, H. and Mueller, M. S.: Glacier fragmentation effects on surface
energy balance and runoff: field measurements and distributed modelling,
Hydrol. Process., 26, 1861–1875, https://doi.org/10.1002/hyp.9288, 2012.
Jobst, A. M., Kingston, D. G., Cullen, N. J., and Sirguey, P.: Combining
thin-plate spline interpolation with a lapse rate model to produce daily air
temperature estimates in a data-sparse alpine catchment, Int. J. Climatol., 37, 214–229, https://doi.org/10.1002/joc.4699, 2016.
Marshall, S. J., Sharp, M. J., Burgess, D. O., and Anslow, F. S.:
Near-surface-temperature lapse rates on the Prince of Wales Icefield,
Ellesmere Island, Canada: implications for regional downscaling of
temperature, Int. J. Climatol., 27, 1549–1555, https://doi.org/10.1002/joc.1396,
2007.
Maurer, J. M., Schaefer, J. M., Rupper, S., and Corley, A.: Acceleration of
ice loss across the Himalayas over the past 40 years, Sci. Adv., 5, 1–12,
2019.
Minder, J. R., Mote, P. W., and Lundquist, J. D.: Surface temperature lapse
rates over complex terrain: Lessons from the Cascade Mountains, J. Geophys.
Res., 115, D14122, https://doi.org/10.1029/2009JD013493,
2010.
Mölg, T., Maussion, F., Yang, W., and Scherer, D.: The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier, The Cryosphere, 6, 1445–1461, https://doi.org/10.5194/tc-6-1445-2012, 2012.
Munro, D. S.: Linking the weather to glacier hydrology and mass balance at
Peyto glacier, Peyto Glacier: One Century of Science, National Hydrology
Research Institute, Science Report #8, 2006.
Munro, D. S. and Marosz-Wantuch, M.: Modeling Ablation on Place Glacier,
British Columbia, from Glacier and Off-glacier Data Sets, Arct. Antarct.
Alp. Res., 41, 246–256, https://doi.org/10.1657/1938-4246-41.2.246, 2009.
Nolin, A. W., Phillippe, J., Jefferson, A., and Lewis, S. L.: Present-day
and future contributions of glacier runoff to summertime flows in a Pacific
Northwest watershed: Implications for water resources, Water Resour. Res., ., 46, W12509, https://doi.org/10.1029/2009WR008968, 2010.
Oerlemans, B. J. and Grisogono, B.: Glacier winds and parameterisation of
the related surface heat fluxes, Tellus, 54, 440–452, 2002.
Oerlemans, J.: Glaciers and Climate Change, A. A. Balkema Publishers, xii, 148 pp., 2001.
Oerlemans, J.: The microclimate of valley glaciers, Utrecht Publishing and
Archiving Services, Universiteitsbibliotheek, Utrecht, 2010.
Pellicciotti, F., Brock, B. W., Strasser, U., Burlando, P., Funk, M., and Corripio, J. G.: An enhanced temperature-index glacier melt model including the shortwave radiation balance: development and testing for Haut Glacier d'Arolla, Switzerland, J. Glaciol., 51, 573–587, 2005.
Pellicciotti, F., Helbing, J., Rivera, A., Favier, V., Corripio, J. G., Araos, J., Sicart, J.-E., and Carenzo, M.: A study of the energy balance and melt
regime on Juncal Norte Glacier, semi-arid Andes of central Chile, using
melt models of different complexity, Hydrol. Process., 22, 3980–3997,
https://doi.org/10.1002/hyp.7085, 2008.
Pellicciotti, F., Ragettli, S., Carenzo, M., and McPhee, J.: Changes of glaciers in the Andes of Chile and priorities for future work, Sci. Total Environ., 493C, 1197–1210, https://doi.org/10.1016/j.scitotenv.2013.10.055, 2014.
Petersen, L. and Pellicciotti, F.: Spatial and temporal variability of air
temperature on a melting glacier: Atmospheric controls, extrapolation
methods and their effect on melt modeling, Juncal Norte Glacier, Chile, J.
Geophys. Res., 116, D23109, https://doi.org/10.1029/2011JD015842, 2011.
Petersen, L., Pellicciotti, F., Juszak, I., Carenzo, M., and Brock, B. W.:
Suitability of a constant air temperature lapse rate over an Alpine glacier:
testing the Greuell and Böhm model as an alternative, Ann. Glaciol., 54, 120–130, https://doi.org/10.3189/2013AoG63A477, 2013.
Pradhananga, D., Pomeroy, J. W., Aubry-Wake, C., Munro, D. S., Shea, J., Demuth, M. N., Kirat, N. H., Menounos, B., and Mukherjee, K.: Hydrometeorological, glaciological and geospatial research data from the Peyto Glacier Research Basin in the Canadian Rockies, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2020-219, in review, 2020.
Ragettli, S., Immerzeel, W. W., and Pellicciotti, F.: Contrasting climate
change impact on river flows from high-altitude catchments in the Himalayan
and Andes Mountains, P. Natl. Acad. Sci. USA, 113, 9222–9227,
https://doi.org/10.1073/pnas.1606526113, 2016.
Rets, E. P., Popovnin, V. V., Toropov, P. A., Smirnov, A. M., Tokarev, I. V., Chizhova, J. N., Budantseva, N. A., Vasil'chuk, Y. K., Kireeva, M. B., Ekaykin, A. A., Veres, A. N., Aleynikov, A. A., Frolova, N. L., Tsyplenkov, A. S., Poliukhov, A. A., Chalov, S. R., Aleshina, M. A., and Kornilova, E. D.: Djankuat glacier station in the North Caucasus, Russia: a database of glaciological, hydrological, and meteorological observations and stable isotope sampling results during 2007–2017, Earth Syst. Sci. Data, 11, 1463–1481, https://doi.org/10.5194/essd-11-1463-2019, 2019.
Sauter, T. and Galos, S. P.: Effects of local advection on the spatial sensible heat flux variation on a mountain glacier, The Cryosphere, 10, 2887–2905, https://doi.org/10.5194/tc-10-2887-2016, 2016.
Schwanghart, W. and Kuhn, N, J.: TopoToolbox: A set of Matlab functions for
topographic analysis, Environ. Modell. Softw., 25, 770–781, https://doi.org/10.1016/j.envsoft.2009.12.002, 2010.
Shaw, T., Brock, B., Fyffe, C., Pellicciotti, F., Rutter, N., and Diotri, F.: Air temperature distribution and energy balance modelling of a
debris-covered glacier, J. Glaciol., 62, 185–198, https://doi.org/10.1017//jog.2016.31, 2016.
Shaw, T. E., Brock, B. W., Ayala, A., Rutter, N., and Pellicciotti, F.:
Centreline and cross-glacier air temperature variability on an Alpine
glacier: assessing temperature distribution methods and their influence on
melt model calculations, J. Glaciol., 63,
1–16, https://doi.org/10.1017/jog.2017.65,
2017.
Shaw, T. E., Yang, W., Ayala, Á., Bravo, C., Zhao, C., and Pellicciotti. F.: Temperature sensitivity of mountain glaciers [Data set], Zenodo, https://doi.org/10.5281/zenodo.3937777, 2020.
Shea, J. M. and Moore, R. D.: Prediction of spatially distributed
regional-scale fields of air temperature and vapor pressure over mountain
glaciers, J. Geophys. Res., 115, D23107, https://doi.org/10.1029/2010JD014351, 2010.
Steiner, J. F. and Pellicciotti, F.: Variability of air temperature over a
debris-covered glacier in the Nepalese Himalaya, Ann. Glaciol., 57, 295–307, https://doi.org/10.3189/2016AoG71A066, 2016.
Strasser, U., Corripio, J. G., Pellicciotti, F., Burlando, P., Brock, B. W., and Funk, M.: Spatial and temporal variability of meteorological variables
at Haut Glacier d'Arolla (Switzerland) during the ablation season 2001:
Measurements and simulations, J. Geophys. Res., 109, D03103, https://doi.org/10.1029/2003JD003973, 2004.
Troxler, P., Ayala, Á., Shaw, T. E., Nolan, M., Brock, B. W., and Pellicciotti, F.: Modelling spatial patterns of near-surface air temperature
over a decade of melt seasons on McCall Glacier, Alaska. J. Glaciol, 66, 386–400,
https://doi.org/10.1017/jog.2020.12, 2020.
van de Wal, R. S. W., Oerlemans, J., and Van Der Hage, J. C.: A study of
ablation variations on the tongue of Hintereisferner, Austrian Alps, J.
Glaciol., 38, 319–324, 1992.
van den Broeke, M. R.: Momentum, Heat, and Moisture Budgets of the
Katabatic Wind Layer over a Midlatitude Glacier in Summer, J. Appl.
Meteorol., 36, 763–774, 1997.
Wang, R., Liu, S., Shangguan, D., Radić, V., and Y, Z.: Spatial
Heterogeneity in Glacier Mass-Balance, Water, 11, 1–21, https://doi.org/10.3390/w11040776, 2019.
Yang, W., Guo, X., Yao, T., Yang, K., Zhao, L., Li, S., and Zhu, M.:
Summertime surface energy budget and ablation modeling in the ablation zone
of a maritime Tibetan glacier, J. Geophys. Res.-Atmos., 116, 1–11,
https://doi.org/10.1029/2010JD015183, 2011.
Yang, W., Yao, T., Guo, X., Zhu, M., Li, S., and Kattel, D. B.: Mass
balance of a maritime glacier on the southeast Tibetan Plateau and its
temperature sensitivity, J. Geophys. Res.-Atmos., 118, 9579–9594,
https://doi.org/10.1002/jgrd.50760, 2013.
Zhao, L., Tian, L., Zwinger, T., Ding, R., Zong, J., Ye, Q., and Moore, J. C.: Numerical simulations of Gurenhekou glacier on the Tibetan Plateau, J.
Glaciol., 60, 71–82, https://doi.org/10.3189/2014JoG13J126, 2014.
Zhu, M., Yao, T., Yang, W., Maussion, F., Huintjes, E., and Li, S.: Energy-
and mass-balance comparison between Zhadang and Parlung No. 4 glaciers on
the Tibetan Plateau, J. Glaciol., 61, 595–607, https://doi.org/10.3189/2015JoG14J206, 2015.
Short summary
Near surface air temperature (Ta) is important for simulating the melting of glaciers, though its variability in space and time on mountain glaciers is still poorly understood. We combine new Ta observations on glacier in Tibet with several glacier datasets around the world to explore the applicability of an existing method to estimate glacier Ta based upon glacier flow distance. We make a first step at generalising a method and highlight the remaining unknowns for this field of research.
Near surface air temperature (Ta) is important for simulating the melting of glaciers, though...